JPH0734036B2 - Automatic snow depth measurement method - Google Patents

Automatic snow depth measurement method

Info

Publication number
JPH0734036B2
JPH0734036B2 JP3156974A JP15697491A JPH0734036B2 JP H0734036 B2 JPH0734036 B2 JP H0734036B2 JP 3156974 A JP3156974 A JP 3156974A JP 15697491 A JP15697491 A JP 15697491A JP H0734036 B2 JPH0734036 B2 JP H0734036B2
Authority
JP
Japan
Prior art keywords
snow
time
depth
thickness
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3156974A
Other languages
Japanese (ja)
Other versions
JPH052084A (en
Inventor
重信 鶴岡
Original Assignee
株式会社 拓和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 拓和 filed Critical 株式会社 拓和
Priority to JP3156974A priority Critical patent/JPH0734036B2/en
Publication of JPH052084A publication Critical patent/JPH052084A/en
Publication of JPH0734036B2 publication Critical patent/JPH0734036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、気象データ管理分
野、雪国地方に於ける、設置の設計分野等雪に関連する
あらゆる分野に対し、適切な降雪深データを計測する降
雪深自動計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic snow depth measuring method for measuring appropriate snow depth data for all fields related to snow, such as the field of weather data management, the field of installation design in the snowy region. .

【0002】[0002]

【従来の技術】従来、降雪深は、定められた時刻に雪板
と呼ばれる板上の雪を人手により排雪し、後の定められ
た時刻にその板の上に積雪された積雪深の、目盛を読み
取る人力からによる観測が主である。わずかに近年で
は、機械式としての板の回転により降雪深を自動計測す
ることや、超音波式積雪深計による積雪深の時間的差か
ら降雪深を算出し、自動計測できる装置も、試みられて
いる。
2. Description of the Related Art Conventionally, the depth of snow is the depth of snow accumulated on a plate, which is called a snow plate and is manually discharged at a specified time, and then at a specified time later. Most of the observations are made by human power reading the scale. In recent years, a device that can automatically measure the snowfall depth by rotating the plate as a mechanical type, or calculate the snowfall depth from the time difference of the snowfall depth by an ultrasonic snow depth meter and automatically measure it has been tried. ing.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来におけ
る降雪深計測装置の前者は、回転する板が、地上より高
い位置に設置する必要があり、風による雪片の補獲率が
悪くなり、後者は、降雪深を正しく演算し得うるに足り
る精度が、従来の超音波式積雪深計では、確保できない
事と、積雪の沈降係数の関数化が、確立していないこと
により、前者,後者共降雪深の精度が悪く実用化できて
いない。したがって積雪深の時間的な差から降雪深を、
正しく演算し得うるに足りる精度が、確保できなかっ
た。
By the way, in the former of the conventional snow depth measuring apparatus, the rotating plate needs to be installed at a position higher than the ground, and the catch rate of snowflakes due to the wind deteriorates. The accuracy of the snow depth can be calculated correctly, but it cannot be ensured by the conventional ultrasonic snow depth meter, and the function of the subsidence coefficient of snow has not been established. The depth accuracy is poor and it has not been put to practical use. Therefore, the snowfall depth can be calculated from the time difference of the snowfall depth.
We couldn't secure enough accuracy to calculate correctly.

【0004】この発明の目的は、従来技術の欠点を解決
しかつ、積雪の沈降係数を確立して降雪深の精度を向上
させて実用化を図った降雪深自動計測方法を提供するこ
とにある。
An object of the present invention is to solve the drawbacks of the prior art and to provide an automatic snow depth measuring method which is put into practical use by establishing the subsidence coefficient of snow and improving the accuracy of snow depth. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、連続又は、一定時間毎に光波式積雪計
(3)で検出されたmm単位の積雪深データ(H)より
一定時間内の積雪深の増分を積雪層の厚みの初期値と
し、この厚みを連続又は一定時間毎に気温計(4)で検
出された気温データ(Ti)と前記積雪深の増分を検出
した時刻からの時間により定まる積雪の沈降係数とを一
定時間毎に繰返し乗算し、定刻の積雪層の厚みが算出さ
れる工程を順次複数層にわたり繰返し定刻における各層
の厚みを総加算して降雪深を自動的かつ連続的に計測す
ることを特徴とする降雪深自動計測方法である。
In order to achieve the above object, the present invention provides a constant snow depth data (H) in mm unit detected by a lightwave type snow cover (3) continuously or at regular time intervals. The increment of the snow depth within the time is used as the initial value of the thickness of the snow layer, and this thickness is the temperature data (Ti) detected by the thermometer (4) and the time when the increment of the snow depth is detected continuously or at regular intervals. The settling coefficient of the snow cover, which is determined by the time from, is repeatedly multiplied at regular time intervals, and the process of calculating the thickness of the snow cover layer on a regular basis is repeated over multiple layers. It is an automatic snow depth measurement method characterized by continuous and continuous measurement.

【0006】また、この発明は、連続又は、一定時間毎
に光波式積雪計(3)で検出されたmm単位の積雪深デ
ータ(H)より一定時間内の積雪深の増分を積雪層の厚
みの初期値とし、この厚みを連続又は一定時間毎に気温
計(4)で検出された気温データ(Ti)並びに雪重量
計(6)で検出された雪重量データ(Pi)と、前記積
雪深の増分を検出した時刻からの時間により定まる積雪
の沈降係数とを一定時間毎に繰返し乗算し、定刻の積雪
層の厚みが算出される工程を順次複数層にわたり繰返し
定刻における各層の厚みを総加算して降雪深を自動的か
つ連続的に計測することを特徴とする降雪深自動計測方
法である。
Further, according to the present invention, the increment of the snow depth within a fixed time is calculated from the snow depth data (H) in mm unit detected by the light wave type snow meter (3) continuously or at fixed intervals, and the thickness of the snow layer is increased. As an initial value of, the thickness of the snow is continuously measured or at fixed time intervals, the temperature data (Ti) detected by the thermometer (4) and the snow weight data (Pi) detected by the snow scale (6), and the snow depth. The process of calculating the thickness of the snow layer on time is repeated over multiple layers by repeatedly multiplying by the settling coefficient of snow cover determined by the time from the time when the increment of is detected, and the total thickness of each layer on time is added. The automatic snow depth measuring method is characterized by automatically and continuously measuring the snow depth.

【0007】[0007]

【作用】この発明の降雪深自動計測方法を採用すること
により、自動的かつ、連続的に、精度よく計測される。
而して、人手不足の解消への貢献,24時間どの様な気
象条件下でも連続計測が可能,人手による測定値のバラ
ツキの低減,広範囲に必要箇所に、必要数設置でき、詳
細な気象情報を得ることができ、社会的にも、大いに意
義なものとなる。
By employing the snow depth automatic measuring method of the present invention, the snow depth can be measured automatically and continuously with high accuracy.
Therefore, it contributes to the elimination of manpower shortage, continuous measurement is possible under any weather condition for 24 hours, reduction of the fluctuation of the measurement value by manpower, the necessary number can be installed in a wide range of necessary places, and detailed weather information Can be obtained, and it will be of great significance socially.

【0008】[0008]

【実施例】以下、この発明の実施例を、図面に基づき詳
細に説明する。図1は、本実施例の構成説明図であり、
地面GL上に立設された支柱1の上部には、支柱取付金
具2を介して、光波式積雪深計としての計測部3が、下
方斜目(例えば支柱1に対して20度)に、支承れてい
る。また、前記支柱1の適宜な高さ位置には、気温計4
が取付けられている。計測部3から、発光され、しかも
変調された光波は、波線5で示す、経路を通り、積雪面
で反射し、同じ波線5で示す経路を通り計測部3に受光
される。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory diagram of the configuration of this embodiment,
A measurement unit 3 as a lightwave type snow depth gauge is provided on the upper portion of the support 1 which is erected on the ground GL via a support mounting bracket 2 at a downward slope (for example, 20 degrees with respect to the support 1). It is supported. In addition, at an appropriate height position of the pillar 1, a temperature gauge 4
Is installed. The light wave emitted from the measuring unit 3 and further modulated passes through the route indicated by the wavy line 5, is reflected on the snow surface, and is received by the measuring unit 3 through the route indicated by the same wavy line 5.

【0009】雪重量計6は地面GL上に設けられてお
り、メタルウエファーと呼ばれるステンレス薄板製の偏
平容器(例えばL2000×W1000×D12)4枚
の中に液体(例えば不凍液)を充填し、雪重量を全面積
でとらえ、容器内の圧力を圧力計7で電気信号に変換し
単位面積当りの雪重量を計測するものである。
The snow scale 6 is provided on the ground GL, and a liquid (for example, antifreeze) is filled in four flat containers (for example, L2000 × W1000 × D12) made of stainless thin plates called metal wafers, and snow is filled. The weight is captured over the entire area, the pressure inside the container is converted into an electric signal by the pressure gauge 7, and the snow weight per unit area is measured.

【0010】前記計測部3からの光の発光と受光の位相
差より積雪深がmm単位で計測される。計側部3、気温
計4および雪重量計6で、計測された積雪深データ、気
温データおよび雪重量データは、刻々と演算部8に入力
される。入力されたデータは、後述するフローに従い、
データの記憶部8A,演算器8B,表示器8Cにて記
憶,演算,表示されると共にインターフェース8Dを経
て出力される。
The snow depth is measured in mm from the phase difference between the light emission and the light reception from the measuring unit 3. The snow depth data, the temperature data, and the snow weight data measured by the meter side unit 3, the temperature meter 4, and the snow weight meter 6 are input to the calculation unit 8 every second. The input data, according to the flow described later,
The data is stored, calculated, and displayed by the data storage unit 8A, the arithmetic unit 8B, and the display 8C, and is output via the interface 8D.

【0011】図2は、演算部8の演算手順を示すフロー
チャートであり、以下図2に従い説明する。演算部8の
電源をONにすることで、自動的にステップS1の演算
がスタートし、演算に必要な定数設定値をステップS2
にてセットします。次に、ステップS3にて、積雪深デ
ータを、ステップS4にて雪重量データを、ステップ5
にて気温データを各々に入力し、ステップS6にて、デ
ータを入力した時刻timが、0分,10分,20分,30
分,40分,50分の様に10分単位であるなら、ステップS
7で記憶部8Aにデータが記憶され、終了したならステ
ップS8にてtimが、例えばAM9:00であるな
ら、ステップS9で日降雪深計算を行い、そうでない時
は、ステップS10に進む。ステップS10にて、ti
mが60分単位であるならステップS11の時間降雪深計算
を行い、そうでない時はステップS12へ進む。
FIG. 2 is a flow chart showing the calculation procedure of the calculation unit 8, which will be described below with reference to FIG. By turning on the power supply of the calculation unit 8, the calculation of step S1 automatically starts, and the constant set value necessary for the calculation is set to step S2.
Set at. Next, in step S3, snow depth data, in step S4, snow weight data, step 5
In step S6, the temperature data is input for each, and the time tim at which the data is input is 0 minute, 10 minutes, 20 minutes, 30 minutes.
If the unit is 10 minutes such as minutes, 40 minutes, 50 minutes, step S
If the data is stored in the storage unit 8A in step 7 and the processing is completed, if the tim is AM 9:00 in step S8, the daily snow depth calculation is performed in step S9, and if not, the process proceeds to step S10. In step S10, ti
If m is a unit of 60 minutes, the time snow depth calculation of step S11 is performed, and if not, the process proceeds to step S12.

【0012】ステップS12にてtimが30分単位なら、
ステップS13の日降雪深計算を行い、そうでない時は、
ステップ14で記憶部8Aに記憶される。ステップS13
の降雪強度計算が終了後ステップS14にて、計算された
日降雪データ,時間降雪データおよび、降雪強度データ
である降雪深データを、記憶部8Aに各々記憶する。ス
テップS15にて、日付,現在時刻,入力時刻tim,積
雪深データ,強度データなどを表示器8cに表示する。
ステップS16にて、日降雪深データ,時間降雪深デー
タ,降雪強度データを出力する。前記ステップS6でt
imが10分単位でないときにはステップS15に進み、
各データが表示器8Cに表示される。
At step S12, if tim is 30 minutes,
Calculate the daily snow depth in step S13, and if not,
In step 14, it is stored in the storage unit 8A. Step S13
After the completion of the calculation of the snowfall intensity in step S14, the calculated daily snowfall data, time snowfall data, and snowfall depth data that is the snowfall intensity data are stored in the storage unit 8A. In step S15, the date, current time, input time tim, snow depth data, intensity data, etc. are displayed on the display 8c.
In step S16, daily snow depth data, hourly snow depth data, and snow intensity data are output. In step S6, t
If im is not in units of 10 minutes, the process proceeds to step S15,
Each data is displayed on the display 8C.

【0013】なお、図2におけるフローチャートは、積
雪深データ、気温データおよび雪重量データの3者によ
るフローを示したが、積雪深データおよび気温データの
2者による場合には、図2においてステップS4の雪重
量データが入力されることが省かれるのである。
The flow chart in FIG. 2 shows a flow by three parties of snow depth data, temperature data and snow weight data, but in the case of two parties of snow depth data and temperature data, step S4 in FIG. That is, the input of the snow weight data is omitted.

【0014】時間降雪深,日降雪深および、降雪強度
は、扱うデータ数が異なるのみで、考え方は共通である
ので、以下に、まず積雪深データおよび気温データの2
者に基づく時間降雪深について図3に示した積雪深単純
増加モデルで説明する。
The time snow depth, the daily snow depth, and the snow intensity are the same, except that the number of data to be handled is different. Therefore, first, the snow depth data and the temperature data will be described below.
The temporal snowfall depth based on the person will be described with reference to the snowfall simple increase model shown in FIG.

【0015】図3において、t0 は演算対称時間の開始
時刻で、t6 はその終了時刻である。t0 からt6 の6
0分において、〜は、積雪面の変化を示し、これ
が、積雪深計により、計測される。図中点線は、沈降を
予想した曲線であり、例えば、〜の波線は、t0 時
刻に於ける積雪面がt6 時刻までに沈降する予想曲線を
示し、〜は10分間という比較的短い時間であるの
で、沈降0と仮定するものである。
In FIG. 3, t0 is the start time of the arithmetic symmetric time, and t6 is its end time. 6 from t0 to t6
At 0 minutes, ~ indicates a change in the snow surface, which is measured by the snow depth meter. The dotted line in the figure is a curve predicting subsidence. For example, the wavy line of ~ indicates the expected curve that the snow surface at time t0 subsides by time t6, and ~ is a relatively short time of 10 minutes. Therefore, it is assumed that the sedimentation is zero.

【0016】積雪深計により、積雪深Hが計測され、そ
の10分間の増分例えばd11に沈降関数aijを乗ずる
ことで、以下に示す式により時間的降雪深を算出する。
図3において、時間降雪深HHは
The snow depth H is measured by a snow depth meter, and the 10-minute increment, for example, d11, is multiplied by the sinking function aij to calculate the temporal snow depth by the following formula.
In FIG. 3, the time snowfall depth HH is

【数1】 で示される。ここでdd6 jはti時刻でのddijが
時刻と共に減少し、t6時刻となったときの予想値を示す
ものである。この予想値dd6 jを求める計算式とし
て、時間的に初期に減衰の大きい指数関数を用いた次式
を近似式として用いる。
[Equation 1] Indicated by. Here, dd6 j indicates an expected value at the time t6 when ddij at time ti decreases with time. As the calculation formula for obtaining this predicted value dd6 j, the following formula using an exponential function with a large attenuation in time is used as an approximation formula.

【0017】 a6j=exp(−C(t6 −tj)) (2) この(2)式の、a6jにおいて、ti時刻のaij
は、 aij=exp(−C(ti−tj)) (3) で示される。
A6j = exp (−C (t6 −tj)) (2) In the expression (2), a6j is aij at ti time.
Is represented by aij = exp (-C (ti-tj)) (3).

【0018】(2),(3)式において、Cは、気象条
件のパラメータを含んだ関数で表すことが妥当である。
ここでは、積雪の自然沈降に、大きく作用すると考えら
れる気温Tiと、荷重に相関のある図中fiで示す上部
の積雪深でもって、次式で示す関数式を仮定する。すな
わち、気温Tiが高くなれば雪は溶けやすく、低ければ
雪は溶けにくい。また、積載された雪の重みが重ければ
雪は縮みやすく、軽ければ雪は縮みにくい。さらに、雪
は時間の経過と共に自然沈降をするものであるから、こ
れら3者を模式すると次式となるものである。
In the equations (2) and (3), it is appropriate that C is represented by a function including parameters of weather conditions.
Here, a functional expression shown below is assumed with the temperature Ti that is considered to have a large effect on the natural subsidence of snow and the upper snow depth indicated by fi in the figure, which is correlated with the load. That is, if the temperature Ti is high, the snow melts easily, and if the temperature Ti is low, the snow does not melt easily. If the weight of the loaded snow is heavy, the snow will shrink easily, and if it is light, the snow will not shrink easily. Furthermore, since snow naturally subsides with the passage of time, the following equation can be obtained when these three types are modeled.

【0019】 C=C1×Ti+C2×fi+C3 (4) ここで、Tiは、ti時刻における気温であり、温度計
により計測される既知な値であり、fiは、演算部でも
って次式により演算される。
C = C1 × Ti + C2 × fi + C3 (4) Here, Ti is the air temperature at time ti, and is a known value measured by the thermometer, and fi is calculated by the following equation by the calculation unit. It

【0020】[0020]

【数2】 上記(4)式において、C1,C2,C3は実測実験に
より、相関処理を行うことによって、決定する定数であ
る。
[Equation 2] In the above equation (4), C1, C2, and C3 are constants determined by performing correlation processing by actual measurement experiments.

【0021】上述の式により、計測された積雪データと
気温データを用いて、t6時刻に演算を行うことで、時
間降雪深を精度よく計測することができる。
The time snowfall depth can be accurately measured by performing the calculation at the time t6 using the snow cover data and the temperature data measured by the above formula.

【0022】次に、積雪深データ、気温データおよび重
量データの3者に基づく時間降雪深について積雪深単純
増加モデル図が同様に図3に示され、さらに初期補正図
が図4に示されている。まず、図4において、降雪深の
初期値di を求める必要がある。すなわち、この初期値
は圧縮速度が早いことから初期補正を行なう必要がある
のである。
Next, a simple snow depth increase model diagram for the time snow depth based on the three parties of the snow depth data, temperature data and weight data is also shown in FIG. 3, and the initial correction diagram is shown in FIG. There is. First, in FIG. 4, it is necessary to obtain the initial value d i of the snow depth. That is, since this initial value has a high compression speed, it is necessary to perform initial correction.

【0023】最初に、計測される積雪深の10分間の差
0 を用い、初期時刻iからi+1の時刻のA(沈降係
数)を求め、(6)式により直前の5分間相当の逆算を
行ない初期値di が計算される。
First, using the difference h 0 of the measured snow depth for 10 minutes, A (settling coefficient) from the initial time i to the time i + 1 is obtained, and the back calculation corresponding to the immediately preceding 5 minutes is calculated by the equation (6). An initial value d i is calculated.

【0024】 di =h0 (1+1/A)/2 (6) 沈降係数Aは、積雪層の厚みが任意時刻iからi+1時
刻のdt間に圧縮する比を示し、(7),(8)式で表
わされる。
D i = h 0 (1 + 1 / A) / 2 (6) The subsidence coefficient A represents a ratio by which the thickness of the snow layer is compressed between dt from an arbitrary time i to an i + 1 time, and (7), (8) ).

【0025】[0025]

【数3】 C=C1 ・T+C2 ・tn +C3 (8) 初期値di は時間の経過と共に圧縮される。この圧縮さ
れた層厚は上記(7),(8)式により10分毎に計算
され、計測終了時刻のde が(9)式で求まる。
[Equation 3] C = C 1 · T + C 2 · t n + C 3 (8) The initial value d i is compressed over time. The compressed thickness of the (7), are calculated every 10 minutes by (8), d e the measurement end time is obtained by equation (9).

【0026】 de =Ade-1 (9) したがって、上記(9)式より時間降雪深Hは、(1
0)式より演算処理されることになる。
D e = Ad e-1 (9) Therefore, the time snow depth H is (1
Calculation processing is performed according to the expression (0).

【0027】[0027]

【数4】 但し、A:沈降係数(dt間に圧縮する比) H:降雪深(mm) P:層中心点より上の重量(kg/m2 ) T:初期の気温(℃) de :測定終了時刻の積雪層厚(mm) di :i時刻の積雪層厚(mm) di+1 :i+1時刻積雪層厚(mm) dt:差分時間(10分) δh:dt時間の沈降量(mm) t:降雪時からの経過時間(時間) C1 ,C2 ,C3 ,n:実測実験から求めた定数 上記(7)式の沈降係数Aは、次の要領で誘導される。
すなわち、すでに知られている文献より
[Equation 4] However, A: (a ratio to compress between dt) sedimentation coefficient H: snow depth (mm) P: weight of above layers center point (kg / m 2) T: Initial Temperature (℃) d e: measurement end time Snow layer thickness (mm) d i : Snow layer thickness at time i (mm) d i + 1 : i + 1 Time snow layer thickness (mm) dt: Difference time (10 minutes) δh: Subsidence amount at dt time (mm) t: elapsed time (hours) from the time of snowfall C 1 , C 2 , C 3 , n: constant obtained from actual measurement experiment The sedimentation coefficient A of the above equation (7) is derived in the following manner.
That is, from the already known literature

【数5】 が知られている。この(11)式を差分形式とすると、[Equation 5] It has been known. If this equation (11) is a difference format,

【数6】 となる。[Equation 6] Becomes

【0028】ここで、A(t)=h(t+1)/h
(t)とすると、上記(7)式は、
Here, A (t) = h (t + 1) / h
Assuming (t), the above equation (7) is

【数7】 η(t)=P(t)・dt/(1−A(t)) (13) となる。Η (t) = P (t) · dt / (1−A (t)) (13)

【0029】すでに知られている文献より、η(t)は
exp(tn )に比例することと、log ηは温度T
(t)の低下と共に直線的に増加することから、上記
(13)式は
From the already known literature, η (t) is proportional to exp (t n ), and log η is temperature T
Since it increases linearly with the decrease of (t), the above equation (13) becomes

【数8】 η(8)=P(t)dt/(1−A(t)) =exp(C1 T(t)+C2 ・tn +C3 ) (14) となる。この(14)式よりΗ (8) = P (t) dt / (1-A (t)) = exp (C 1 T (t) + C 2 · t n + C 3 ) (14) From this equation (14)

【数9】 A(t)=1−P(t)・dt/exp(C1 ・T(t)+C2 n +C3 ) となる。Equation 9] the A (t) = 1-P (t) · dt / exp (C 1 · T (t) + C 2 t n + C 3).

【0030】上記(14)式において、左辺と右辺のlo
g をとり、Cとすると、
In the above equation (14), lo on the left and right sides
Taking g and C,

【数10】 C=log η(t)=C1 T(t)+C2 n +C3 (15) となる。C = log η (t) = C 1 T (t) + C 2 t n + C 3 (15)

【0031】上記(14)式が(7)式に、(15)式
が(8)式に相当することになる。よって、時間降雪深
Hは重量データも加味した(7)式および(10)式で
上述した(1)式および(3)式よりも正確に求めるこ
とができるのである。
Equation (14) corresponds to equation (7), and equation (15) corresponds to equation (8). Therefore, the time snowfall depth H can be obtained more accurately than the equations (1) and (3) described above in the equations (7) and (10) in which the weight data is also taken into consideration.

【0032】なお、この発明は前述した実施例に限定さ
れることなく、適宜の変更を行うことにより、その他の
態様で実施し得るものである。本実施例では時間降雪深
について説明したが、日降雪深および降雪強度も同様の
手法にて計測できるものである。
The present invention is not limited to the above-described embodiments, but can be implemented in other modes by making appropriate changes. In this embodiment, the time snowfall depth has been described, but the daily snowfall depth and snowfall intensity can be measured by the same method.

【0033】[0033]

【発明の効果】以上のごとき実施例の説明より理解され
るように、この発明によれば、特許請求の範囲に記載さ
れたとおりの構成であるから、積雪の沈降係数を確立し
て降雪深の精度を向上させることかできると共に、実用
的に供することができるのである。
As will be understood from the above description of the embodiments, according to the present invention, since the structure is as described in the claims, it is possible to establish the sedimentation coefficient of snow and establish the snow depth. It is possible to improve the accuracy of and to practically use.

【0034】而して、人手不足の解消への貢献、24時
間どのような気象条件下でも連続計測ができ、人手によ
る測定値のバラツキの低減、広範囲に必要な箇所に、必
要数設置でき、詳細な気象情報を得ることができる。
Thus, it contributes to the elimination of manpower shortage, continuous measurement is possible under any weather condition for 24 hours, the variation of the measured value by manpower is reduced, and the necessary number can be installed in a wide range of necessary places. You can get detailed weather information.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる一実施例の構成説明図であ
る。
FIG. 1 is a structural explanatory view of an embodiment according to the present invention.

【図2】この発明の方法の動作を示すフローチャートで
ある。
FIG. 2 is a flowchart showing the operation of the method of the present invention.

【図3】時間降雪深を計測する単純増加モデルの説明図
である。
FIG. 3 is an explanatory diagram of a simple increase model for measuring a time snowfall depth.

【図4】初期補正を行なうための説明図である。FIG. 4 is an explanatory diagram for performing initial correction.

【符号の説明】[Explanation of symbols]

1 支柱 2 支柱取付金具 3 計測部 4 気温計 5 波線 6 雪重量計 7 圧力計 8 演算部 8A 記憶部 8B 演算器 8C 表示器 1 Prop 2 Prop mounting bracket 3 Measuring part 4 Temperature gauge 5 Wavy line 6 Snow scale 7 Pressure gauge 8 Calculation part 8A Storage part 8B Calculation part 8C Display

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続又は、一定時間毎に光波式積雪計
(3)で検出されたmm単位の積雪深データ(H)より
一定時間内の積雪深の増分を積雪層の厚みの初期値と
し、この厚みを連続又は一定時間毎に気温計(4)で検
出された気温データ(Ti)と前記積雪深の増分を検出
した時刻からの時間により定まる積雪の沈降係数とを一
定時間毎に繰返し乗算し、定刻の積雪層の厚みが算出さ
れる工程を順次複数層にわたり繰返し定刻における各層
の厚みを総加算して降雪深を自動的かつ連続的に計測す
ることを特徴とする降雪深自動計測方法。
1. The initial value of the thickness of the snow layer is defined as an increment of the snow depth within a fixed time from the snow depth data (H) in mm unit detected by the lightwave type snow cover (3) continuously or at regular intervals. , This thickness is repeated continuously or at regular time intervals with the air temperature data (Ti) detected by the thermometer (4) and the snowflake sedimentation coefficient determined by the time from the time when the increment of the snow depth is detected. Automatically and continuously measuring snow depth by repeating the process of multiplying and calculating the thickness of the snow layer at regular intervals over a number of layers and adding the thickness of each layer at regular intervals to automatically and continuously measure the snow depth. Method.
【請求項2】 連続又は、一定時間毎に光波式積雪計
(3)で検出されたmm単位の積雪深データ(H)より
一定時間内の積雪深の増分を積雪層の厚みの初期値と
し、この厚みを連続又は一定時間毎に気温計(4)で検
出された気温データ(Ti)並びに雪重量計(6)で検
出された雪重量データ(Pi)と、前記積雪深の増分を
検出した時刻からの時間により定まる積雪の沈降係数と
を一定時間毎に繰返し乗算し、定刻の積雪層の厚みが算
出される工程を順次複数層にわたり繰返し定刻における
各層の厚みを総加算して降雪深を自動的かつ連続的に計
測することを特徴とする降雪深自動計測方法。
2. The initial value of the thickness of the snow layer is defined as the increment of the snow depth within a fixed time from the snow depth data (H) in mm unit detected by the light wave type snow cover (3) continuously or at regular intervals. This thickness is continuously or at regular intervals detected by the temperature data (Ti) detected by the thermometer (4) and the snow weight data (Pi) detected by the snow scale (6), and the increment of the snow depth is detected. The process of repeatedly calculating the settling coefficient of snow cover, which is determined by the time from the specified time, and calculating the thickness of the snow layer at regular intervals is repeated over multiple layers in sequence, and the total thickness of each layer at the scheduled time is added up to determine the snowfall depth. Automatic snowfall measurement method characterized by automatically and continuously measuring snowfall.
JP3156974A 1991-01-24 1991-06-27 Automatic snow depth measurement method Expired - Lifetime JPH0734036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156974A JPH0734036B2 (en) 1991-01-24 1991-06-27 Automatic snow depth measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-7200 1991-01-24
JP720091 1991-01-24
JP3156974A JPH0734036B2 (en) 1991-01-24 1991-06-27 Automatic snow depth measurement method

Publications (2)

Publication Number Publication Date
JPH052084A JPH052084A (en) 1993-01-08
JPH0734036B2 true JPH0734036B2 (en) 1995-04-12

Family

ID=26341467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156974A Expired - Lifetime JPH0734036B2 (en) 1991-01-24 1991-06-27 Automatic snow depth measurement method

Country Status (1)

Country Link
JP (1) JPH0734036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973344B1 (en) * 2008-03-14 2010-07-30 (주)지엠지 Measuring method for snowfall

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732347B2 (en) * 1993-09-04 1998-03-30 新潟電機株式会社 Snow depth measurement method and device
JP4701222B2 (en) * 2007-09-25 2011-06-15 新潟電機株式会社 Snowfall intensity measuring method and snowfall intensity measuring apparatus
CN112326684B (en) * 2020-10-21 2022-05-24 阳光电源股份有限公司 Photovoltaic module dust accumulation detection method, device, equipment and storage medium
CN112945154B (en) * 2021-01-31 2023-01-24 吉林大学 Ultrasonic snow depth measuring device and method based on normalized cross-correlation time delay measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973344B1 (en) * 2008-03-14 2010-07-30 (주)지엠지 Measuring method for snowfall

Also Published As

Publication number Publication date
JPH052084A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
Haiden et al. The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region
Surdyk Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach
Machado et al. The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence
Derksen et al. A comparison of 18 winter seasons of in situ and passive microwave-derived snow water equivalent estimates in Western Canada
Essery et al. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations
CN108828691B (en) Method and device for forecasting short rainfall
Houze Jr et al. Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation
Zilitinkevich et al. Near‐surface turbulent fluxes in stable stratification: Calculation techniques for use in general‐circulation models
US20210080569A1 (en) Systems and Methods for Weather Radar Processing
JPH0734036B2 (en) Automatic snow depth measurement method
CN109031473B (en) Automatic judgment method and device for completely sunny days
Alcott et al. Snow-to-liquid ratio variability and prediction at a high-elevation site in Utah’s Wasatch Mountains
JPH11118947A (en) Automatic measuring system for snowfall depth
Thielen et al. A radar data based short-term rainfall prediction model for urban areas—A simulation using meso-scale meteorological modelling
JP2002196085A (en) System for predicting road surface condition
Muramoto et al. Measuring the density of snow particles and snowfall rate
JPH10282250A (en) Method and device for prediction of freezing on road surface
Mahyun et al. The Radar-Rainfall Relationship for Northern Region of Peninsular Malaysia
Miller et al. Measurement of the hydrodynamic modulation of centimeter waves
JPH1164536A (en) Road surface temperature predictive method and device, and recording medium recording road surface temperature prediction program
Wahl et al. Estimation of Brunt-Väisälä frequency from temperature profiles
Yan et al. Sensitivity of CYGNSS-derived soil moisture to global precipitation
JPS5967484A (en) Apparatus for forecasting thunderbolt
Beyrich et al. Mixing height determination for dispersion modelling-a test of meteorological pre-processors
Pandey et al. Topside electron density distribution during sunrise and sunset conditions at Arecibo: Comparison with IRI

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 17