JP3218694B2 - Resin shock absorber - Google Patents

Resin shock absorber

Info

Publication number
JP3218694B2
JP3218694B2 JP15435792A JP15435792A JP3218694B2 JP 3218694 B2 JP3218694 B2 JP 3218694B2 JP 15435792 A JP15435792 A JP 15435792A JP 15435792 A JP15435792 A JP 15435792A JP 3218694 B2 JP3218694 B2 JP 3218694B2
Authority
JP
Japan
Prior art keywords
shock absorber
stress
resin
compression
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15435792A
Other languages
Japanese (ja)
Other versions
JPH05321966A (en
Inventor
弘信 古澤
外喜雄 国分
賢 鎌田
均 上乃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP15435792A priority Critical patent/JP3218694B2/en
Publication of JPH05321966A publication Critical patent/JPH05321966A/en
Application granted granted Critical
Publication of JP3218694B2 publication Critical patent/JP3218694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Vibration Dampers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、衝撃の吸収や緩和を必
要とする道路や岸壁の側壁、建物の床や壁、自動車など
の緩衝部等に幅広く活用することのできる樹脂製の衝撃
吸収体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin shock absorber which can be widely used for roads and quayside walls, building floors and walls, buffers for automobiles, etc., which need to absorb or mitigate shocks. It is about.

【0002】[0002]

【従来の技術】従来の衝撃吸収体としては、金属バネ、
摩擦緩衝器、油圧緩衝器、ゴム成形体等があり、またこ
れらを組合わせたものも使用されている。しかしながら
金属バネは優れた緩衝性を有しているが、エネルギー吸
収能はほとんどない。摩擦緩衝器や油圧緩衝器は一般に
構造が複雑であって高価であるばかりでなく、バネ定数
の変形速度依存性が極めて大きく、しかも復元性がない
等の問題点を有している。加えてこれらの衝撃緩衝器
は、水中では使い難い等の使用環境による制限が大き
く、防錆や防水等のメインテナンスが不可欠である。ゴ
ム成形品は、復元性が良いという特徴を有している反
面、材料の弾性率が低いので満足のいく衝撃吸収量を確
保するには、材料使用量を多くしなければならず、非常
に重くなるため大型化が難しい。更にこれらの衝撃吸収
体は、狭い受圧部の衝撃緩和には便利であるが、道路側
壁や建築物の床や壁等広い面積で均質なクッション性を
有する構造体には適用し難い。
2. Description of the Related Art Conventional shock absorbers include metal springs,
There are a friction shock absorber, a hydraulic shock absorber, a rubber molded body, and the like, and a combination thereof is also used. However, metal springs have excellent cushioning properties, but have little energy absorption capability. In general, frictional shock absorbers and hydraulic shock absorbers are not only complicated in structure and expensive, but also have problems such as extremely large dependence of the spring constant on the deformation speed and lack of restorability. In addition, these shock absorbers are greatly restricted by the use environment such as being difficult to use in water, and maintenance such as rust prevention and waterproofing is indispensable. Rubber molded products have the characteristic of good resilience, but since the material has a low elastic modulus, it is necessary to use a large amount of material in order to secure a satisfactory amount of shock absorption. It is difficult to increase the size because it is heavy. Further, these shock absorbers are convenient for alleviating the impact of a narrow pressure receiving portion, but are difficult to apply to a structure having a uniform cushioning property over a wide area such as a road side wall or a floor or a wall of a building.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の様な従
来技術の問題点に着目してなされたものであって、その
目的は、軽量且つ簡単な構造で、反力に比較して大きな
エネルギー吸収効率を有すると共に、復元性にも優れて
おり、しかも空中や海中などの如何を問わず使用可能な
防錆、耐水、耐候性を有していてメインテナンスフリー
であり、更には必要に応じて拡張組立が可能で且つ広い
面積で均質なクッション性を発揮し得る様な樹脂製衝撃
吸収体を得ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to provide a light-weight and simple structure which is large in comparison with the reaction force. It has excellent energy absorption efficiency, excellent resilience, and has rust prevention, water resistance, and weather resistance that can be used regardless of whether it is in the air or under the sea, and is maintenance-free. It is an object of the present invention to obtain a resin shock absorber that can be expanded and assembled and can exhibit uniform cushioning properties over a wide area.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る衝撃吸収体の構成は、曲げ弾性率
が1,000〜20,000Kg/cm2の樹脂によって形成されたアー
チ状、ドーム状もしくはハニカム状の大変形可能部が、
有孔もしくは無孔の平板上に複数個立設された樹脂製衝
撃吸収ユニットを複数組積層した樹脂製衝撃吸収体であ
って、主に該大変形可能部の変形によって、その圧縮時
における応力・圧縮率曲線が下記の条件を満足する様に
構成されたものであるところに要旨を有するものであ
る。 (a)降伏強度が2〜25トン/m2であること、 (b)圧縮エネルギー吸収効率が50%以上であること、 (c)圧縮率15%以内に降伏点を示すものであること。
Means for Solving the Problems The structure of the shock absorber according to the present invention, which can solve the above problems, is an arch-shaped or dome-shaped resin formed with a resin having a flexural modulus of 1,000 to 20,000 kg / cm 2. Or a honeycomb-shaped large deformable part,
A resin shock absorber made by laminating a plurality of resin shock absorbing units erected on a perforated or non-perforated flat plate. The gist is that the compression ratio curve is configured to satisfy the following conditions. (a) The yield strength is 2 to 25 ton / m 2 , (b) The compression energy absorption efficiency is 50% or more, and (c) The yield point is within 15% of the compressibility.

【0005】[0005]

【作用】本発明の樹脂製衝撃吸収体は、前述の如く曲げ
弾性率が1,000 〜20,000kg/cm2の樹脂を素材として使用
し、これを用いて有孔もしくは無孔の平板上にアーチ
状、ドーム状もしくはハニカム状の大変形可能部を複数
個立設した構造を有するものであり、曲げ弾性率が1,00
0 〜20,000kg/cm2 の樹脂としては、熱可塑性のポリエ
ステルエラストマー、ポリオレフィンエラストマー、ポ
リアミドエラストマーやポリウレタンエラストマー、あ
るいはそれらのブレンド物や注型ポリウレタン等の硬化
性樹脂などが例示される。これらの中でも特に好ましい
のは、耐候性や耐水性に優れた熱可塑性ポリエステルエ
ラストマーやポリオレフィンエラストマーであるが、曲
げ弾性率が上記規定範囲に納まるものであればその種類
は一切制限されない。
[Action] resinous impact-absorbing member of the present invention uses a resin as flexural modulus of 1,000 ~20,000kg / cm 2 mentioned above as a material, arched in porous or nonporous on the flat plate by using this , Having a structure in which a plurality of dome-shaped or honeycomb-shaped large deformable parts are erected, and the bending elastic modulus is 1,00
Examples of the resin having a weight of 0 to 20,000 kg / cm 2 include a thermoplastic polyester elastomer, a polyolefin elastomer, a polyamide elastomer, a polyurethane elastomer, a blend thereof, and a curable resin such as cast polyurethane. Of these, particularly preferred are thermoplastic polyester elastomers and polyolefin elastomers having excellent weather resistance and water resistance, but the types thereof are not particularly limited as long as the flexural modulus falls within the above specified range.

【0006】ちなみに曲げ弾性率が1,000kg/cm2 未満の
樹脂では、得られる衝撃吸収体のバネ定数が不足するた
め、満足のいくエネルギー吸収性能を持たせるために構
成要素の肉厚を大きくしなければならなくなり、衝撃吸
収体が大きく且つ重いものとなるため、本発明の趣旨に
沿わなくなる。
By the way, in the case of a resin having a flexural modulus of less than 1,000 kg / cm 2 , the spring constant of the obtained shock absorber is insufficient, so that the thickness of the constituent elements must be increased in order to have a satisfactory energy absorption performance. And the impact absorber becomes large and heavy, which is not in accordance with the gist of the present invention.

【0007】一方、曲げ弾性率が20,000kg/cm2 を超え
ると、得られる衝撃吸収体が剛直になり過ぎて撓み性が
不足することになり、圧縮力を受けたときに応力集中を
起こして破壊し易くなり、繰り返し使用に耐え難くな
る。しかも剛性を抑えるために大変形可能部の肉厚を薄
くすると、衝撃吸収体の撓み性は良好となるが、大きな
圧縮力を受けて変形したときに構成要素が局部的に紙の
様に折れて弾性を失い、復元し難くなるので、矢張り本
発明の目的を果たせなくなる。
On the other hand, if the flexural modulus exceeds 20,000 kg / cm 2 , the resulting shock absorber becomes too rigid and lacks flexibility, and stress concentration occurs when subjected to compressive force. It becomes easy to break and becomes hard to withstand repeated use. In addition, if the thickness of the large deformable part is reduced to suppress rigidity, the shock absorber will have good flexibility, but when deformed by a large compressive force, the components will be locally broken like paper. As a result, the object loses its elasticity and is hardly restored, so that the object of the present invention cannot be achieved.

【0008】これに対して曲げ弾性率が1,000 〜20,000
kg/cm2 である樹脂を素材として使用すると、後述する
大変形可能部の形状などを変更することにより、必要に
応じて衝撃吸収体の応力の立上がりを早くしたり、降伏
応力を大きくしたりできるため、従来から使用されてい
るゴム成形体の様に肉厚を極端に厚くすることもなく軽
量な吸収体とすることができ、圧縮時に応力集中を起こ
して破壊し易くなるといったこともなくなる。
On the other hand, the flexural modulus is 1,000 to 20,000
When resin of kg / cm 2 is used as the material, the rise of the stress of the shock absorber or the yield stress can be increased as necessary by changing the shape of the large deformable part described later. Because it can be made, it is possible to make a lightweight absorber without making the thickness extremely thick like a conventionally used rubber molded body, and it is not easy to break down due to stress concentration during compression .

【0009】本発明の衝撃吸収体は、上記曲げ弾性率の
要件を満たす樹脂を使用して、以下に詳述する様な形状
・構造に成形することにより、全体として衝撃を吸収で
きる様に構成する。即ち図1〜3は本発明に係る衝撃吸
収体を構成するバネ要素Aの構造を例示するものであ
り、有孔もしくは無孔の平板3上にアーチ状もしくはド
ーム状の大変形可能部1が形成されており、この様な構
造のバネ要素Aを縦・横方向に多数配列してたとえば図
4(一部側面図)に示す様に一体成形された形状・構造
とすることにより衝撃吸収体が構成される。尚これらバ
ネ要素Aの平板3および大変形可能部1には必要に応じ
て大変形可能部1の頂部に平行部2を設けたり貫通孔4
を穿設し、一体成形された成形物を後述するように背中
合わせに重ね合わせて接合するとき、接合し易くした
り、圧縮時に頂部同士が確実に接触し、圧縮される様に
することが好ましい。
The shock absorber of the present invention is formed so as to be able to absorb shock as a whole by molding into a shape and structure as described in detail below using a resin satisfying the above-mentioned requirements of the flexural modulus. I do. That is, FIGS. 1 to 3 exemplify the structure of the spring element A constituting the shock absorber according to the present invention, in which a large deformable portion 1 having an arched or dome shape is provided on a perforated or non-perforated flat plate 3. The shock absorber is formed by arranging a large number of spring elements A having such a structure in the vertical and horizontal directions and integrally forming the shape and structure as shown in FIG. 4 (partial side view). Is configured. The flat plate 3 and the large deformable portion 1 of the spring element A may be provided with a parallel portion 2 at the top of the large deformable portion 1 or a through hole 4 if necessary.
It is preferable to make it easier to join or to make sure that the tops are securely contacted with each other when compressed and compressed when the integrally molded articles are joined back-to-back as described below. .

【0010】図示した様なバネ要素Aにおいて、平板3
は衝撃力受け面を構成し、一方大変形可能部1は衝撃力
を緩和乃至吸収するための弾性変形もしくは座屈変形部
を構成するものであり、従って該大変形可能部1は平板
3に対して斜め方向に立設した脚部もしくは壁を有する
ものであれば、その形状には一切制限がなく、図示した
様な円弧状、台形状等を含めた様々の形状・構造のアー
チ状もしくはドーム状に成形することができる。更には
大変形可能部1をたとえば図5に示す様なハニカム状に
成形して衝撃吸収作用を持たせることも可能である。
In the illustrated spring element A, a flat plate 3
Constitutes an impact force receiving surface, while the large deformable portion 1 constitutes an elastic deformation or buckling deformation portion for relaxing or absorbing the impact force. There is no limitation on the shape as long as it has legs or walls that are erected in the diagonal direction, and arches of various shapes and structures including arcs, trapezoids, etc. as shown in the figures, or It can be formed in a dome shape. Further, the large deformable portion 1 may be formed into a honeycomb shape as shown in FIG. 5, for example, to have a shock absorbing function.

【0011】また本発明の衝撃吸収体を実用化するに当
たっては、たとえば図6に示す如く2個1組の衝撃吸収
体を背中合わせに重ね合わせ、更には適用場所に応じて
必要とされる衝撃力の程度や衝撃を受ける頻度等に応じ
て更に複数組積層して使用されるが、本発明の目的を達
成するには、この衝撃吸収体を図6の矢印方向に圧縮し
たときの応力・圧縮率曲線によって確認される降伏強度
が2〜25トン/m2で且つ圧縮エネルギー吸収効率が
50%以上であることが必要となる。
In putting the shock absorber of the present invention to practical use, for example, as shown in FIG. 6, a set of two shock absorbers is superimposed back to back, and furthermore, a shock force required according to the application place is required. In order to achieve the object of the present invention, stress / compression when the shock absorber is compressed in the direction of the arrow in FIG. 6 is used. It is necessary that the yield strength confirmed by the rate curve is 2 to 25 ton / m 2 and the compression energy absorption efficiency is 50% or more.

【0012】ここで応力・圧縮率曲線(以下、S−Sカ
ーブということがある)とは、たとえば図7に略示する
如く衝撃吸収体に上・下方向から圧縮力を作用させたと
きの応力(圧縮力/受圧面積)と圧縮率の相関性を示す
グラフであり、圧縮の初期においては圧縮率に略比例し
てS−Sカーブは急激に立ち上がり、その後カーブは徐
々に緩やかになって局部的に最大応力を示す降伏点に達
し、ここで衝撃吸収体の前記大変形可能部は降伏を起こ
して応力は若干低下傾向を示すか、あるいは形状によっ
ては緩やかに上昇傾向を示すこともある。その後更に圧
縮を続けると空隙の縮少によってS−Sカーブは再び急
激に立ち上がり、圧縮率の僅かな増大で応力は極端に上
昇する様になる。
Here, the stress / compression ratio curve (hereinafter, may be referred to as an SS curve) is, for example, when a compressive force is applied to the shock absorber from above and below as schematically shown in FIG. It is a graph which shows the correlation of a stress (compression force / pressure receiving area) and a compressibility, and an SS curve rises sharply in the initial stage of compression substantially in proportion to a compressibility, and then a curve gradually becomes gentle. The yield point at which the maximum stress is locally reached is reached, where the large deformable portion of the shock absorber yields and the stress tends to slightly decrease, or may gradually increase depending on the shape. . Thereafter, when the compression is further continued, the SS curve rapidly rises again due to the reduction of the gap, and the stress becomes extremely high with a slight increase in the compression ratio.

【0013】このS−Sカーブにおいて降伏強度とは最
初の立ち上がり後の極大を示す応力値を意味し、また圧
縮エネルギー吸収効率とは、最終の立ち上がり時におい
て、降伏強度または応力が緩やかに上昇を示すときは、
その最大値と同等の値を示すときの圧縮率までのS−S
カーブで囲まれる面積(図7における斜線領域X)を、
当該圧縮率までの最大応力と圧縮率の積(図7における
斜線領域Y)で割った値の百分率を意味する。
In this SS curve, the yield strength means a stress value showing a maximum after the first rise, and the compressive energy absorption efficiency means a yield strength or a stress which gradually rises at the last rise. When showing
SS up to the compression ratio when showing a value equivalent to the maximum value
The area surrounded by the curve (shaded area X in FIG. 7)
It means the percentage of the value divided by the product of the maximum stress up to the compressibility and the compressibility (the shaded area Y in FIG. 7).

【0014】降伏強度は最大の応力値と必ずしも一致し
ないが、当該衝撃吸収体が衝撃力を受けたときに衝突物
が受ける最大応力に近い値であり最大応力値の目安と考
える。降伏強度が不足する場合は衝撃エネルギー吸収体
としての機能が実質的に発揮されず、一方降伏強度が大
き過ぎる場合は衝撃時に生ずる反力が大きくなって衝突
物に対する衝撃を満足に緩和できなくなる。また上記説
明からも明らかである様に圧縮エネルギー吸収効率を高
めるには斜線領域Xを極力斜線領域Yに近づける(即ち
領域Xを矩形に近づける)必要があり、そのためにはS
−Sカーブの最初の立ち上がりをできるだけ急激にする
と共に、降伏点を過ぎた後の応力の低下を極力少なくす
ることが有効となる。
Although the yield strength does not always coincide with the maximum stress value, the yield strength is a value close to the maximum stress applied to the colliding object when the shock absorber receives an impact force, and is considered as a standard of the maximum stress value. When the yield strength is insufficient, the function as an impact energy absorber is not substantially exerted. On the other hand, when the yield strength is too large, the reaction force generated at the time of impact becomes large, and the impact on the colliding object cannot be sufficiently reduced. Further, as is apparent from the above description, in order to increase the compression energy absorption efficiency, it is necessary to make the hatched area X as close as possible to the hatched area Y (that is, make the area X closer to a rectangle).
It is effective to make the first rise of the −S curve as sharp as possible and to minimize the decrease in stress after passing the yield point.

【0015】こうした観点に立って本発明に係る衝撃吸
収体に要求される物性を種々検討した結果、衝突物に対
して過度の反力を与えることなく衝撃力を十分に緩和す
るには、前記吸収体の降伏強度を2〜25トン/m2
範囲に収めると共に、圧縮エネルギー吸収効率を50%
以上、より好ましくは75%以上にする必要があり、本
発明の前記衝撃吸収体によればこうした要求特性を十分
に満たすものになることが明らかとなった。
From these viewpoints, various studies have been made on the physical properties required of the shock absorber according to the present invention. As a result, it is necessary to sufficiently reduce the impact force without giving an excessive reaction force to the collision object. The yield strength of the absorber is within the range of 2 to 25 tons / m 2 and the compression energy absorption efficiency is 50%.
As described above, it is more preferable that the content be 75% or more. It has been clarified that the shock absorber of the present invention sufficiently satisfies such required characteristics.

【0016】ちなみに従来から知られているゴム成形品
等の様な衝撃吸収体では、たとえば図8に示す如くS−
Sカーブの立ち上がりが緩慢であるばかりでなく、降伏
点は相対的に高い値を示し降伏時の反力が大であると共
に、その後の応力の低下も相対的に大きく、且つ比較的
少ない圧縮率で最終の立ち上がりを見せる。
By the way, in a conventionally known shock absorber such as a rubber molded product, for example, as shown in FIG.
Not only is the rise of the S-curve slow, but the yield point shows a relatively high value, the reaction force at the time of yield is large, and the subsequent decrease in stress is relatively large, and the compression ratio is relatively small. To show the final rise.

【0017】しかし樹脂の曲げ弾性率を特定すると共の
その形状・構造を前述の如く定めた本発明の衝撃吸収体
は、図10にその実例を示す様に、S−Sカーブの最初
の立ち上りが急激であるばかりでなく適度の降伏強度を
示した後、それ以上圧縮率を変えてもしばらくは略一定
の応力を維持し、その後に最終の急激な立ち上がりを見
せ、その結果50%以上、あるいは75%以上といった
非常に高い圧縮エネルギー吸収効率を有するものとな
る。尚このエネルギー吸収効率を高めるうえでS−Sカ
ーブの最初の立ち上がりを急激にすることが効果的であ
ることは先に述べた通りであり、そのための条件として
は、圧縮率が15%以内に降伏点を示す様に樹脂の曲げ
弾性率および大変形可能部の形状や肉厚等を選定すべき
である。
However, the shock absorber of the present invention in which the bending elastic modulus of the resin is specified and its shape and structure are determined as described above, as shown in an actual example in FIG. Is not only steep, but also shows an appropriate yield strength. After changing the compressibility further, it keeps a substantially constant stress for a while, then shows a final sudden rise, and as a result, more than 50% Alternatively, it has a very high compression energy absorption efficiency of 75% or more. As described above, it is effective to sharpen the first rise of the SS curve to increase the energy absorption efficiency, as described above. The flexural modulus of the resin and the shape and thickness of the large deformable portion should be selected so as to indicate the yield point.

【0018】また図4の例では、バネ要素として同一形
状・寸法の大変形可能部を複数個立設したものを示した
が、必要により形状・寸法の異なる2個もしくは3個以
上の大変形可能部を任意の配列で多数立設したものであ
ってもよく、更には形状・寸法等の異なる大変形可能部
を設けた異種構造の単位衝撃吸収体を相互に重ね合わせ
て衝撃吸収体を構成することも可能である。
In the example of FIG. 4, a plurality of large deformable portions having the same shape and size are erected as spring elements. However, two or three or more large deformable portions having different shapes and sizes are provided as necessary. A number of possible parts may be erected in an arbitrary arrangement, and furthermore, unit shock absorbers of different structures provided with large deformable parts having different shapes and dimensions are overlapped with each other to form a shock absorber. It is also possible to configure.

【0019】更に大変形可能部の形状・構造・肉厚等に
は格別の制限がなく、用途・目的に応じて適当に変更し
て実施し得ることは先に述べた通りであるが、前述の降
伏強度や圧縮エネルギー吸収効率を確保すると共に、軽
量で且つ繰返し使用時の復元力をより高いものとするに
は、たとえば図2において大変形可能部の高さHとその
スパン長Bの比がH/B=0.3〜1.5の範囲となる
様に形状を選定することが望ましい。その理由は、H/
Bが0.3未満では大変形可能部が高さ不足となって平
板部の占める重量比率が高くなるため軽量化の目的が生
かし難くなり、一方H/Bが1.5を超えると大変形可
能部の脚長が長くなりすぎるため曲げ剛性が不足気味に
なって該大変形可能部が不規則な方向に横倒れを起こし
易くなり、復元力が悪くなる傾向があるからである。
Further, there is no particular limitation on the shape, structure, wall thickness, etc. of the large deformable portion, and as described above, it can be appropriately changed according to the application and purpose. In order to secure the yield strength and compression energy absorption efficiency of the steel and to increase the weight and the restoring force after repeated use, for example, the ratio of the height H of the large deformable portion to its span length B in FIG. It is desirable to select the shape so that H / B = 0.3 to 1.5. The reason is H /
If B is less than 0.3, the large deformable portion becomes insufficient in height, and the weight ratio occupied by the flat portion increases, making it difficult to utilize the purpose of weight reduction. On the other hand, when H / B exceeds 1.5, large deformation occurs. This is because the leg length of the possible portion becomes too long, the bending rigidity tends to be insufficient, and the large deformable portion tends to fall down in an irregular direction, and the restoring force tends to deteriorate.

【0020】また本発明に係る衝撃吸収体の耐久性を高
め繰り返し使用に耐える様にするには、圧縮率50%以
上から除重後の復元率が90%以上となる様に樹脂の種
類および大変形可能部の形状・構造を選択することが望
まれる。
In order to increase the durability of the shock absorber according to the present invention so that it can withstand repeated use, the type and the type of the resin are set so that the compression ratio becomes 50% or more and the restoration ratio after deloading becomes 90% or more. It is desired to select the shape and structure of the large deformable portion.

【0021】尚船舶等の衝撃緩和用として従来からゴム
タイヤを用いた例があり、これにならって作製されたゴ
ム製の衝撃緩和材も知られているが、これらはいずれも
非常に高重量であるばかりでなく、高々数%の圧縮力で
過大な応力(反発力)が生じ、衝撃エネルギーを少しし
か吸収できないため該反発力によって衝突物の破壊を招
く恐れもあるが、本発明の吸収体は前述の如く適度の曲
げ弾性を持った樹脂の粘弾性特性とその形状の組合せに
よって言わばダッシュポットとバネ的なエネルギー吸収
挙動を付与することにより、衝撃エネルギーを極めて効
率良く吸収することができ、衝撃による衝突物の損傷を
最小限に抑制することができる。
[0021] Incidentally, there has been an example in which a rubber tire is conventionally used for impact mitigation of a ship or the like, and a rubber impact mitigation material produced according to this is also known, but these are all very heavy. In addition to this, an excessive stress (repulsive force) is generated by a compressive force of at most several percent, and only a small amount of impact energy can be absorbed. As described above, by giving a dashpot and a spring-like energy absorption behavior by combining the viscoelastic properties of resin with moderate bending elasticity and its shape as described above, it is possible to absorb impact energy extremely efficiently, Damage to the collision object due to impact can be minimized.

【0022】本発明に係る衝撃吸収体の製造方法として
は、射出成形、押出成形あるいはプレス成形等任意の方
法を採用することができ、またこれらを更に複数個組付
けて集合体とする場合は各単位吸収体を金属リベットや
プラスチックリベット等で上・下方向もしくは縦・横方
向に接合して、所定の大きさまで拡張することもでき
る。また単位吸収体に取付けボルトやボスと孔を予め設
けておき、これを利用しセルフスナッピングにより連結
固定する方法も採用できる。また、単位吸収体を相互に
熱融着させることにより集合一体化する方法もある。集
合体組付け法として特に簡便で好ましいのは、各単位吸
収体に設けた連結用孔またはセルフスナップ用凹凸部の
嵌合を利用して、縦、横、高さ方向に組付け、拡張する
方法である。
As a method for producing the shock absorber according to the present invention, any method such as injection molding, extrusion molding or press molding can be adopted. When a plurality of these are further assembled to form an aggregate, Each of the unit absorbers can be joined up and down or vertically and horizontally by a metal rivet, a plastic rivet, or the like, and can be expanded to a predetermined size. Alternatively, a method may be employed in which mounting bolts, bosses, and holes are provided in advance in the unit absorber, and connected and fixed by self-snapping using these. There is also a method in which the unit absorbers are heat-sealed with each other to collectively integrate them. Particularly convenient and preferable as a method of assembling the assembly is to assemble and expand in the vertical, horizontal, and height directions by using the fitting of the connection hole or the self-snap uneven portion provided in each unit absorber. Is the way.

【0023】また、本発明の樹脂製衝撃吸収体は通常の
取付け方法、例えば該吸収体を構成する平板部に設けた
孔あるいはボルトを介して他の構造物に取付ける方法等
が採用できるが、もとより取付け方法は一切制限される
ものではない。
The resin shock absorber of the present invention can be mounted in a usual manner, for example, by mounting it to another structure through a hole or a bolt provided in a flat plate portion constituting the absorber. Of course, the mounting method is not limited at all.

【0024】本発明で使用される樹脂の好ましい種類は
先に例示した通りであるが、これらの樹脂には、用途ま
たは目的に応じて、たとえば熱酸化防止剤や紫外線吸収
剤等の各種安定剤、染顔料やカーボンブラック、タルク
やガラスビーズの様な充填剤、金属繊維、ガラス繊維や
カーボン繊維の様な繊維状強化剤、帯電防止剤、可塑
剤、難燃剤、発泡剤、離型剤等の添加剤を配合して改質
することも可能である。
The preferred types of the resin used in the present invention are as described above, but these resins may be added to various kinds of stabilizers such as a thermal antioxidant and an ultraviolet absorber according to the application or purpose. Fillers such as dyes and pigments, carbon black, talc and glass beads, fibrous reinforcing agents such as metal fibers, glass fibers and carbon fibers, antistatic agents, plasticizers, flame retardants, foaming agents, mold release agents, etc. It is also possible to modify by adding an additive.

【0025】[0025]

【発明の効果】本発明は以上の様に構成されており、曲
げ弾性率の特定された樹脂を使用し、且つその形状・構
造を特定することによって、優れた衝撃吸収特性を有し
且つ軽量で用途目的に応じた寸法・サイズの拡張組立て
が容易であり、しかも空中や海中等の如何を問わず優れ
た耐食、耐水、耐候性を示す衝撃吸収体を提供し得るこ
とになった。そしてこの衝撃吸収体は、その優れた特性
を生かしてたとえば道路側壁や岸壁の側壁の緩衝体、建
築物のクッション床等広い面積で均質なクッション性を
有する構造体として有効に活用することができる。
The present invention is constituted as described above. By using a resin having a specified flexural modulus and by specifying its shape and structure, it has excellent shock absorbing properties and is lightweight. Thus, it is possible to provide a shock absorber that can be easily expanded and assembled in dimensions and sizes according to the purpose of use, and that exhibits excellent corrosion resistance, water resistance, and weather resistance regardless of whether it is in the air or in the sea. The shock absorber can be effectively used as a structure having a uniform cushioning property over a large area, such as a cushion on the side wall of a road or a quay, a cushion floor of a building, or the like, by utilizing its excellent characteristics. .

【0026】[0026]

【実施例】以下、実施例および比較例を挙げて本発明を
より具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前述の趣旨に適合
し得る範囲で適当に変更して実施することはいずれも本
発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples and is not limited to the following Examples. Any of the modifications is included in the technical scope of the present invention.

【0027】実施例 東洋紡績(株)製のポリエステルエラストマー「ペルプ
レン P−280B」(ブラック色)を使用し、図2に
示すアーチ形状大変形可能部を8個立設した衝撃吸収体
21cm×21cm×高さ3.3cmを射出成形した。この吸
収体は、上下方向に実質上最大80%まで圧縮できた。
また、この吸収体を縦横方向および高さ方向に樹脂リベ
ットによって接合して組付け衝撃吸収体101cm×10
1cm×99cmを作製した(実施例1)。この組み付け構
造を基準にして、表1の実施例と比較例から本発明吸収
体の特徴を明確にする。
EXAMPLE Using a polyester elastomer "Perprene P-280B" (black color) manufactured by Toyobo Co., Ltd., an impact absorber 21 cm × 21 cm having eight arch-shaped large deformable portions shown in FIG. × Injection molded 3.3 cm in height. The absorber was able to compress substantially up to 80% vertically.
Also, this absorber is joined by resin rivets in the vertical and horizontal directions and in the height direction to assemble the shock absorber 101 cm × 10
1 cm × 99 cm was produced (Example 1). Based on this assembly structure, the features of the absorber of the present invention will be clarified from the examples and comparative examples in Table 1.

【0028】実施例2は、住友化学工業(株)製のポリ
オレフィンエラストマー「住友TPE3255」を使用
し、実施例1と同様の成形品を射出成形し衝撃吸収体を
つくった。実施例3は実施例1に示した東洋紡績(株)
製のポリエステルエラストマー「ペルプレン P−28
0B」(ブラック色)を使用して作製した、図5に示す
ハニカム形状の例である。
In Example 2, a shock absorber was prepared by injection molding the same molded product as in Example 1 using a polyolefin elastomer "Sumitomo TPE3255" manufactured by Sumitomo Chemical Co., Ltd. Example 3 is based on Toyobo Co., Ltd. shown in Example 1.
Polyester elastomer "Perprene P-28"
FIG. 6 is an example of a honeycomb shape shown in FIG. 5 manufactured using “0B” (black color).

【0029】比較例4はクロロプレン製の市販品で図9
に示す形状に射出成形したもの、参考例5は実施例1に
示した東洋紡績(株)製ポリエステルエラストマー「ペ
ルプレン P−280B」(ブラック色)を使用し、図
1(但しH/L>1.5)の形状に射出成形したもの、
参考例6は参考例5でH/L<0.3の形状に射出成形
したものである。結果を表1に一括して示す。尚表1中
における評価項目の意味は次の通りである。
Comparative Example 4 is a commercial product made of chloroprene.
In Reference Example 5, the polyester elastomer "Perprene P-280B" (black) manufactured by Toyobo Co., Ltd. shown in Example 1 was used, and FIG. 1 (however, H / L> 1) .5) injection molded into the shape of
Reference Example 6 is injection-molded in Reference Example 5 into a shape of H / L <0.3. The results are collectively shown in Table 1. The meanings of the evaluation items in Table 1 are as follows.

【0030】[評価方法] 単位体積重量:衝撃吸収体の重量(kg)をその衝撃吸収
体の各片の最大長となる縦・横・高さを掛け合わせた体
積で割った値をいう。 樹脂の曲げ弾性率:一般に用いられているASTM−D790に
よって、測定した。 最大応力:図7に示すように、50mm/分で定速に圧縮
したときに応力−圧縮率曲線が、圧縮の初期においては
圧縮率に略比例して立ち上がり、その後徐々に緩やかに
なって局部的に最大応力を示す降伏点に達するが、この
降伏点に対応する応力をいう。 降伏点の圧縮率:降伏強度に対応する圧縮変位(cm)を
圧縮前の圧縮方向の長さで割った値(cm)を百分率で表
した値(%)である。最終立ち上がり時の圧縮:応力−
圧縮率曲線において最終急激な立ち上がり時下記(1) ま
たは(2) のいずれか大きい方の応力に等しい応力に対応
する圧縮率をいう。 (1) 降伏強度、(2) 応力−圧縮率曲線において応力が降
伏点を過ぎた後再び緩やかに上昇を示すときはその最大
値。
[Evaluation method] Unit volume weight: A value obtained by dividing the weight (kg) of the shock absorber by the volume obtained by multiplying the maximum length, width and height of each piece of the shock absorber. Flexural modulus of resin: Measured by generally used ASTM-D790. Maximum stress: As shown in FIG. 7, when compressed at a constant speed of 50 mm / min, the stress-compression ratio curve rises almost in proportion to the compression ratio in the early stage of compression, and then gradually becomes gentler, and gradually becomes local. It reaches the yield point that shows the maximum stress, and refers to the stress corresponding to this yield point. Yield point compression ratio: A value (%) expressed as a percentage (cm) obtained by dividing the compression displacement (cm) corresponding to the yield strength by the length in the compression direction before compression. Compression at final rise: stress-
In the compression ratio curve, it is the compression ratio corresponding to the stress equal to the greater of the following (1) or (2) at the time of the last rapid rise. (1) Yield strength, (2) The maximum value when the stress gradually increases again after passing the yield point in the stress-compression ratio curve.

【0031】圧縮エネルギー吸収効率(%):応力−圧
縮率曲線において最終立ち上がり時の圧縮率までの応力
−圧縮率曲線に囲まれた面積を最終立ち上がり時の圧縮
率とその最大応力の積で割った値の百分率を意味する。 単位体積あたりの吸収エネルギー量(T・m/m3 ):
吸収エネルギー量を衝撃吸収体の体積で割った値であ
る。 単位重量当たり吸収エネルギー量:吸収エネルギー量を
衝撃吸収体の重量で割った値(T・m/T)である。 単位体積あたりの吸収エネルギー量/降伏強度(反
力):単位体積あたりの吸収エネルギー量を降伏強度で
割った値(T・m/m3 /T)である。
Compressive energy absorption efficiency (%): In the stress-compression ratio curve, the area surrounded by the stress-compression ratio curve up to the compression ratio at the final rise is divided by the product of the compression ratio at the final rise and its maximum stress. Means the percentage of the measured value. The amount of absorbed energy per unit volume (T · m / m 3) :
It is a value obtained by dividing the amount of absorbed energy by the volume of the shock absorber. Absorbed energy per unit weight: a value (Tm / T) obtained by dividing the amount of absorbed energy by the weight of the shock absorber. Absorbed energy per unit volume / yield strength (reaction force): A value (Tm / m 3 / T) obtained by dividing the absorbed energy per unit volume by the yield strength.

【0032】[0032]

【表1】 [Table 1]

【0033】表1からも明らかである様に、本発明の吸
収体は、従来の衝撃吸収体に比べて軽量で小さな反力で
より大きな衝撃エネルギーを吸収できることがわかる。
しかもこのものは空中や海中でも支障なく使用すること
ができ、防錆、耐水性、耐候性にもすぐれたものであっ
てメインテナンスフリーなものである。
As is clear from Table 1, the absorber of the present invention is lighter in weight and can absorb a greater impact energy with a smaller reaction force than the conventional impact absorber.
Moreover, it can be used in the air and in the sea without any trouble, and has excellent rust prevention, water resistance and weather resistance and is maintenance-free.

【0034】また図10および図11は、実施例1の衝
撃吸収体および比較例4の衝撃吸収体の応力・圧縮率曲
線を示したものであり、比較例4の衝撃吸収体は降伏強
度が非常に高く衝突時の反力が非常に大きくなるばかり
でなく、S−Sカーブからしても圧縮エネルギー吸収効
率が悪いことを確認できる。これに対し実施例1の衝撃
吸収体は適度の降伏強度を有しており、衝突物に対して
極端な反力を及ぼすことがなく、またS−Sカーブは比
較例のものに比べて矩形に近く、圧縮エネルギー吸収効
率が非常に優れたものであることが分かる。
FIGS. 10 and 11 show the stress-compression ratio curves of the shock absorber of Example 1 and the shock absorber of Comparative Example 4, and the shock absorber of Comparative Example 4 has a yield strength. Not only is it very high, the reaction force at the time of collision becomes extremely large, but also it can be confirmed from the SS curve that the compression energy absorption efficiency is poor. On the other hand, the shock absorber of Example 1 has an appropriate yield strength, does not exert an extreme reaction force on the colliding object, and has a rectangular SS curve as compared with that of the comparative example. , It can be seen that the compression energy absorption efficiency is very excellent.

【0035】上記実施例1で得た本発明の樹脂製衝撃吸
収体を取り付けたコンクリート壁に車両重量1Tonの
自動車を時速10km/時、また入射角10°で衝突させ
たところ自動車のバンパー部に若干の損傷がみられた
が、エネルギー吸収体の方は復元し、損傷は認められな
かった。
When a vehicle having a vehicle weight of 1 Ton collides with a concrete wall to which the resin shock absorber of the present invention obtained in Example 1 was attached at a speed of 10 km / h and an incident angle of 10 °, a bumper portion of the vehicle was obtained. Although some damage was observed, the energy absorber recovered and no damage was observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る衝撃吸収体を構成するバネ要素を
例示する斜視図である。
FIG. 1 is a perspective view illustrating a spring element constituting a shock absorber according to the present invention.

【図2】本発明に係る衝撃吸収体を構成するバネ要素を
例示する斜視図である。
FIG. 2 is a perspective view illustrating a spring element constituting the shock absorber according to the present invention.

【図3】本発明に係る衝撃吸収体を構成するバネ要素を
例示する斜視図である。
FIG. 3 is a perspective view illustrating a spring element constituting the shock absorber according to the present invention.

【図4】本発明に係る衝撃吸収体を例示する斜視図であ
る。
FIG. 4 is a perspective view illustrating a shock absorber according to the present invention.

【図5】本発明に係る衝撃吸収体を構成するバネ要素を
例示する斜視図である。
FIG. 5 is a perspective view illustrating a spring element constituting the shock absorber according to the present invention.

【図6】本発明に係る衝撃吸収体の使用例を示す側面説
明図である。
FIG. 6 is an explanatory side view showing an example of use of the shock absorber according to the present invention.

【図7】本発明に係る衝撃吸収体の応力・圧縮率曲線を
示す説明図である。
FIG. 7 is an explanatory diagram showing a stress / compression ratio curve of the shock absorber according to the present invention.

【図8】従来の衝撃吸収体の応力・圧縮率曲線を示す説
明図である。
FIG. 8 is an explanatory diagram showing a stress / compression ratio curve of a conventional shock absorber.

【図9】比較例で使用した衝撃吸収体のバネ要素を示す
斜視図である。
FIG. 9 is a perspective view showing a spring element of the shock absorber used in the comparative example.

【図10】実施例で得た応力・圧縮率曲線を示す図であ
る。
FIG. 10 is a diagram showing a stress / compression ratio curve obtained in the example.

【図11】比較例で得た応力・圧縮率曲線を示す図であ
る。
FIG. 11 is a diagram showing a stress / compression ratio curve obtained in a comparative example.

【符号の説明】[Explanation of symbols]

1 大変形可能部 2 平行部 3 平板 4 貫通孔 A バネ要素 DESCRIPTION OF SYMBOLS 1 Large deformable part 2 Parallel part 3 Flat plate 4 Through hole A Spring element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上乃 均 滋賀県大津市堅田2丁目1番1号 東洋 紡績株式会社総合研究所内 (56)参考文献 特開 平2−253023(JP,A) 特開 昭50−136582(JP,A) 特開 昭50−26695(JP,A) 特開 平4−95626(JP,A) 特開 平2−80824(JP,A) 実開 昭61−11039(JP,U) 実開 平2−34840(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16F 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hitoshi Ueno 2-1-1 Katata, Otsu-shi, Shiga Prefecture Toyo Boseki Co., Ltd. (56) References JP-A-2-253023 (JP, A) Japanese Patent Laid-Open No. Sho 50-136682 (JP, A) Japanese Patent Laid-Open No. Sho 50-26695 (JP, A) Japanese Patent Laid-Open No. Hei 4-95626 (JP, A) Japanese Patent Laid-Open No. Hei 2-80824 (JP, A) JP, U) JP-A-2-34840 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F16F 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 曲げ弾性率が1,000〜20,000Kg/cm2の樹
脂によって形成されたアーチ状、ドーム状もしくはハニ
カム状の大変形可能部が、有孔もしくは無孔の平板上に
複数個立設された樹脂製衝撃吸収ユニットを複数組積層
した樹脂製衝撃吸収体であって、主に該大変形可能部の
変形によって、その圧縮時における応力・圧縮率曲線が
下記の条件を満足する様に構成されたものであることを
特徴とする樹脂製衝撃吸収体。 (a)降伏強度が2〜25トン/m2であること、 (b)圧縮エネルギー吸収効率が50%以上であること、(c)圧縮率15%以内に降伏点を示すものであること。
1. A plurality of arch-shaped, dome-shaped or honeycomb-shaped large deformable portions formed of resin having a bending elastic modulus of 1,000 to 20,000 kg / cm 2 are provided on a perforated or non-perforated flat plate. Sets of laminated resin shock absorbing units
Resin shock absorber, characterized in that the stress / compression rate curve at the time of its compression satisfies the following conditions mainly due to the deformation of the large deformable portion. Resin shock absorber. (a) The yield strength is 2 to 25 ton / m 2 , (b) The compression energy absorption efficiency is 50% or more, and (c) The yield point is within 15% of the compressibility.
JP15435792A 1992-05-20 1992-05-20 Resin shock absorber Expired - Fee Related JP3218694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15435792A JP3218694B2 (en) 1992-05-20 1992-05-20 Resin shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15435792A JP3218694B2 (en) 1992-05-20 1992-05-20 Resin shock absorber

Publications (2)

Publication Number Publication Date
JPH05321966A JPH05321966A (en) 1993-12-07
JP3218694B2 true JP3218694B2 (en) 2001-10-15

Family

ID=15582395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15435792A Expired - Fee Related JP3218694B2 (en) 1992-05-20 1992-05-20 Resin shock absorber

Country Status (1)

Country Link
JP (1) JP3218694B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169686A (en) * 1996-12-13 1998-06-23 Toyobo Co Ltd Resin-made shock absorbing member
JPH10306843A (en) * 1997-05-02 1998-11-17 Taitetsuku Kk Supporting device of vibration plate vibrating horizontally swingingly
JP3808822B2 (en) * 1997-06-30 2006-08-16 東日本高速道路株式会社 Shock absorber of bridge
US6029962A (en) * 1997-10-24 2000-02-29 Retama Technology Corporation Shock absorbing component and construction method
JPH11351302A (en) * 1998-06-12 1999-12-24 Toyobo Co Ltd Shock absorber and shock absorbing method using the same
JP2004124644A (en) * 2002-10-07 2004-04-22 Chubu Kagaku Kikai Seisakusho:Kk Shock absorber, method of manufacturing shock absorber, and shock absorbing material
KR100466411B1 (en) * 2004-07-28 2005-01-13 유철리 Regin guardrail
KR100570328B1 (en) * 2004-11-08 2006-04-11 김철홍 Module type matrix
JP4835251B2 (en) * 2006-04-27 2011-12-14 カシオ計算機株式会社 Pressing piece of pressure device
DE202017101483U1 (en) 2017-03-14 2017-03-31 Igus Gmbh Strain relief and end fastening part with strain relief
JP6789167B2 (en) * 2017-04-06 2020-11-25 株式会社イノアックコーポレーション Shock absorber
US20220082146A1 (en) * 2019-02-15 2022-03-17 Nok Corporation Cushioning rubber, reaction force adjusting method thereof, and pedestal
CN114608963B (en) * 2022-03-25 2023-11-28 电子科技大学 Device and method for measuring Young modulus of metal wire based on exhaust method

Also Published As

Publication number Publication date
JPH05321966A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US5551673A (en) Resin shock absorber
JP3218694B2 (en) Resin shock absorber
WO1998026195A1 (en) Impact absorber made of resin
US3995901A (en) Energy-absorbing systems
US6808215B2 (en) Bumper apparatus for vehicle
JP4354209B2 (en) Bumper structure
US8276975B2 (en) FRP panel for automobile
US3858925A (en) Elastomeric mountings
US4170380A (en) Energy absorbing devices to be used on vehicles to protect the vehicle from damage (or reduce damage) and protect the passengers from fatality and/or injury
US3814470A (en) Impact absorber
US6857690B2 (en) Protective structure for vehicles
JPH10169687A (en) Resinmade shock absorber and shock absorbing method using it
GB2186240A (en) Two-stage energy management unit for mounting vehicle bumpers
JPH10169686A (en) Resin-made shock absorbing member
JP4477831B2 (en) Automotive bumper equipment
JPH10169683A (en) Resinmade shock absorber
JPH11351305A (en) Shock absorber and shock absorbing method using the same
JPH11351306A (en) Resinous shock absorber and shock absorbing method using the same
JPH10169685A (en) Resinmade shock absorber
CN212737993U (en) Automobile anti-collision beam structure
JP3808822B2 (en) Shock absorber of bridge
JPH05340438A (en) Impact absorber
JP3437089B2 (en) Bridge shock absorbing structure
JPH11351328A (en) Impact absorber and impact absorption using the same
JP2003184032A5 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees