JP2003184032A5 - - Google Patents

Download PDF

Info

Publication number
JP2003184032A5
JP2003184032A5 JP2002306416A JP2002306416A JP2003184032A5 JP 2003184032 A5 JP2003184032 A5 JP 2003184032A5 JP 2002306416 A JP2002306416 A JP 2002306416A JP 2002306416 A JP2002306416 A JP 2002306416A JP 2003184032 A5 JP2003184032 A5 JP 2003184032A5
Authority
JP
Japan
Prior art keywords
impact
shock absorber
shock
bridge
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306416A
Other languages
Japanese (ja)
Other versions
JP3808822B2 (en
JP2003184032A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002306416A priority Critical patent/JP3808822B2/en
Priority claimed from JP2002306416A external-priority patent/JP3808822B2/en
Publication of JP2003184032A publication Critical patent/JP2003184032A/en
Publication of JP2003184032A5 publication Critical patent/JP2003184032A5/ja
Application granted granted Critical
Publication of JP3808822B2 publication Critical patent/JP3808822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【発明の名称】橋梁の衝撃吸収体
【特許請求の範囲】
【請求項1】橋梁を構成する上部工の間、上部工−下部工の間、または落橋防止壁を有する下部工と上部工の間に配置される橋梁の衝撃吸収体であって、該衝撃吸収体は、曲げ弾性率が500〜20,000kgf/cm の弾性樹脂で成形された成形体からなり、衝撃負荷方向の壁により隔離された多数の小部屋を有する小部屋構造を有すると共に、そのプラトー強度が50〜5,000tf/m であり、該衝撃吸収体が大きな衝撃を受けたときは、前記壁が座屈変形または永久変形することにより衝撃を吸収するものであることを特徴とする橋梁の衝撃吸収体。
【請求項2】前記弾性樹脂が、繊維状強化材またはウイスカーで強化され、もしくは強化されていない熱可塑性樹脂または熱硬化性樹脂である請求項1に記載の衝撃吸収体。
【請求項3】前記熱可塑性樹脂が、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、或いはそれらのブレンド物である請求項2に記載の衝撃吸収体。
【請求項4】前記小部屋構造は、衝撃吸収方向に垂直な断面の形状が6角形以下の多角形よりなる小部屋の繰り返し構造を有している請求項1〜3のいずれかに記載の衝撃吸収体。
【請求項5】前記小部屋構造における衝撃吸収方向に垂直な断面の形状が、6角形のハニカム構造である請求項4に記載の衝撃吸収構造。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、高速道路などの橋梁構築物が地震などで衝撃を受けたときの上部工と下部工との衝突による衝撃を緩和すると共に損傷を防止し、更には下部工から上部工が落下するのを防止するため、上部工同士、上部工と下部工の接触部、上部工同士の間に配置することによって、衝撃を吸収・緩和できる様に改善された橋梁の衝撃吸収体に関するものである。
【0002】
【従来の技術】
地震等の衝撃による橋梁の落下事故は、その殆どが、該橋梁構築物における上部工同士あるいは上部工と下部工の接続部の衝突による衝撃破壊や離脱によるものであり、その事実は1995年の阪神大震災においても確認されている。
【0003】
ところで橋梁の落下を防止する方法としては、下部工の上部や上部工の下部にずれ防止用の突起や落橋防止壁を形成する方法、上部工と下部工をPC鋼材やアンカーバー等によって連結する方法、隣接する上部工同士をPC鋼材などによって相互に連結する方法などが採用されてきた。
【0004】
一方、これまでの震災事例で確認されている橋梁の破裂や落橋事故には、橋軸直角方向の変位に伴う破損や衝撃的な振動が原因と推測される破損が多く見られ、このため現在実用化されている落橋防止構造としては、橋軸直角方向への移動に追従できる接続構造を有し、且つ衝撃的な振動を吸収緩和するための衝撃吸収体を用いた衝撃吸収構造を組合せたものが大半となっている。
【0005】
この様な衝撃吸収構造に用いられる吸収体としては、復元性の良好なゴム成形体が汎用されてきた。ところが、上部工同士あるいは上部工と下部工の連接部の如く極く限られた部位に配設する場合に、ゴム成形体では衝撃吸収体の大きさが制限されるため衝撃吸収能が不十分となり、強力で旦つ衝撃的な振動に対しては、満足のいく破壊防止効果や落橋防止効果が得られ難い。ゴム成形体を厚物とし或は多数重ね合わせて使用することにより衝撃吸収量を増大することも可能ではあるが、それでは衝撃吸収体が大型化するため、限られた部位に配設することが困難になるばかりでなく、素材コストが高騰し、更に重量も重くなる。
【0006】
またゴム成形体以外の衝撃吸収体として、金属ばね、摩擦式衝撃緩衝部材、油圧式衝撃緩衝部材なども知られているが、金属ばねは優れた衝撃吸収性能を有しているものの、発錆の問題が避けられないので施工後のメンテナンスが面倒であり、また沿岸地区や海洋連絡橋の如く塩水に曝される場所に配設される橋梁用の衝撃吸収体としては、耐錆性や耐侯性の観点から適性を欠く。また摩擦式や油圧式の衝撃緩衝部体は、一般に構造が複雑で非常に高価で重量も重くなるばかりでなく、適正なメンテナンスを行なわなければ本来の性能を維持することができないという問題も指摘される。
【0007】
一方たとえば特公昭61−12779号公報には、樹脂成形体を用いた衝撃吸収手段として、熱可塑性樹脂エラストマーよりなる中空成形体を用い、これを軸方向に予め圧縮して永久歪み与えておくことにより、衝撃吸収性能を高める技術が開示されている。しかしながらこの樹脂成形体は、弾性体としての能力は優れているものの、圧縮エネルギーの吸収能力が乏しく、地震などによる落橋を防止するための橋梁用衝撃吸収部材としては満足のいく衝撃吸収性能が得られない。
【0008】
他方、本発明者らは、弾性樹脂よりなる有孔もしくは無孔の平板上に、アーチ状、ドーム状あるいはハニカム状の圧縮変形部材を多層に立設したクッション性弾性樹脂成形体よりなる衝撃吸収体を開発し、その実用化を期して研究を進めている。この衝撃吸収体は、道路側壁や建造物の床面等に幅広く敷きつめ、広範囲に渡って均一な緩衝性能を発揮させる用途には適している。しかし、本発明で意図する如く橋梁の上部工同士や上部工と下部工の連接部の如く、限られた部位に設置しなければならない用途には適用し難く、旦つ十分な衝撃吸収性能を得ることはできない。
【0009】
また橋梁構築物における衝撃吸収体は、下部工における上部工の支承部近辺に設けることが多いため、該支承部の点検、保守、補修等の維持管理の障害にならないことが望まれており、従って衝撃吸収体は小型・軽量で高い衝撃緩衝能、すなわち反力に比較して大きな圧縮エネルギー吸収量を有するものが要望される。しかし前述した様な従来の衝撃吸収体では、これらの要求を満たすことはできない。
【0010】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、小型・軽量で構造も簡単である他、反力に比較して圧縮エネルギー吸収量が大きく、しかも耐錆性、耐水性、耐侯性等も良好で内陸部はもとより沿岸地域の橋梁や海洋連絡橋などに適用した場合でもメンテナンスフリーで実用化することができる橋梁用の衝撃吸収体を開発し、ひいては該衝撃吸収体を使用することによって、地震等による上部工や下部工の衝撃破壊や上部工の脱落事故などを可及的に防止することのできる橋梁用の衝撃吸収構造を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決することのできた本発明にかかる衝撃吸収体は、橋梁を構成する上部工の間、上部工−下部工の間、または落橋防止壁を有する下部工と上部工の間に配置される橋梁の衝撃吸収体であって、該衝撃吸収体は、曲げ弾性率が500〜20,000kgf/cmの弾性樹脂で成形された成形体からなり、衝撃負荷方向の壁により隔離された多数の小部屋を有する小部屋構造を有すると共に、そのプラトー強度が50〜5,000tf/mであり、該衝撃吸収体が大きな衝撃を受けたときは、前記壁が座屈変形または永久変形することにより衝撃を吸収するものであることを特徴とする。
【0012】
本発明の衝撃吸収体を構成する前記弾性樹脂としては、繊維状強化材またはウイスカーで強化され、もしくは強化されていない熱可塑性樹脂または熱硬化性樹脂が挙げられる。上記熱可塑性樹脂の中でも好ましいのは、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、或いはそれらのブレンド物である。
【0013】
そして、衝撃吸収体における上記小部屋構造としては、衝撃吸収方向に垂直な断面の形状が6角形以下の多角形よりなる小部屋の繰り返し構造を有しているもの、より具体的には6角形のハニカム構造であるものが好ましい。
【0014】
本発明に係る衝撃吸収体は、ある程度広い面で衝撃を吸収できるような衝撃吸収体であり、これは主に、橋梁を構成する上部工間、上部工−下部工の間、落橋防止壁を有する下部工と上部工の間に設置される。
【0015】
衝撃吸収体は、衝撃負荷方向に多数の壁構造を有する成形体からなり、この壁構造が衝撃負荷方向の少なくとも一部で互いに接続され、衝撃負荷方向に隔離された小部屋構造を持つものが好ましい。地震等による急激な衝撃にも対応し得る十分な衝撃吸収性能を確保するには、衝撃吸収体の衝撃負荷方向に圧縮されたときの圧縮エネルギー吸収量が50tf・m/m以上のものが望ましく、これを実現するには成形体の素材として、曲げ弾性率が500〜20,000kgf/cmの樹脂を使用することが好ましい。
【0016】
本発明の上記衝撃吸収体を、橋梁構築体における上部工同士、上部工と下部工の間、落橋防止壁を有する下部工と上部工の間などに設置しておけば、それらの接触部にかかる衝撃を効率よく吸収・緩和することができ、養護部や隣接構造物の衝撃破壊を防止すると共に、上部工の落下事故すなわち落橋事故を未然に防止することができる。
【0017】
【発明の実施の形態】
本発明にかかる橋梁の衝撃吸収体は、上記の様に上部工同士、上部工と下部工の間、落下防止壁が設けられた下部工と上部工の間などに設置され、地震等によってそれらの接触部に衝撃力が加わったときに、該衝撃を吸収・緩和してそれらの破壊や下部工からの上部工の脱落といった橋梁破壊事故を防止するものである。
【0018】
該衝撃吸収体は、曲げ弾性率が500〜20,000gkf/cmの弾性樹脂で成形された成形体からなり、該衝撃吸収体は衝撃負荷方向に壁構造を有している。該衝撃吸収体を構成する弾性樹脂の曲げ弾性率が500kgf/cm未満では、剛性不足により衝撃力を受けたときに衝撃吸収体がすぐに弾性変形を起こし、つまり衝撃エネルギー吸収量の不足によって衝撃力を十分に吸収することができず、満足のいく衝撃緩衝作用を得ることができない。これを補うには、衝撃吸収体の衝撃負荷方向の壁構造を厚くする必要があり、その結果、衝撃吸収体を大きくしなければならず、橋梁用の衝撃吸収構造が大きくなるため本発明の趣旨から外れる。ここで言う衝撃負荷方向の壁構造とは、衝撃負荷方向に対しほぼ平行な壁を有する構造である。
【0019】
この壁構造は、衝撃により圧縮変形し座屈変形することによって衝撃を吸収することが重要であり、弾性変形だけで衝撃力を吸収する構造では、地震の様に急激で極めて大きな衝撃が短時間のうちに数回から数十回加わった場合に、十分なエネルギー吸収性能が発揮されなかったり、あるいは共振を起こして橋梁の上部工の振動を増大させ、橋梁構造の破壊をかえって増進することすらあるからである。
【0020】
こうした機能を発揮する本発明の衝撃吸収体は、ある程度広い面で衝撃を吸収できる衝撃吸収体である。これは主として橋梁を構成する上部工間、上部工−下部工の間、落橋防止壁を有する下部工と上部工の間に設置される。
【0021】
衝撃吸収体は、衝撃負荷方向に多数の壁構造を有している。この壁構造は衝撃負荷方向の面の少なくとも一部でお互いに接続され、衝撃負荷方向に隔離された小部屋構造を持つことが好ましい。この様な小部屋構造を設けることによって、負荷がかかったときに、該小部屋構造の隔壁面である衝撃負荷方向の壁構造が蛇腹状に座屈変形を起こし、衝撃を効率良く吸収することができる。該衝撃吸収体は、小部屋構造の衝撃吸収方向に垂直な断面の形状が6角形以下である多角形の小部屋7の繰り返し構造を含むことが好ましく、中でも特に好ましいのは6角形のハニカム構造である。
【0022】
この小部屋構造は、衝撃負荷方向の両端が開いた貫通孔状であってもよいし、片側が閉鎖された凹状(穴状)でも、両端が閉鎖された空洞状でも構わない。
【0023】
更に衝撃吸収体の初期の衝撃吸収能を一層高めるには、衝撃吸収体に衝撃負荷が発生したときに、該衝撃吸収体の衝撃負荷方向の壁構造の特定部分が最初に変形する様な構造を有することが好ましい。その様な構造の例としては、衝撃負荷方向の壁構造に▲1▼欠損部を有し、▲2▼段差部を有し、或いは薄肉部を有する構造などが挙げられる。この様に壁構造の特定部分が変形する様な構造とすることにより、衝撃吸収体に衝撃負荷が発生したときに、先ず該特定部分がすみやかに変形して初期の衝撃吸収能が高められると共に、衝撃を受けたときに生じる反力を一層低減することが可能となる。
【0024】
該衝撃吸収体を構成する好ましい素材としては、曲げ弾性率が500〜20,000kgf/cmの弾性樹脂が挙げられ、十分な衝撃吸収量と衝撃緩衝作用を確保するうえでより好ましい弾性樹脂の曲げ弾性率の下限値は500kgf/cm、更に好ましくは800kgf/cm以上、より好ましい上限値は10,000kgf/cm、更に好ましくは4,000kgf/cm以上ある。
【0025】
該弾性樹脂としては、上記曲げ弾性率を満足し得る限り天然もしくは合成のすべての樹脂を使用できるが、好ましい具体例としては、熱可塑性のポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、或いはそれらのブレンド物、更には注型ポリウレタン樹脂などの熱硬化性樹脂などが挙げられ、中でも特に好ましいのは、耐侯性や耐水性に優れた熱可塑性のポリエステル系エラストマーやポリオレフィン系エラストマーである。
【0026】
また衝撃吸収体の他の素材として、曲げ弾性率が5,000kgf/cm以上である素材を使用することができるが、防錆性や耐水性などに優れたものを使用することが望ましい。その具体例としては、熱可塑性樹脂や熱硬化性樹脂、あるいはカーボンブラック、タルク、ガラスビーズなどの充填材や金属繊維、ガラス繊維、カーボン繊維などの繊維状強化材、ウイスカーなどで強化された熱可塑性樹脂や熱硬化性樹脂などが例示される。
【0027】
なお、上記の樹脂で衝撃吸収体を成形した場合、座屈変形が進行して逃げ空間となる小部屋が小さくなったときの反力の立ち上がりが急激になり過ぎることがあるので、小部屋内を発泡樹脂やゴムなど他の衝撃吸収素材で充填することも有効となる。またこのように小部屋内を衝撃吸収材で充填しておけば、該小部屋内へのごみなどの侵入も阻止されるので好ましい。
【0028】
次に衝撃吸収体の具体例を示し、その衝撃吸収機構を詳しく説明する。
【0029】
図1は本発明で使用する衝撃吸収体の代表例を示す見取り図であり、前記曲げ弾性率の要件を満たす弾性樹脂を用いて一体成形されたハニカム状の衝撃吸収体を示している。この衝撃吸収体1は、衝撃負荷方向(図の上下方向)に六角形の貫通孔2,2,……が同一間隔で多数形成されており、これらの貫通孔2,2,……を仕切る隔壁3の弾性変形と各貫通孔方向への座屈変形によって衝撃力の吸収が行なわれる。
【0030】
すなわち本発明の衝撃吸収体は、弾性樹脂によって構成される上記隔壁3自体の弾性と、上記貫通孔2,2,……を逃げ空間とする弾性変形によって衝撃を吸収する。また、図示する如く、衝撃負荷方向に貫通した多数の貫通孔2,2,……によって、平面視でハニカム状あるいは格子状等の多角形を形成しつつ連続する隔壁3を形成したものでは、全体として適度の剛性も与えられる。その結果、衝撃吸収体全体としては上記弾性変形による衝撃吸収作用と適度の剛性を兼ね備えたものとなり、地震等によって受ける強力な振動等による衝撃を効率よく吸収・緩和し得るものとなる。また図示する如く、弾性樹脂成形体に形成された貫通孔2,2,……を仕切る隔壁3の貫通方向端部に段差Dを複数箇所に形成しておけば、衝撃を受けたときに該段差部Dよりも突出した部分に応用が集中して座屈変形を起こすため、初期の急激な衝撃を該座屈によってより効率良く吸収することが可能となる。従って、想定される衝撃力の程度に応じて該段差部Dの高さHや数を適正に設定すれば、初期の衝撃吸収能が高められると共に衝撃を受けたときに生じる反力を一層低減することが可能となる。
【0031】
上記の様に、衝撃吸収体の特定部位に段差部を設け、この部位を最初に座屈変形させて初期の急激な衝撃を効果的に吸収する他の手段としては、衝撃吸収体の特定部位を薄肉にしたり欠損部を設け、これらの部位に応力が集中するようにすることも可能である。
【0032】
この衝撃吸収体として満足のいく衝撃吸収性能を与えるには、例えば図1に示した様な成形体を貫通孔形成方向(図の上下方向)に圧縮したときの荷重(反力)−圧縮率曲線から求められる圧縮エネルギー吸収量を50tf・m/m以上、より好ましくは100tf・m/m以上とするのがよい。
【0033】
ここで荷重(反力)−圧縮率曲線とは、衝撃吸収体を圧縮したときの荷重(反力)と圧縮率の相関性を示す曲線であり、例えば図4にその一例を示す如く、圧縮の初期においては圧縮率に比例して荷重(反力)−圧縮率曲線が急激立ち上がり、その後の傾斜は徐々に緩慢となり、圧縮率の増大にも拘わらず荷重(反力)はほぼ一定となって局部的に反力が極大値を示すプラトー点に達する。そして更に圧縮力が加わっても、前記貫通孔2,2,……を逃げ空間として隔壁3の座屈変形が起こり、該隔壁3の座屈変形が進行する間はほぼ一定レベルの反力を維持した後、逃げ空間となる貫通孔2,2,……が小さくなると該曲線は急激に立ち上がる。
【0034】
プラトー強度とは、上記図4に示した曲線における最初の立ち上がり後の平担部における最大反力値を衝撃吸収体の受圧面積で割った値であり、また本発明で規定する圧縮エネルギー吸収量とは、圧縮率80%までの前記曲線で囲まれる面積(図4の斜線領域)で示される吸収エネルギーを衝撃吸収体の体積で割った値を意味する。該プラトー強度と最大応力値とは必ずしも一致しないが、当該衝撃吸収体が衝撃力を受けたときに衝突物が受ける最大応力に近い値であり、最大応力値の目安とされる。
【0035】
衝撃吸収体のプラトー強度は50tf/m以上、5,000tf/m以下であることが好ましく、更に好ましくは100tf/m以上、2,000tf/m以下である。
【0036】
このプラトー強度が不足する場合は、衝撃エネルギー吸収体としての機能が十分に発揮されず、逆にプラトー強度が大き過ぎると、衝撃時に生じる反力が大きくなって上部工や下部工、或は隣接構造物が破壊したり落橋を起こす恐れがでてくる。従って衝撃エネルギーを効率よく吸収して衝撃緩和を図るには、該反力−圧縮率曲線における最初の立ち上がりをできるだけ急激にすると共に、プラトー点を過ぎた後の反力の低下を極力少なくし、隣接物や周辺構造物が破壊する力以下で且つ高圧縮率まで反力をほぼ一定のレベルに維持することが有効となる。すなわち図4における斜線部分が台形状でその面積が広いほど、衝撃エネルギー吸収量は大きくなる。
【0037】
こうした観点から、本発明の衝撃吸収体に求められる物性を種々検討した結果、衝撃力を十分に吸収して上部工や下部工の破壊を有効に防止するには、前述の如く圧縮エネルギー吸収量を50tf・m/m以上、より好ましくは100tf・m/m以上とすべきであることが確認された。ちなみに、従来から知られたゴム成形体の様な衝撃吸収体では、例えば図5の応力−圧縮率曲線に示す如く最初の立ち上がりが緩慢であるため、満足のいく衝突エネルギー吸収量を確保するには材料の使用量を多くしなければならず、衝撃吸収部体(i)としてのサイズが大きくなるばかりでなく重くならざるを得ない。
【0038】
ところが上記構造の衝撃吸収体では、例えば図6に示す如く最初の立ち上がりが急激であると共に、適度のプラトー強度を示し、その後の圧縮力の増大にも拘らずしばらくは約一定の反力レベルを維持した後、最後に急激な立ち上がりを見せ、その結果、素材そのものの曲げ弾性率とも相まって50tf・m/m以上という非常に高い圧縮エネルギー吸収量を有するものとなる。
【0039】
該衝撃吸収体を構成する好ましい樹脂は先に示した通りであるが、それらの樹脂には必要に応じて酸化防止剤、紫外線吸収剤、熱安定剤などの各種安定剤、染料、顔料、カーボンブラック、タルク、ガラスビーズ等の充填材、金属繊維やガラス繊維、炭素繊維等の繊維強化剤、帯電防止剤、可塑剤、難燃剤、発泡剤、離型剤等の添加剤を適量配合して改質することも勿論可能である。
【0040】
その形状も図1に示した様な構造に限定される訳ではなく、例えば図2(A)、(B)に示す如く矩形や菱形等の貫通孔を多数形成した格子状物、更には円形や楕円形、あるいは異形の貫通孔を多数形成した成形体であっても勿論構わない。そのサイズも、適用される衝撃吸収部位の隙間・サイズや想定される衝撃力の程度などを考慮して任意に決めればよい。該吸収体の成形法にも一切制限がなく、射出成形法、押し出し成形法、プレス成形法など任意の方法を採用できる。
【0041】
図3は、上記衝撃吸収体を利用した衝撃吸収構造を例示する要部断面説明図であり、図3(A)は、下部工5の頂部に衝撃吸収体1を直接挟んで上部工4,4を突き合わせて配置した例、図3(B)は、下部工5の頂部を突出させて該突部5aの両側に衝撃吸収体1を介して上部工4,4を突き合わせて配置した例、図3(C)は、頂部をL字状に突出させた下部工5のL字突部5bの側壁に衝撃吸収体1を介して上部工4を配置した例、図3(D)は、上部工4にブラケット8を設けると共に、落橋防止壁7を設けた下部工5を用い、該落橋防止壁7に衝撃吸収体1を配置した例、図3(E)は、下部工5に落橋防止壁7を設け、該落橋防止壁7に衝撃吸収体1を配置した例、図3(F)は、下部工5に落橋防止壁7を配置し、上部工4に衝撃吸収体1を配置した例、図3(G)は、両側に落橋防止壁を立設した下部工5の内側壁および落橋防止壁7bに衝撃吸収体1,1を配置し、この問に上部工4を配置して横方向の衝撃吸収を図った例、を夫々示している。これらの図において符号6は、いずれも支承部材を表わしている。
【0042】
この様に本発明によれば、前述した物性と形状を有する衝撃吸収体を、橋梁を構成する上部工同士、上部工と下部工の間、もしくは、落橋防止壁を有する下部工と上部工の間に配置することによって、橋梁構築物が地震などで衝撃を受けたときの衝撃を吸収・緩和し、上部工や下部工あるいは隣接構造物の衝撃破壊を抑え、あるいは上部工の脱落による落橋事故などを未然に防止する。なお図3に示した下部工と上部工の連接構造や衝撃吸収体1の取付け位置などは代表例を示しただけであり、本発明はもとよりこれらの例には一切限定されない。また衝撃吸収体1の取付け法にも一切制限がなく、予め埋め込まれたナットにボルト止めする方法、適当な取付け治具を用いて固定する方法などを適宜採用すればよい。
【0043】
【実施例】
以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に設計を変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に合まれる。
【0044】
また下記実施例、比較例では、橋梁の上部工や下部工の連接部に衝撃吸収体を取り付けて上部工を実際揺らし、該衝撃吸収体の性能を調べることは実質的に不可能であるので、その様な条件を模擬的に再現して試験を行った。また、実験で採用した物性試験や圧縮試験などは下記の方法によって行なった。
【0045】
〔曲げ弾性率〕:一般的に採用されるASTM−D790に準拠して求めた。
【0046】
〔衝突圧縮試験〕:図7に示す様な試験装置を使用し、自重約7t(トン)の落下物体10を傾斜した軌条9に沿って落下させ、図8に拡大して示す如く、固定台11の衝突面側にロードセル12を介して固定した供試用の衝撃吸収体1に1.8m/sの速度で衝突させ、レーザー変位計14によって衝撃吸収体1の衝撃吸収性能を評価する。13は加速度計を示している。
【0047】
〔受圧面積〕:落下物体と衝撃吸収体との接触面積をいう。衝撃吸収体においては、隔壁部分の接触面積ではなく、成形体としての面積を表した。
【0048】
〔プラトー強度〕:荷重(反力)−圧縮率曲線(図4参照)が圧縮の初期において圧縮率に約比例して立ち上がり、その後徐々に穏やかとなって最大反力(平坦部)となった時の反力を受圧面積で割って求めた。
【0049】
〔単位体積当りの圧縮エネルギー吸収量〕:荷重(反力)−圧縮率曲線において、1tf当りの変位量が0.2mm程度に達した限界圧縮量の時点における衝撃吸収体の単位体積当りのエネルギー吸収量を求めた。
【0050】
〔最大反力〕:上記衝突圧縮試験において、落下物体が衝撃吸収体に衝突したときに発生する最大の反力を求めた。
【0051】
〔最大圧縮変位〕:上記衝突試験において、落下物体が衝撃吸収体に衝突したときに観察される最大の圧縮変位を求めた。
【0052】
〔固定台への影響の有無〕:上記衝突圧縮試験では、衝撃吸収体の受圧面積500mm×100mmに対し、固定台が破壊する力を25tfと想定しており、上記最大反力が25tfを超えるものについては固定台への影響が有りとした。
【0053】
〔吸収エネルギー量〕:落下物体の衝突前後の速度から算出される運動エネルギーの差を衝撃吸収体が吸収したエネルギー量とした。
【0054】
実施例1
東洋紡績社製のポリエステル系エラストマー「ペルプレンP−90B」を使用し、図1に示すようなハニカム状衝撃吸収体[肉厚(t)=4.3mm、1辺長さ(L)=25mm、厚み(h)=100mm]を射出成形した。全体寸法は、横(w)500mm×縦(d)100mm×厚み(h)100mmとした。該ハニカム状衝撃吸収体の性能試験(15℃の値)結果を、構成素材の物性などと共に表1に示す。
【0055】
実施例2
東洋紡績社製のポリエステル系エラストマー「ペルプレンP−150B」を使用し、上記実施例1と同じ形状・寸法のハニカム状衝撃吸収体を射出成型した。該衝撃吸収体の性能試験(40℃の値)結果を、構成素材の物性などと共に表1に示す。
【0056】
実施例3
東洋紡績社製のナイロン「T−222」を使用し、図1に示す6角断面構造のハニカム状衝撃吸収体[肉厚(t)=4.3mm、1辺長さ(L)=25mm、厚み(h)=100mm]を射出成形した。全体寸法は、横(w)200mm×縦(d)200mmとした。該ハニカム状衝撃吸収体の性能試験(40℃の値)結果を、構成素材の物性などと共に表1に示す。
【0057】
比較例1
一般に緩衝材として用いられている硬度63Aの市販ゴム板(CR)[全体寸法;横(w)500mm×縦(d)100mm×厚み(b)100mm]を切り出し、実施例1と同様にして性能評価(15℃)を行なった。結果を表1に示す。
【0058】
【表1】

Figure 2003184032
【0059】
【発明の効果】
本発明は以上の様に構成されており、この衝撃吸収体は優れた衝撃吸収性能を有しているので、該吸収体を用いた衝撃吸収構造は、地震等による上部工同士、上部工と下部工の衝突による衝撃や治具を用いた連結部分にかかる衝撃を効果的に吸収・緩和することができ、下部工や上部工、更には隣接構造物の衝撃による破壊や離脱などを確実に阻止することができ、地震等にも十分に耐える橋梁を与える。しかもこの衝撃吸収体は優れた耐錆性、耐水性、耐侯性を有しているので、内陸部はもとより沿岸地区や海洋連絡橋などに適用したときでも、メンテナンスフリーで長期間優れた衝撃緩和性能を持続する。
【図面の簡単な説明】
【図1】本発明の衝撃吸収体の代表例を示す見取り図である。
【図2】本発明の衝撃吸収体の他の形状を例示する見取り図である。
【図3】衝撃吸収体の配設例を示す概略説明図である。
【図4】本発明に係る衝撃吸収体の荷重(反力)−圧縮率曲線を例示する説明図である。
【図5】通常のゴム弾性体の荷重(反力)−圧縮率曲線を例示する説明図である。
【図6】本発明に係る衝撃吸収体の荷重(反力)−圧縮率曲線の具体例を示す図である。
【図7】実施例および比較例で用いた衝撃試験装置を示す説明図である。
【図8】図7における衝撃吸収体の配置状態を示す拡大説明図である。
【符号の説明】
1 衝撃吸収体
2 貫通孔
3 隔壁
4 上部工
5 下部工
6 支承部材
7 落橋防止壁(鋼製ブラケット、コンクリートブロック等)
8 ブラケット
9 軌条
10 落下物体
11 固定台
12 ロードセル
13 加速度計
14 レーザー変位計[Description of the invention] Shock absorber of bridge
[Claim of claim]
1. The impact of a bridge disposed between a substructure having a drop-preventing wall and a superstructure during a superstructure, a superstructure-substructure, or a superstructure comprising a bridgeIt is an absorber, and the impact absorber has a flexural modulus of 500 to 20,000 kgf / cm. 2 And having a compartment structure having a large number of compartments separated by a wall in the impact load direction, and having a plateau strength of 50 to 5,000 tf / m. 2 The bridge shock absorber is characterized in that, when the shock absorber is subjected to a large impact, the wall absorbs the impact by buckling or permanent deformation.
[Claim 2]The shock absorber according to claim 1, wherein the elastic resin is a thermoplastic resin or thermosetting resin reinforced or not reinforced with a fibrous reinforcing material or whisker.
[Claim 3]The shock absorber according to claim 2, wherein the thermoplastic resin is a polyester elastomer, a polyolefin elastomer, a polyurethane elastomer, a polyamide elastomer, or a blend thereof.
[Claim 4]The shock absorber according to any one of claims 1 to 3, wherein the small cell structure has a repeating structure of small cells consisting of a polygon having a cross section perpendicular to the shock absorbing direction that is hexagonal or smaller.
[Claim 5]The shock absorbing structure according to claim 4, wherein the cross section perpendicular to the shock absorbing direction in the small chamber structure is a hexagonal honeycomb structure.
Detailed Description of the Invention
[0001]
Field of the Invention
The present invention mitigates an impact due to a collision between a superstructure and a substructure when a bridge structure such as an expressway receives an impact due to an earthquake or the like and prevents damage, and further the superstructure drops from the substructure. The present invention relates to a shock absorber for a bridge which is improved to absorb and mitigate an impact by arranging between upper works, between upper works and lower works, and between upper works.
[0002]
[Prior Art]
Most of the accidents caused by earthquakes and other impacts on the bridges are due to impact failure or separation due to collision between upper constructions or the connection between upper constructions and lower constructions in the bridge structure. It has also been confirmed in the Great East Japan Earthquake.
[0003]
By the way, as a method of preventing the falling of the bridge, a method of forming a protrusion for preventing slippage and a falling bridge prevention wall in the upper part of the lower work and the lower part of the upper work, A method, a method of mutually connecting adjacent superstructures with a PC steel material, etc. has been adopted.
[0004]
On the other hand, there are many breakages and bridge failures that have been confirmed in the earthquake disaster cases so far, and breakages that are presumed to be caused by displacements in the direction perpendicular to the bridge axis and shocking vibrations are often seen. As a drop prevention structure currently put into practical use, it has a connection structure capable of following the movement in the direction perpendicular to the bridge axis, and combines a shock absorbing structure using a shock absorber for absorbing and mitigating shock-like vibration. Most of them.
[0005]
As an absorber used for such an impact-absorbing structure, a rubber molding having good restorability has been widely used. However, when the rubber molding is disposed at a very limited area such as between superstructures or at a junction of superstructure and substructure, the size of the shock absorber is limited in the rubber molded body, so that the shock absorbing ability is insufficient. In the case of strong and shocking vibrations, it is difficult to obtain a satisfactory failure prevention effect and a drop prevention effect. Although it is possible to increase the amount of impact absorption by using a thick or large number of rubber moldings, it is possible to arrange them at a limited area because the impact absorber becomes large. Not only will it be difficult, but the cost of materials will rise and weight will increase.
[0006]
In addition, metal springs, friction type shock absorbing members, hydraulic type shock absorbing members, etc. are also known as shock absorbers other than rubber molded bodies, although metal springs have excellent shock absorbing performance, but rusting occurs. As the impact absorbers for bridges placed in places exposed to salt water such as coastal areas and ocean connection bridges, rust resistance and corrosion resistance are bothersome because maintenance problems are unavoidable. Lack of aptitude in terms of sex. In addition, friction and hydraulic shock absorbers generally have complicated structures, are very expensive and heavy, and they also have the problem that they can not maintain their original performance without proper maintenance. Be done.
[0007]
On the other hand, for example, in JP-B-61-12779, as a shock absorbing means using a resin molded body, a hollow molded body made of a thermoplastic resin elastomer is used, and this is compressed in advance in the axial direction to give permanent distortion. Discloses a technique for enhancing the shock absorbing performance. However, although this resin molded body has excellent ability as an elastic body, it has a poor ability to absorb compressive energy, and as a shock absorbing member for a bridge for preventing a drop bridge due to an earthquake etc., a satisfactory shock absorbing performance is obtained. I can not.
[0008]
On the other hand, the inventors of the present invention have an impact absorption made of a cushioned elastic resin molded product in which arch-shaped, dome-shaped or honeycomb-shaped compression deformation members are erected in multiple layers on a perforated or non-porous flat plate made of elastic resin. We are working on developing the body and aiming for its practical application. This shock absorber is widely spread on road side walls, floor surfaces of buildings, etc., and is suitable for applications that exhibit uniform shock absorption performance over a wide range. However, as intended in the present invention, it is difficult to apply to applications that have to be installed in a limited area, such as bridge superstructures and connections between superstructures and substructures. I can not get it.
[0009]
In addition, since shock absorbers in bridge construction are often provided in the vicinity of the supporting part of the superstructure in the substructure, it is desirable that they do not interfere with the maintenance of the supporting part such as inspection, maintenance, and repair. The shock absorber is required to be compact and lightweight and to have a high shock absorbing ability, that is, a large amount of compressive energy absorption as compared with the reaction force. However, conventional shock absorbers as described above can not meet these requirements.
[0010]
[Problems to be solved by the invention]
The present invention has been made focusing on the above circumstances, and the object of the present invention is to provide a compact, lightweight, simple structure, a large amount of compressive energy absorption as compared with a reaction force, and rust resistance. Developed a shock absorber for bridges that can be put to practical use free of maintenance, even when applied to inland areas as well as bridges in coastal areas as well as inland areas. An object of the present invention is to provide a shock absorbing structure for a bridge which can prevent, as much as possible, a shock failure of a superstructure or a substructure due to an earthquake or the like or a drop accident of the superstructure by using a shock absorber.
[0011]
[Means for Solving the Problems]
The shock absorber according to the present invention, which has been able to solve the above-mentioned problems, is disposed between the upper works constructing the bridge, between the upper works and the lower works, or between the lower works having the falling prevention wall and the upper works. Shock absorber for a bridge, which has a flexural modulus of 500 to 20,000 kgf / cm2And having a compartment structure having a large number of compartments separated by a wall in the impact load direction, and having a plateau strength of 50 to 5,000 tf / m.2When the shock absorber is subjected to a large impact, the wall is characterized by being capable of absorbing the impact by buckling or permanent deformation.
[0012]
As said elastic resin which comprises the impact-absorbing body of this invention, the thermoplastic resin or thermosetting resin reinforced or not reinforced with a fibrous reinforcement or a whisker is mentioned. Among the thermoplastic resins, polyester elastomers, polyolefin elastomers, polyurethane elastomers, polyamide elastomers, or blends thereof are preferable.
[0013]
And, as the above-mentioned small room structure in the shock absorber, one having a repeated structure of small rooms consisting of a polygon having a hexagonal shape or less in cross section perpendicular to the shock absorbing direction, more specifically a hexagonal The one having a honeycomb structure of is preferable.
[0014]
The shock absorber according to the present invention is a shock absorber capable of absorbing a shock on a somewhat wide surface, mainly mainly between the upper works, the upper works and the lower works constituting the bridge, and the falling prevention walls. It will be installed between the substructure and superstructure.
[0015]
Shock absorbers consist of moldings having a number of wall structures in the direction of impact loading, which wall structures are connected to one another in at least part of the direction of impact loading and have compartment structures separated in the direction of impact loading preferable. In order to ensure sufficient shock absorption performance that can cope with sudden impacts such as earthquakes, the amount of compressive energy absorbed when compressed in the shock load direction of the shock absorber is 50 tf · m / m.3The above-mentioned thing is desirable, in order to realize this, bending elastic modulus 500-20,000kgf / cm as a material of the forming object2It is preferable to use a resin of
[0016]
If the shock absorber of the present invention is installed between superstructures between bridge constructions, between superstructures and substructures, between substructures having anti-fall bridge walls and between superstructures, etc. Such an impact can be efficiently absorbed and mitigated, and the impact failure of the caring part and the adjacent structure can be prevented, and a drop accident of the superstructure, that is, a drop accident can be prevented in advance.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The shock absorber of the bridge according to the present invention is installed between the upper work, between the upper work and the lower work, between the lower work and the upper work provided with the fall prevention wall as described above, When an impact force is applied to the contact portion of the bridge, the impact is absorbed and mitigated to prevent a bridge breakage accident such as the destruction of them or the drop of the superstructure from the substructure.
[0018]
The shock absorber has a flexural modulus of 500 to 20,000 gkf / cm.2The shock absorber has a wall structure in the direction of impact load. The flexural modulus of the elastic resin constituting the shock absorber is 500 kgf / cm2If it is less than 20%, the impact absorber will be elastically deformed immediately when it receives an impact force due to lack of rigidity, that is, the impact energy can not be sufficiently absorbed due to the insufficient amount of energy absorption Can not get. In order to compensate for this, it is necessary to thicken the wall structure in the shock load direction of the shock absorber, and as a result, the shock absorber has to be enlarged, and the shock absorbing structure for the bridge becomes large. It deviates from the meaning. The wall structure in the impact load direction referred to herein is a structure having a wall substantially parallel to the impact load direction.
[0019]
It is important for this wall structure to absorb impact by compressive deformation and buckling deformation due to impact, and in a structure that absorbs impact force only by elastic deformation, it is a rapid and extremely large impact like an earthquake in a short time If it is added several times or several tens of times, sufficient energy absorption performance may not be exhibited, or resonance may be caused to increase the vibration of the bridge superstructure, and may even promote the failure of the bridge structure. It is because there is.
[0020]
The shock absorber of the present invention which exerts such a function is a shock absorber which can absorb a shock on a somewhat wide surface. This will be installed mainly between the upper works that make up the bridge, between the upper works and the lower works, between the lower works with anti-fall barriers and the upper works.
[0021]
The shock absorber has a number of wall structures in the direction of shock loading. The wall structure is preferably connected to each other on at least part of the plane in the impact load direction and has a compartment structure separated in the impact load direction. By providing such a compartment structure, when a load is applied, the wall structure in the impact load direction, which is the partition surface of the compartment structure, causes a buckling deformation in the form of a bellows to efficiently absorb the impact. Can. The shock absorber preferably includes a repeating structure of polygonal small rooms 7 whose cross section perpendicular to the shock absorbing direction of the small room structure has a hexagonal or smaller shape, and a hexagonal honeycomb structure is particularly preferable among them. It is.
[0022]
The small chamber structure may be in the form of a through hole in which both ends are open in the impact load direction, may be concave (hole) in which one side is closed, or may be hollow in which both ends are closed.
[0023]
Furthermore, in order to further increase the initial shock absorbing ability of the shock absorber, a structure is such that when a shock load is generated in the shock absorber, a specific portion of the wall structure in the shock load direction of the shock absorber is deformed first. It is preferable to have As an example of such a structure, a structure having a (1) defect in the wall structure in the impact load direction, a (2) having a step, or a thin portion may be mentioned. In this way, when a specific portion of the wall structure is deformed, when a shock load is generated on the shock absorber, the specific portion is first deformed rapidly to enhance the initial shock absorption capability. It is possible to further reduce the reaction force generated when an impact is received.
[0024]
As a preferable material constituting the shock absorber, the bending elastic modulus is 500 to 20,000 kgf / cm.2And the lower limit value of the flexural modulus of the elastic resin is more preferably 500 kgf / cm in order to secure a sufficient amount of impact absorption and shock absorbing action.2, More preferably 800 kgf / cm2Above, a more preferable upper limit is 10,000 kgf / cm2, More preferably 4,000 kgf / cm2It is over.
[0025]
As the elastic resin, all natural or synthetic resins can be used as long as they can satisfy the above-mentioned flexural modulus, and preferred examples thereof include thermoplastic polyester elastomers, polyolefin elastomers, polyurethane elastomers, and polyamide elastomers. Elastomers, or blends thereof, and thermosetting resins such as cast polyurethane resins, etc. are mentioned. Among them, thermoplastic polyester elastomers and polyolefin elastomers excellent in weather resistance and water resistance are particularly preferable. is there.
[0026]
In addition, as another material of shock absorber, bending elastic modulus is 5,000kgf / cm2Although the above-described materials can be used, it is desirable to use those excellent in rust resistance and water resistance. Specific examples thereof include thermal resins reinforced with thermoplastic resin or thermosetting resin, or fillers such as carbon black, talc, glass beads, metallic fibers, fibrous reinforcing materials such as glass fibers, carbon fibers, whiskers, etc. Examples thereof include plastic resins and thermosetting resins.
[0027]
In the case where the shock absorber is formed of the above-mentioned resin, the rise of the reaction force may become too rapid when the small room which becomes the escape space progresses due to the progress of the buckling deformation, so the inside of the small room It is also effective to fill the above with other shock absorbing materials such as foamed resin and rubber. In addition, it is preferable to fill the small room with the shock absorbing material in this way, since the intrusion of dust and the like into the small room is also prevented.
[0028]
Next, a specific example of the shock absorber will be shown, and the shock absorbing mechanism will be described in detail.
[0029]
FIG. 1 is a sketch showing a representative example of the shock absorber used in the present invention, and shows a honeycomb shock absorber integrally molded using an elastic resin satisfying the requirements of the flexural modulus. In this shock absorber 1, a large number of hexagonal through holes 2, 2,... Are formed at equal intervals in the direction of impact load (vertical direction in the figure), and these through holes 2, 2,. The impact force is absorbed by the elastic deformation of the bulkhead 3 and the buckling deformation in the direction of each through hole.
[0030]
That is, the shock absorber of the present invention absorbs an impact by the elasticity of the partition 3 itself made of an elastic resin and the elastic deformation with the through holes 2, 2,. Further, as shown in the figure, in the case where the continuous partition walls 3 are formed while forming a polygon such as a honeycomb shape or a lattice shape in plan view by a large number of through holes 2, 2,. Moderate rigidity is also given as a whole. As a result, the shock absorber as a whole has both the shock absorbing action by the elastic deformation and the appropriate rigidity, and can efficiently absorb and reduce the shock due to the strong vibration and the like received by the earthquake and the like. Further, as shown in the figure, when the step D is formed at a plurality of locations at the end in the penetration direction of the partition wall 3 partitioning the through holes 2, 2, ... formed in the elastic resin molded body, the shock is received. Since the application is concentrated on a portion protruding from the step portion D to cause a buckling deformation, it is possible to absorb an initial rapid impact more efficiently by the buckling. Therefore, if the height H and the number of the step portions D are properly set in accordance with the degree of impact force assumed, the initial impact absorption capability is enhanced and the reaction force generated when an impact is received is further reduced. It is possible to
[0031]
As described above, as another means for providing a stepped portion at a specific portion of the shock absorber and subjecting this portion to buckling deformation first to effectively absorb the initial rapid impact, a specific portion of the shock absorber may be used. It is also possible to thin the wall or provide a defect so that stress concentrates on these parts.
[0032]
In order to give a satisfactory shock absorbing performance as this shock absorber, for example, the load (reaction force) when the molded body as shown in FIG. 1 is compressed in the through hole forming direction (vertical direction in the drawing)-compression ratio 50 tf · m / m of compression energy absorption determined from the curve3Or more, more preferably 100 tf · m / m3It is good to be above.
[0033]
Here, the load (reaction force)-compression rate curve is a curve showing the correlation between the load (reaction force) and the compression rate when the shock absorber is compressed. For example, as shown in FIG. In the initial stage of the load, the load (reaction force)-compression rate curve rises sharply in proportion to the compression rate, and then the slope becomes gradually slow and the load (reaction force) becomes almost constant despite the increase in the compression rate Therefore, the reaction force reaches a plateau point where the local maximum value is shown. Then, even if a compressive force is applied, buckling deformation of the partition 3 occurs with the through holes 2, 2, ... as a relief space, and while the buckling deformation of the partition 3 progresses, a reaction force of a substantially constant level is obtained. After the maintenance, when the through holes 2, 2.
[0034]
The plateau strength is a value obtained by dividing the maximum reaction force value in the flat portion after the first rising of the curve shown in FIG. 4 by the pressure receiving area of the shock absorber, and also the compression energy absorption amount specified in the present invention The value means the value which divided the absorbed energy shown by the area (hatched area of FIG. 4) enclosed by the said curve by the compression rate to 80% by the volume of a shock absorber. Although the plateau strength and the maximum stress value do not necessarily coincide with each other, they are values close to the maximum stress that an impacting material receives when the impact absorber is subjected to an impact force, and can be used as a measure of the maximum stress value.
[0035]
Plateau strength of shock absorber is 50 tf / m2Or more, 5,000 tf / m2Or less, more preferably 100 tf / m or less2More than 2,000tf / m2It is below.
[0036]
If the plateau strength is insufficient, the function as an impact energy absorber is not sufficiently exhibited. Conversely, if the plateau strength is too high, the reaction force generated at the time of impact becomes large and the upper work, the lower work, or adjacent There is a risk that the structure will be destroyed or cause a bridge failure. Therefore, in order to absorb the impact energy efficiently to reduce the impact, the initial rise in the reaction force-compression ratio curve is made as rapid as possible, and the decrease in reaction force after passing the plateau point is minimized. It is effective to maintain the reaction force at a substantially constant level up to a high compression ratio and below the force at which the adjacent object and the surrounding structure break. That is, the impact energy absorption amount increases as the hatched portion in FIG. 4 has a trapezoidal shape and the area is larger.
[0037]
From these viewpoints, as a result of various investigations of the physical properties required for the shock absorber of the present invention, in order to sufficiently absorb the impact force and effectively prevent the failure of the superstructure and the substructure, as described above 50tf m / m3Or more, more preferably 100 tf · m / m3It was confirmed that it should be above. Incidentally, in the case of a shock absorber such as a rubber molded body conventionally known, since the first rise is slow as shown by the stress-compressibility curve in FIG. 5, for example, a sufficient amount of collision energy absorption is secured. The amount of material used must be increased, and the size of the shock absorber (i) is not only increased but also heavy.
[0038]
However, in the shock absorber of the above-mentioned structure, for example, as shown in FIG. 6, the initial rise is sharp and exhibits a moderate plateau strength, and the reaction force level remains approximately constant for a while despite the subsequent increase in compression force. After maintaining, it showed a sharp rise at the end, and as a result, it combined with the flexural modulus of the material itself to 50 tf · m / m3It has a very high compression energy absorption amount as described above.
[0039]
Preferred resins constituting the impact absorber are as described above, but if necessary, various resins such as antioxidants, UV absorbers, heat stabilizers, dyes, pigments, carbon may be used. Filler with appropriate amount of filler such as black, talc, glass beads, fiber reinforcing agent such as metal fiber or glass fiber, carbon fiber, antistatic agent, plasticizer, flame retardant, foaming agent, mold release agent etc It is of course also possible to modify.
[0040]
The shape is not limited to the structure as shown in FIG. 1, and for example, a grid-like object having a large number of through holes such as rectangles and rhombuses as shown in FIGS. 2 (A) and 2 (B). Of course, it may be a molded body in which a large number of through holes having an oval shape or an odd shape are formed. The size may also be determined arbitrarily in consideration of the size and the size of the gap of the impact absorbing portion to be applied and the degree of the impact force to be assumed. There is no restriction on the molding method of the absorbent body, and any method such as injection molding method, extrusion molding method and press molding method can be adopted.
[0041]
FIG. 3 is a cross-sectional explanatory view of an essential part illustrating an impact absorbing structure utilizing the above-mentioned impact absorbing body, and FIG. 3 (A) is an upper working 4, 4 with the impact absorbing body 1 directly sandwiched on the top of the lower working 5; 3A and 3B show an example in which the top of the lower part 5 is made to project and the upper parts 4 and 4 are butted on both sides of the protrusion 5a via the shock absorber 1, as shown in FIG. FIG. 3 (C) is an example in which the superstructure 4 is disposed on the side wall of the L-shaped protrusion 5b of the lower structure 5 with the top portion protruding in an L shape, with the shock absorber 1 interposed therebetween. 3E shows an example in which the shock absorber 1 is disposed on the falling bridge preventing wall 7 using the lower building 5 provided with the bracket 8 on the upper building 4 and provided with the falling bridge preventing wall 7, FIG. In the example in which the prevention wall 7 is provided and the shock absorber 1 is arranged on the fall prevention wall 7, as shown in FIG. 3F, the fall prevention wall 7 is arranged on the lower work 5. In the example in which the shock absorber 1 is disposed, as shown in FIG. 3G, the shock absorbers 1 and 1 are disposed on the inner wall of the substructure 5 on which the anti-dropout walls are erected on both sides and the anti-dropout wall 7b. The example which arrange | positioned the superstructure 4 and aimed at the impact absorption of the horizontal direction is shown, respectively. In each of these figures, reference numeral 6 represents a bearing member.
[0042]
As described above, according to the present invention, the shock absorbers having the above-described physical properties and shape can be compared between the upper works, between the upper works and the lower works that constitute the bridge, or between the upper works and the lower works having By arranging in between, the bridge structure absorbs and mitigates the impact when it receives an impact due to an earthquake, etc., and the impact failure of the superstructure, substructure or adjacent structure is suppressed, or a drop accident due to the drop of the superstructure etc. Prevent in advance. The connection structure of the lower and upper works shown in FIG. 3 and the attachment position of the shock absorber 1 are only representative examples, and the present invention is of course not limited to these examples. Also, there is no limitation on the method of mounting the shock absorber 1, and a method of bolting to a previously embedded nut, a method of fixing using a suitable mounting jig, or the like may be adopted as appropriate.
[0043]
【Example】
Hereinafter, the present invention will be more specifically described by way of examples and comparative examples, but the present invention is not limited by the following examples as a matter of course, and a design is appropriately selected as long as the present invention can be applied. Modifications can be made and all of them fall within the technical scope of the present invention.
[0044]
Also, in the following examples and comparative examples, it is practically impossible to examine the performance of the shock absorber by actually attaching the shock absorber to the connection portion of the bridge superstructure or substructure and actually shaking the superstructure. The test was conducted by simulating such conditions. Moreover, the physical property test employ | adopted by the experiment, the compression test, etc. were done by the following method.
[0045]
[Flexural modulus]: Determined in accordance with generally adopted ASTM-D790.
[0046]
[Collision Compression Test]: Using a test apparatus as shown in FIG. 7, a falling object 10 with a weight of about 7 t (tons) is dropped along the inclined rail 9, and as shown in FIG. The shock absorber 1 for test fixed to the collision surface side 11 via the load cell 12 is made to collide at a velocity of 1.8 m / s, and the shock absorption performance of the shock absorber 1 is evaluated by the laser displacement meter 14. Reference numeral 13 denotes an accelerometer.
[0047]
[Pressing area]: The contact area between the falling object and the shock absorber. In the shock absorber, not a contact area of the partition wall portion but an area as a molded body is represented.
[0048]
[Plateau strength]: The load (reaction force)-compression ratio curve (see FIG. 4) rises approximately in proportion to the compression ratio at the initial stage of compression, and then gradually becomes gentle and becomes the maximum reaction force (flat portion) The reaction force at the time was divided by the pressure receiving area to obtain.
[0049]
[Compression energy absorption amount per unit volume]: Energy per unit volume of the shock absorber at the time of the limit compression amount at which the displacement amount per 1 tf reaches about 0.2 mm in the load (reaction force) -compression rate curve The amount of absorption was determined.
[0050]
[Maximum Reaction Force]: In the above-mentioned collision compression test, the maximum reaction force generated when the falling object collides with the shock absorber was determined.
[0051]
[Maximum Compressive Displacement]: In the collision test, the maximum compressive displacement observed when the falling object collides with the shock absorber was determined.
[0052]
[Influence of influence on fixing base]: In the above-mentioned collision compression test, the force at which the fixing base breaks is assumed to be 25 tf against the pressure receiving area of 500 mm × 100 mm of the shock absorber, and the maximum reaction force exceeds 25 tf There was an influence on the fixed stand for the thing.
[0053]
[Absorbed energy amount]: The difference in kinetic energy calculated from the velocity before and after the collision of the falling object was taken as the amount of energy absorbed by the shock absorber.
[0054]
Example 1
Using a polyester elastomer "Pelprene P-90B" manufactured by Toyobo Co., Ltd., a honeycomb impact absorber as shown in Fig. 1 [thickness (t) = 4.3 mm, side length (L) = 25 mm, Thickness (h) = 100 mm] was injection molded. The overall dimensions were horizontal (w) 500 mm × longitudinal (d) 100 mm × thickness (h) 100 mm. The performance test (value of 15 ° C.) of the honeycomb-shaped impact absorber is shown in Table 1 together with the physical properties of the constituent materials and the like.
[0055]
Example 2
Using a polyester-based elastomer "Pelprene P-150B" manufactured by Toyobo Co., Ltd., a honeycomb-shaped impact absorber having the same shape and dimensions as those in Example 1 was injection-molded. The performance test (value of 40 ° C.) of the shock absorber is shown in Table 1 together with the physical properties of the constituent materials and the like.
[0056]
Example 3
Honeycomb-like impact absorber with hexagonal cross section shown in FIG. 1 using nylon “T-222” manufactured by Toyobo Co., Ltd. [Thickness (t) = 4.3 mm, side length (L) = 25 mm, Thickness (h) = 100 mm] was injection molded. The overall dimensions were: horizontal (w) 200 mm × vertical (d) 200 mm. The performance test (value of 40 ° C.) of the honeycomb-shaped impact absorber is shown in Table 1 together with the physical properties of the constituent materials and the like.
[0057]
Comparative Example 1
A commercially available rubber plate (CR) having a hardness of 63 A which is generally used as a buffer material [whole dimension; width (w) 500 mm x length (d) 100 mm x thickness (b) 100 mm] is cut out and performance is carried out in the same manner as Example 1. Evaluation (15 ° C.) was performed. The results are shown in Table 1.
[0058]
[Table 1]
Figure 2003184032
[0059]
【Effect of the invention】
The present invention is configured as described above, and since this shock absorber has excellent shock absorbing performance, a shock absorbing structure using the shock absorber can be made by superstructures, superstructures, etc. by earthquakes and the like. It can effectively absorb and reduce the impact caused by the collision of the substructure and the shock applied to the connecting part using the jig, so that the substructure and the superstructure, and also the destruction and detachment of the adjacent structure due to the impact can be assured. It can be blocked and gives a bridge that is sufficiently resistant to earthquakes etc. Moreover, since this shock absorber has excellent rust resistance, water resistance and weather resistance, maintenance-free and long-lasting shock relaxation can be maintained even when applied to the inland area as well as to a coastal area or a marine connection bridge. Maintain performance.
Brief Description of the Drawings
FIG. 1 is a sketch showing a representative example of the shock absorber of the present invention.
FIG. 2 is a perspective view illustrating another shape of the shock absorber of the present invention.
FIG. 3 is a schematic explanatory view showing an arrangement example of a shock absorber.
FIG. 4 is an explanatory view exemplifying a load (reaction force) -compression rate curve of the shock absorber according to the present invention.
FIG. 5 is an explanatory view exemplifying a load (reaction force) -compression rate curve of a normal rubber elastic body.
FIG. 6 is a view showing a specific example of a load (reaction force) -compression rate curve of the shock absorber according to the present invention.
FIG. 7 is an explanatory view showing an impact test apparatus used in Examples and Comparative Examples.
8 is an enlarged explanatory view showing an arrangement of the shock absorber in FIG. 7;
[Description of the code]
1 Shock absorber
2 through holes
3 bulkhead
4 Superstructure
5 Substructure
6 Support member
7 Fall prevention wall (steel bracket, concrete block, etc.)
8 bracket
9 rail
10 falling objects
11 Fixed stand
12 load cell
13 Accelerometer
14 Laser displacement meter

JP2002306416A 1997-06-30 2002-10-21 Shock absorber of bridge Expired - Fee Related JP3808822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306416A JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP17490797 1997-06-30
JP9-174908 1997-06-30
JP9-174907 1997-06-30
JP17490897 1997-06-30
JP2002306416A JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16465298A Division JP3437089B2 (en) 1997-06-30 1998-06-12 Bridge shock absorbing structure

Publications (3)

Publication Number Publication Date
JP2003184032A JP2003184032A (en) 2003-07-03
JP2003184032A5 true JP2003184032A5 (en) 2004-07-15
JP3808822B2 JP3808822B2 (en) 2006-08-16

Family

ID=27617216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306416A Expired - Fee Related JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Country Status (1)

Country Link
JP (1) JP3808822B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330828C (en) * 2004-11-11 2007-08-08 徐国彬 Universal horizontal vibration damping holder
JP4826143B2 (en) * 2005-06-06 2011-11-30 日産自動車株式会社 Collision load measurement system and measurement method
JP4641514B2 (en) * 2006-07-03 2011-03-02 大阪府 Structure movement restriction device
JP2018066435A (en) * 2016-10-19 2018-04-26 日産自動車株式会社 Impact absorption member and front roof cross member using impact absorption member
CN110055880B (en) * 2019-05-31 2024-01-30 中铁二院工程集团有限责任公司 Damping energy-consumption beam falling prevention device for railway bridge
KR102411500B1 (en) * 2019-09-25 2022-06-21 매크로드 주식회사 Elastic disk structure comprising flow holes formed inside the body and bridge bearing comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698721B2 (en) * 1986-06-27 1994-12-07 昭和飛行機工業株式会社 Honeycomb core cushioning material
JP2742970B2 (en) * 1992-04-23 1998-04-22 建設省土木研究所長 Structure of knock-off device for road bridge
JP3218694B2 (en) * 1992-05-20 2001-10-15 東洋紡績株式会社 Resin shock absorber

Similar Documents

Publication Publication Date Title
KR100384571B1 (en) Resin shock absorber
US20120266548A1 (en) Self-centering energy dissipative brace apparatus with tensioning elements
JP6173553B1 (en) Seismic control device for bridge
KR100591372B1 (en) Bridge of shock-absorbing construction
KR102322249B1 (en) Expandable module type footbridge
US7647733B2 (en) Reinforcing structure for building
JP2003184032A5 (en)
JP3808822B2 (en) Shock absorber of bridge
US8291651B2 (en) Stable unbonded fiber-reinforced elastomeric seismic isolators for base isolation system
JP3437089B2 (en) Bridge shock absorbing structure
JP4870483B2 (en) Member holding device and member holding method
JP2002070943A (en) Slip support device for base isolation
KR101579058B1 (en) Seismic reinforcing method of bridge
KR101603191B1 (en) Laminated hybrid panel with frp composite and corrugated steel plate for seismic rehabilitation of building structures and producing method thereof and construction method using the same
KR102316597B1 (en) Wire damping apparatus for walls
KR20050082943A (en) Shape memory alloy rubber bearing
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JP2005330688A (en) Aseismatic reinforcing method and structure for bridge
KR101192503B1 (en) Expansion joint to control distances among rails and energy released during earthquake motion
JP4878338B2 (en) Reinforcement structure of buildings and structures
KR100448486B1 (en) Apparatus for supporting bridge structures
JP3984433B2 (en) Rail bearing support structure and vehicle track
KR102279831B1 (en) Multi-Directional Elastic Damper
CN212801397U (en) Hydraulic engineering retaining wall
JP3960491B2 (en) Shock absorber