JP2003184032A - Shock absorbing structure for bridge - Google Patents

Shock absorbing structure for bridge

Info

Publication number
JP2003184032A
JP2003184032A JP2002306416A JP2002306416A JP2003184032A JP 2003184032 A JP2003184032 A JP 2003184032A JP 2002306416 A JP2002306416 A JP 2002306416A JP 2002306416 A JP2002306416 A JP 2002306416A JP 2003184032 A JP2003184032 A JP 2003184032A
Authority
JP
Japan
Prior art keywords
shock absorbing
shock
absorbing material
impact
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306416A
Other languages
Japanese (ja)
Other versions
JP3808822B2 (en
JP2003184032A5 (en
Inventor
Kenji Kubota
賢司 窪田
Yasushi Uehigashi
泰 上東
Tadashi Sugano
匡 菅野
Hiroshi Ishida
博 石田
Masaru Kamata
賢 鎌田
Yujiro Matsuyama
雄二郎 松山
Yoshio Araki
良夫 荒木
Seiji Negishi
聖司 根岸
Chisato Nonomura
千里 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Japan Highway Public Corp
Original Assignee
Toyobo Co Ltd
Japan Highway Public Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, Japan Highway Public Corp filed Critical Toyobo Co Ltd
Priority to JP2002306416A priority Critical patent/JP3808822B2/en
Publication of JP2003184032A publication Critical patent/JP2003184032A/en
Publication of JP2003184032A5 publication Critical patent/JP2003184032A5/ja
Application granted granted Critical
Publication of JP3808822B2 publication Critical patent/JP3808822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing structure for a bridge, which is small in size, light in weight, simple in structure, has large absorption of compressed energy compared with resistance, is good in corrosion resistance, water resistance, weatherability, etc., commercially available on a maintenance-free basis not only for a bridge in an inland area but also for a bridge in a coastal zone or an ocean connecting bridge, and can prevent impact fracture of a superstructure or a lower structure of the bridge due to an earthquake, etc., or falling accidents of the superstructure, as far as possible. <P>SOLUTION: The shock absorbing structure for the bridge is constructed by arranging the shock absorbing members between the superstructures forming the bridge, between the superstructure and the lower structure, between the lower structure having a bridge fall preventive wall and the superstructure, and at a jig connecting the superstructures together or the superstructure and the lower structure together. The shock absorbing member is a molded body which is molded of a material having a bending modulus of 200 kgf/cm<SP>2</SP>or more, and has a wall structure in a shock load direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速道路などの橋
梁構築物が地震などで衝撃を受けたときの上部工と下部
工との衝突による衝撃を緩和すると共に損傷を防止し、
更には下部工から上部工が落下するのを防止するため、
上部工同士、上部工と下部工の接触部、上部工同士、上
部工と下部工間を連結する治具に衝撃吸収材を配置する
ことによって、衝撃を吸収・緩和できる様に改善された
橋梁の構造、すなわち橋梁の衝撃吸収構造に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mitigates the impact caused by the collision between a superstructure and a substructure when a bridge structure such as a highway is impacted by an earthquake or the like, and prevents damage.
Furthermore, to prevent the superstructure from falling from the substructure,
A bridge that has been improved so that shocks can be absorbed and mitigated by arranging shock absorbers in the jigs that connect the superstructures, the contact between the superstructures and substructures, the superstructures, and the superstructures and substructures. Structure, that is, the shock absorbing structure of the bridge.

【0002】[0002]

【従来の技術】地震等の衝撃による橋梁の落下事故は、
その殆んどが、該橋梁構築物における上部工同士あるい
は上部工と下部工の接続部の衝突による衝撃破壊や離脱
によるものであり、その事実は1995年の阪神大震災
においても確認されている。
2. Description of the Related Art Accidents of a bridge caused by an impact such as an earthquake
Most of them are due to impact destruction or separation due to collision between superstructures in the bridge structure or connection between superstructures and substructures, and this fact has been confirmed in the 1995 Great Hanshin Earthquake.

【0003】ところで橋梁の落下を防止する方法として
は、下部工の上部や上部工の下部にずれ防止用の突起や
落橋防止壁を形成する方法、上部工と下部工をPC鋼材
やアンカーバー等によって連結する方法、隣接する上部
工同士をPC鋼材などによって相互に連結する方法など
が採用されてきた。
By the way, as a method for preventing the bridge from falling, a method for forming a protrusion for preventing displacement and a bridge-prevention wall on the upper part of the substructure or the lower part of the superstructure, a PC steel material or an anchor bar for the superstructure and the substructure, etc. There have been adopted methods such as a method of connecting with each other and a method of connecting adjacent superstructures with each other by a PC steel material or the like.

【0004】一方、これまでの震災事例で確認されてい
る橋梁の破裂や落橋事故には、橋軸直角方向の変位に伴
う破損や衝撃的な振動が原因と推測される破損が多く見
られ、このため現在実用化されている落橋防止構造とし
ては、橋軸直角方向への移動に追従できる接続構造を有
し、旦つ衝撃的な振動を吸収緩和するための衝撃吸収材
を用いた衝撃吸収構造を組合せたものが大半となってい
る。
On the other hand, in bridge ruptures and bridge accidents that have been confirmed in the past earthquake disasters, many damages due to displacement in the direction perpendicular to the bridge axis and damages presumed to be caused by shock vibration are often seen. For this reason, as a fall bridge prevention structure currently in practical use, it has a connection structure that can follow the movement in the direction perpendicular to the bridge axis, and shocks using shock absorbers to absorb and mitigate shocking vibrations. Most of them are combinations of absorption structures.

【0005】この様な衝撃吸収構造に用いられる吸収材
としては、復元性の良好なゴム成形体が汎用されてき
た。ところが、上部工同士あるいは上部工と下部工の連
接部の如く極く限られた部位に配設する場合に、ゴム成
形体では衝撃吸収材の大きさが制限されるため衝撃吸収
能が不十分となり、強力で旦つ衝撃的な振動に対して
は、満足のいく破壊防止効果や落橋防止効果が得られ難
い。ゴム成形体を厚物とし或は多数重ね合わせて使用す
ることにより衝撃吸収量を増大することも可能ではある
が、それでは衝撃吸収材が大型化するため、限られた部
位に配設することが困難になるばかりでなく、素材コス
トが高騰し、更に重量も重くなる。
As the absorbent used in such an impact absorbing structure, a rubber molded article having good restorability has been widely used. However, when it is installed in a very limited part such as a superstructure or a connecting part of superstructure and substructure, the impact absorbing capacity is insufficient because the size of the impact absorbing material is limited in the rubber molding. Therefore, it is difficult to obtain a satisfactory effect of preventing damage and prevention of falling bridges against strong and shocking vibrations. It is possible to increase the amount of shock absorption by using a thick rubber molded body or by stacking multiple rubber molded bodies, but this will increase the size of the shock absorbing material, so it should be placed in a limited area. Not only will it become difficult, but the material cost will also increase, and the weight will also increase.

【0006】またゴム成形体以外の衝撃吸収材として、
金属ばね、摩擦式衝撃緩衝部材、油圧式衝撃緩衝部材な
ども知られているが、金属ばねは優れた衝撃吸収性能を
有しているものの、発錆の問題が避けられないので施工
後のメンテナンスが面倒であり、また沿岸地区や海洋連
絡橋の如く塩水に曝される場所に配設される橋梁用の衝
撃吸収材としては、耐錆性や耐侯性の観点から適性を欠
く。また摩擦式や油圧式の衝撃緩衝部材は、一般に構造
が複雑で非常に高価で重量も重くなるばかりでなく、適
正なメンテナンスを行なわなければ本来の性能を維持す
ることができないという問題も指摘される。
As a shock absorbing material other than the rubber molding,
Although metal springs, friction shock absorbing members, hydraulic shock absorbing members, etc. are also known, metal springs have excellent shock absorbing performance, but since rusting is unavoidable, maintenance after construction is not possible. However, it is not suitable from the viewpoint of rust resistance and weather resistance as a shock absorber for bridges arranged in places exposed to salt water such as coastal areas and ocean bridges. Further, it has been pointed out that the friction type and hydraulic type shock absorbing members generally have a complicated structure, are very expensive and heavy, and that proper performance cannot be maintained without proper maintenance. It

【0007】一方たとえば特公昭61−12779号公
報には、樹脂成形体を用いた衝撃吸収手段として、熱可
塑性樹脂エラストマーよりなる中空成形体を用い、これ
を軸方向に予め圧縮して永久歪み与えておくことによ
り、衝撃吸収性能を高める技術が開示されている。しか
しながらこの樹脂成形体は、弾性体としての能力は優れ
ているものの、圧縮エネルギーの吸収能力が乏しく、地
震などによる落橋を防止するための橋梁用衝撃吸収部材
としては満足のいく衝撃吸収性能が得られない。
On the other hand, for example, in Japanese Patent Publication No. 61-12779, a hollow molded body made of a thermoplastic resin elastomer is used as a shock absorbing means using a resin molded body, and this is pre-compressed in the axial direction to give a permanent set. A technique for improving the impact absorption performance by disposing the above is disclosed. However, although this resin molded body has an excellent ability as an elastic body, it has a poor ability to absorb compression energy, and as a shock absorbing member for bridges to prevent falling bridges due to earthquakes, etc., it has satisfactory shock absorbing performance. I can't.

【0008】他方、本発明者らは、弾性樹脂よりなる有
孔もしくは無孔の平板上に、アーチ汰、ドーム状あるい
はハニカム状の圧縮変形部材を多層に立設したクッショ
ン性弾性樹脂成形体よりなる衝撃吸収材を開発し、その
実用化を期して研究を進めている。この衝撃吸収材は、
道路側壁や建造物の床面等に幅広く敷きつめ、広範囲に
渡って均一な緩衝性能を発揮させる用途には適している
が、本発明で意図する如く橋梁の上部工同士あるいは上
部工と下部工の連接部の如く、限られた部位に設置しな
ければならない用途には適用し難く、旦つ十分な衝撃吸
収性能を得ることはできない。
On the other hand, the present inventors have proposed a cushioning elastic resin molded body in which arched, dome-shaped or honeycomb-shaped compression deformable members are erected in multiple layers on a perforated or non-perforated flat plate made of elastic resin. We have developed a new shock absorber and are conducting research aiming for its practical application. This shock absorber is
It is suitable for applications where it is widely laid on the side walls of roads, floors of buildings, etc., and exerts uniform cushioning performance over a wide range. It is difficult to apply it to applications where it must be installed in a limited part such as a connecting part, and it is not possible to obtain sufficient shock absorbing performance.

【0009】また橋梁構築物における衝撃吸収材は、下
部工における上部工の支承部近辺に設けることが多いた
め、該支承部の点検、保守、補修等の維持管理の障害と
ならないことが望まれており、従って衝撃吸収材は小型
・軽量で高い衝撃緩衝能、すなわち反力に比較して大き
な圧縮エネルギー吸収量を有するものが要望されるが、
前述した様な従来の衝撃吸収材では、これらの要求を満
たすことはできない。
Further, since the shock absorbing material in the bridge structure is often provided in the vicinity of the bearing portion of the superstructure in the substructure, it is desired that it does not hinder maintenance, such as inspection, maintenance and repair of the bearing portion. Therefore, the shock absorber is required to be small and lightweight and have a high shock absorbing capacity, that is, a large amount of compressive energy absorption as compared with the reaction force.
These requirements cannot be satisfied by the conventional shock absorbing material as described above.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、小型
・軽量で構造も簡単である他、反力に比較して圧縮エネ
ルギー吸収量が大きく、しかも耐錆性、耐水性、耐侯性
等も良好で内陸部はもとより沿岸地域の橋梁や海洋連絡
橋などに適用した場合でもメンテナンスフリーで実用化
することができる橋梁用の衝撃吸収材を開発し、ひいて
は該衝撃吸収材を使用することによって、地震等による
上部工や下部工の衝撃破壊や上部工の脱落事故などを可
及的に防止することのできる橋梁用の衝撃吸収構造を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to be compact and lightweight and have a simple structure, and to compress in comparison with reaction force. It has a large amount of energy absorption, good rust resistance, water resistance, weather resistance, etc., and can be put into practical use without any maintenance when applied not only to inland areas but also to coastal bridges and ocean connecting bridges. By developing a shock absorber, and by using the shock absorber, shocks for bridges that can prevent shock destruction of superstructures and substructures due to earthquakes, etc. and falling accidents of superstructures as much as possible It is intended to provide an absorbent structure.

【0011】[0011]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる衝撃吸収構造は、橋梁を構成す
る上部工間、上部工−下部工の間、落橋防止壁を有する
下部工と上部工の間、これらの上部工間または上部工−
下部工を連結する治具に、特定の衝撃吸収材が配置され
た橋梁の衝撃吸収構造であって、該衝撃吸収材は曲げ弾
性率が200kgf/cm2 以上の材料で成形された成
形体からなり、衝撃負荷方向に壁構造を有しているとこ
ろに特徴がある。そして、衝撃による大きなエネルギー
をより効率よく吸収するには、上記壁構造が衝撃による
圧縮で変形し、座屈変形または永久変形することにより
衝撃を吸収する様な構造であることが好ましい。
The shock absorbing structure according to the present invention, which has been able to solve the above-mentioned problems, includes a superstructure for constructing a bridge, a superstructure-a substructure, and a substructure having a fall prevention wall. Between superstructures, these superstructures or superstructures −
A shock-absorbing structure of a bridge in which a specific shock-absorbing material is arranged in a jig connecting substructures, and the shock-absorbing material is formed from a molded product formed of a material having a bending elastic modulus of 200 kgf / cm 2 or more. It is characterized by having a wall structure in the impact load direction. Further, in order to more efficiently absorb the large energy due to the impact, it is preferable that the wall structure is a structure that absorbs the impact by being deformed by the compression by the impact and buckling or permanently deformed.

【0012】本発明に係る衝撃吸収構造の特徴は上記の
通りであるが、具体的形態は次の2タイプに大別され
る。一つのタイプは、ある程度広い面で衝撃を吸収でき
るような衝撃吸収材[以下、衝撃吸収材(i)という]
を用いた衝撃吸収構造で、これは主に、橋梁を構成する
上部工間、上部工−下部工の間、落橋防止壁を有する下
部工と上部工の間に、該衝撃吸収材(i)を設置した構
造のものである。もう一つのタイプは、上部工間または
上部工−下部工を連結する治具に衝撃吸収材を配置した
構造のもので、これには比較的小さな衝撃吸収材[以
下、衝撃吸収材(ii)という]が用いられる。
The features of the shock absorbing structure according to the present invention are as described above, but the concrete forms are roughly classified into the following two types. One type is a shock-absorbing material [hereinafter, shock-absorbing material (i)] that can absorb shocks over a wide area.
A shock absorbing structure using the shock absorbing material (i), which is mainly formed between the superstructure, the superstructure and the substructure that form the bridge, and the substructure and the superstructure having the bridge prevention wall. It has a structure that is installed. The other type has a structure in which a shock absorbing material is arranged on a jig for connecting superstructures or connecting superstructures and substructures. This has a relatively small shock absorbing material [hereinafter, shock absorbing material (ii) Is used.

【0013】衝撃吸収材(i)は、衝撃負荷方向に多数
の壁構造を有する成形体からなり、この壁構造が衝撃負
荷方向の少なくとも一部で互いに接続され、衝撃負荷方
向に隔離された小部屋構造を持つものが好ましい。地震
等による急激な衝撃にも対応し得る十分な衝撃吸収性能
を確保するには、衝撃吸収材(i)の衝撃負荷方向に圧
縮されたときの圧縮エネルギー吸収量が50tf・ m/
3 以上のものが望ましく、これを実現するには成形体
の素材として、曲げ弾性率が500〜20,000kg
f/cm2 の樹脂を使用するか、或いは曲げ弾性率が
5,000kgf/cm2 以上の金属を用いることが好
ましい。
The shock absorbing material (i) is formed of a molded product having a large number of wall structures in the impact load direction, and the wall structures are connected to each other at least in a part of the impact load direction and are isolated in the impact load direction. A room structure is preferable. In order to secure sufficient shock absorption performance that can cope with a sudden shock such as an earthquake, the amount of compression energy absorbed when the shock absorber (i) is compressed in the shock load direction is 50 tf · m /
m 3 or more is desirable, and in order to realize this, the bending elastic modulus is 500 to 20,000 kg as the material of the molded body.
It is preferable to use a resin of f / cm 2 or a metal having a flexural modulus of 5,000 kgf / cm 2 or more.

【0014】該衝撃吸収材(i)の初期の衝撃吸収性能
を更に高めるには、衝撃吸収材(i)に衝撃負荷がかか
ったときに、衝撃負荷方向の該壁構造の特定部分が最初
に変形する様な構造とすることが好ましく、かかる構造
としては、衝撃負荷方向の壁構造に、欠損部を有する
もの、段差部を有するもの、薄肉部を設けたもの、
などが例示される。
In order to further enhance the initial shock absorbing performance of the shock absorbing material (i), when a shock load is applied to the shock absorbing material (i), first, a specific portion of the wall structure in the shock loading direction is applied. It is preferable to have a structure that can be deformed. Examples of such a structure include a wall structure in the impact load direction that has a defect, a step, and a thin portion.
Are exemplified.

【0015】衝撃エネルギーを効率良く吸収するには、
前記小部屋構造として、衝撃吸収方向に垂直な断面の形
状が6角形以下の多角形からなる小部屋の繰り返し構造
を含むものが好ましく、中でも特に好ましいのは6角形
のハニカム構造である。
To efficiently absorb the impact energy,
It is preferable that the small chamber structure includes a repeating structure of small chambers having a polygonal cross section perpendicular to the impact absorption direction that is a hexagon or less, and a hexagonal honeycomb structure is particularly preferable.

【0016】他方衝撃吸収材(ii)は、成形体のプラ
トー強度が400tf/m2 以上、圧縮エネルギー吸収
量が200tf・m/m3 以上であり、且つ該衝撃吸収
材(ii)の衝撃負荷方向の壁構造が筒状のものであ
る。これらの要件を満足させるには、該衝撃吸収材(i
i)の構成素材として、曲げ弾性率が200〜5,00
0kgf/cm2 の樹脂、または曲げ弾性率が5,00
0kgf/cm2 以上の金属を選択することが望まし
い。
On the other hand, the impact absorbing material (ii) has a plateau strength of the molded body of 400 tf / m 2 or more, a compression energy absorption amount of 200 tf · m / m 3 or more, and an impact load of the impact absorbing material (ii). The directional wall structure is tubular. To meet these requirements, the shock absorber (i
As the constituent material of i), the bending elastic modulus is 200 to 5,000.
Resin of 0 kgf / cm 2 or flexural modulus of 5,000
It is desirable to select a metal of 0 kgf / cm 2 or more.

【0017】またこの衝撃吸収材(ii)はフランジ部
を有していることが好ましく、該衝撃吸収材(ii)に
衝撃負荷がかかったときに、衝撃負荷方向の壁構造の特
定部分が変形する構造を有することも好ましい態様の一
つである。この様な構造としては、衝撃負荷方向の筒状
の壁構造に欠損部や薄肉部を有する構造、あるいは蛇腹
構造などが好ましい例として挙げられる。
The impact absorbing material (ii) preferably has a flange portion, and when an impact load is applied to the impact absorbing material (ii), a specific portion of the wall structure in the impact load direction is deformed. It is also one of the preferable embodiments to have a structure having Preferred examples of such a structure include a structure having a hollow portion or a thin portion in a tubular wall structure in the impact load direction, or a bellows structure.

【0018】この衝撃吸収材(ii)は、上部工間また
は上部工−下部工を連結する治具(たとえば連結ケーブ
ル等)の端部に設置され、該治具を衝撃吸収材(ii)
に通挿して配置することが好ましい。
This shock absorbing material (ii) is installed at the end of a jig (for example, a connecting cable) for connecting the upper work or the upper work and the lower work, and the jig is used as the shock absorbing material (ii).
It is preferable to insert and arrange the same.

【0019】上記の様な衝撃吸収材(i),(ii)
を、橋梁構築体における上部工同士、上部工と下部工の
間、落橋防止壁を有する下部工と上部工の間、上部工間
または上部工−下部工を連結する治具に設置しておけ
ば、それらの接触部にかかる衝撃を効率よく吸収・緩和
することができ、養護部や隣接構造物の衝撃破壊を防止
すると共に、上部工の落下事故すなわち落橋事故を未然
に防止することができ、この様な特定の衝撃吸収材を設
置した橋梁の衝撃吸収構造自体が本発明の保護対象とな
る。
Impact absorbing materials (i), (ii) as described above
Should be installed on the jigs that connect the superstructures in the bridge structure, between the superstructures and substructures, between the substructures with the collapse prevention wall, and between the superstructures, or between the superstructures and substructures. In this way, it is possible to efficiently absorb and mitigate the impact on those contact parts, prevent impact damage to the nursing department and adjacent structures, and prevent falling accidents of superstructures, that is, bridge accidents. The impact-absorbing structure itself of a bridge provided with such a specific impact-absorbing material is a protection target of the present invention.

【0020】[0020]

【発明の実施の形態】本発明にかかる橋梁の衝撃吸収構
造は、上記の様に上部工同士、上部工と下部工の間、落
下防止壁が設けられた下部工と上部工の間、上部工間ま
たは上部工−下部工を連結する治具に衝撃吸収材が設置
され、地震等によってそれらの接触部に衝撃力が加わっ
たときに、該衝撃を吸収・緩和してそれらの破壊や下部
工からの上部工の脱落といった橋梁破壊事故を防止する
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the impact absorbing structure for a bridge according to the present invention includes a superstructure, a space between a superstructure and a substructure, a space between a substructure and a superstructure provided with a fall prevention wall, and an upper structure. When a shock absorber is installed on a jig connecting labor or superstructure-substructure, and when an impact force is applied to their contact parts due to an earthquake or the like, the impact is absorbed and alleviated to destroy or destroy them. The purpose of this is to prevent accidents involving the destruction of bridges, such as the loss of superstructure from work.

【0021】該衝撃吸収材は、曲げ弾性率が200kg
f/cm2 以上、好ましくは500gkf/cm2 以上
の材料で成形された成形体からなり、該衝撃吸収材は衝
撃負荷方向に壁構造を有している。該衝撃吸収材を構成
する材料の曲げ弾性率が200kgf/cm2 未満で
は、剛性不足により衝撃力を受けたときに衝撃吸収材が
すぐに弾性変形を起こし、つまり衝撃エネルギー吸収量
の不足によって衝撃力を十分に吸収することができず、
満足のいく衝撃緩衝作用を得ることができない。これを
補うには、衝撃吸収材の衝撃負荷方向の壁構造を厚くす
る必要があり、その結果、衝撃吸収材を大きくしなけれ
ばならず、橋梁用の衝撃吸収構造が大きくなって本発明
の趣旨から外れる。ここで言う衝撃負荷方向の壁構造と
は、衝撃負荷方向に対しほぼ平行な壁を有する構造であ
る。
The impact absorbing material has a bending elastic modulus of 200 kg.
The impact absorbing material is formed of a material of f / cm 2 or more, preferably 500 gkf / cm 2 or more, and the impact absorbing material has a wall structure in the impact load direction. If the bending elastic modulus of the material forming the impact absorbing material is less than 200 kgf / cm 2 , the impact absorbing material immediately undergoes elastic deformation when receiving an impact force due to insufficient rigidity, that is, impact due to insufficient impact energy absorption amount. I can't absorb enough force,
It is not possible to obtain a satisfactory shock absorbing effect. In order to compensate for this, it is necessary to thicken the wall structure of the impact absorbing material in the impact load direction, and as a result, the impact absorbing material must be made large, and the impact absorbing structure for bridges becomes large, and Out of the spirit. The wall structure in the impact load direction mentioned here is a structure having a wall substantially parallel to the impact load direction.

【0022】この壁構造は、衝撃により圧縮変形し座屈
変形することによって衝撃を吸収することが重要であ
り、弾性変形だけで衝撃力を吸収する構造では、地震の
様に急激で極めて大きな衝撃が短時間の間に数回から数
十回加わった場合に、十分なエネルギー吸収性能が発揮
されなかったり、あるいは共振を起こして橋梁の上部工
の振動を増大させ、橋梁構造の破壊を却って増進するこ
とすら生じてくる。
It is important for this wall structure to absorb the shock by compressing and buckling due to the shock, and in a structure that absorbs the shock force only by elastic deformation, it is a sudden and extremely large shock like an earthquake. If it is applied several times to several tens of times in a short time, sufficient energy absorption performance may not be exhibited, or resonance may occur to increase vibration of bridge superstructure and promote destruction rather than destruction of bridge structure. It will even happen.

【0023】こうした機能を発揮する本発明にかかる衝
撃吸収構造には、大別して2つのタイプがあり、一つ
は、ある程度広い面で衝撃を吸収できる様な衝撃吸収材
(i)を用いた衝撃吸収構造(I)である。これは主と
して橋梁を構成する上部工間、上部工−下部工の間、落
橋防止壁を有する下部工と上部工の間に、上記衝撃吸収
材(i)を設置した構造である。もう一つのタイプは、
上部工間または上部工−下部工を連結する治具(たとえ
ば連結ケーブルなど)に衝撃吸収材(ii)を配置した
タイプの衝撃吸収構造(II)であり、これには比較的小
さな衝撃吸収材(i)が用いられる。これら2つのタイ
プの衝撃吸収材について更に詳しく説明する。
There are roughly two types of shock absorbing structures according to the present invention which exert such a function. One is a shock using a shock absorbing material (i) capable of absorbing a shock on a wide surface to some extent. It is an absorption structure (I). This is a structure in which the impact absorbing material (i) is installed mainly between the superstructure, the superstructure and the substructure that form the bridge, and between the substructure and the superstructure having the fall prevention wall. Another type is
This is a type of shock absorbing structure (II) in which a shock absorbing material (ii) is arranged on a jig (for example, a connecting cable) that connects superstructures or superstructures to substructures. (I) is used. These two types of shock absorbers will be described in more detail.

【0024】衝撃吸収材(i)は、衝撃負荷方向に多数
の壁構造を有している。この壁構造は衝撃負荷方向の面
の少なくとも一部でお互いに接続され、衝撃負荷方向に
隔離された小部屋構造を持つことが好ましい。この様な
小部屋構造を設けることによって、負荷がかかったとき
に、該小部屋構造の隔壁面である衝撃負荷方向の壁構造
が蛇腹状に座屈変形を起こし、衝撃を効率良く吸収する
ことができる。該衝撃吸収材(i)は、小部屋構造の衝
撃吸収方向に垂直な断面の形状が6角形以下の多角形の
小部屋の繰り返し構造を含むことが好ましく、中でも特
に好ましいのは6角形のハニカム構造である。
The impact absorbing material (i) has a large number of wall structures in the impact load direction. This wall structure preferably has a compartment structure which is connected to each other on at least a part of the surface in the impact load direction and is isolated in the impact load direction. By providing such a small room structure, when a load is applied, the wall structure in the shock load direction, which is the partition surface of the small room structure, causes buckling deformation in a bellows shape, and absorbs the shock efficiently. You can It is preferable that the shock absorbing material (i) includes a repeating structure of polygonal small chambers having a hexagonal cross-sectional shape perpendicular to the shock absorbing direction of the small chamber structure, and among them, a hexagonal honeycomb is particularly preferable. It is a structure.

【0025】この小部屋構造は、衝撃負荷方向の両端が
開いた貫通孔状であってもよいし、片側が閉鎖された凹
状(穴状)でも、両端が閉鎖された空洞状でも構わな
い。
This small room structure may be a through-hole shape with both ends open in the impact load direction, a concave shape (hole shape) with one side closed, or a hollow shape with both ends closed.

【0026】更に衝撃吸収材(i)の初期の衝撃吸収能
を一層高めるには、衝撃吸収材に衝撃負荷が発生したと
きに、該衝撃吸収材の衝撃負荷方向の壁構造の特定部分
が最初に変形する様な構造とすることが好ましい。その
様な構造の例としては、衝撃負荷方向の壁構造に欠損
部を有し、段差部を有し、或いは薄肉部を有する構
造などが挙げられる。この様に壁構造の特定部分が変形
する様な構造とすることにより、衝撃吸収材(i)に衝
撃負荷が発生したときに、先ず該特定部分がすみやかに
変形して初期の衝撃吸収能が高められると共に、衝撃を
受けたときに生じる反力を一層低減することが可能とな
る。
Further, in order to further enhance the initial shock absorbing ability of the shock absorbing material (i), when a shock load is generated in the shock absorbing material, a specific portion of the wall structure of the shock absorbing material in the shock loading direction is first set. It is preferable to have a structure that can be deformed. Examples of such a structure include a structure having a cut portion, a step portion, or a thin portion in the wall structure in the impact load direction. With such a structure in which a specific portion of the wall structure is deformed, when an impact load is generated on the impact absorbing material (i), first, the specific portion is immediately deformed so that the initial impact absorption capacity is improved. It is possible to increase the height and further reduce the reaction force generated when a shock is applied.

【0027】該衝撃吸収材(i)を構成する好ましい素
材の一つとしては、曲げ弾性率が500〜20,000
kgf/cm2 の弾性樹脂が挙げられ、十分な衝撃吸収
量と衝撃緩衝作用を確保するうえでより好ましい弾性樹
脂の曲げ弾性率の下限値は500kgf/cm2 、更に
好ましくは800kgf/cm2 以上、より好ましい上
限値は10,000kgf/cm2 、更に好ましくは
4,000kgf/cm 2 以下である。
Preferred constituents of the shock absorber (i)
As one of the materials, the bending elastic modulus is 500 to 20,000.
kgf / cm2 Sufficient shock absorption
A more preferable elastic tree to secure the amount and shock absorbing effect
The lower limit of the flexural modulus of fat is 500 kgf / cm2 And more
Preferably 800 kgf / cm2 Above, more preferable
The limit is 10,000 kgf / cm2 , And more preferably
4,000 kgf / cm 2 It is the following.

【0028】該弾性樹脂としては、上記曲げ弾性率を満
足し得る限り天然もしくは合成のすべての樹脂を使用で
きるが、好ましい具体例としては、熱可塑性のポリエス
テル系エラストマー、ポリオレフィン系エラストマー、
ポリウレタン系エラストマー、ポリアミド系エラストマ
ー、或いはそれらのブレンド物、更には注型ポリウレタ
ン樹脂などの熱硬化性樹脂などが挙げられ、中でも特に
好ましいのは、耐侯性や耐水性に優れた熱可塑性のポリ
エステル系エラストマーやポリオレフィン系エラストマ
ーである。
As the elastic resin, any natural or synthetic resin can be used as long as it satisfies the above-mentioned flexural modulus, but preferred specific examples are thermoplastic polyester elastomers, polyolefin elastomers,
Examples thereof include polyurethane elastomers, polyamide elastomers, or blends thereof, and thermosetting resins such as cast polyurethane resins. Among them, particularly preferable are polyester polyesters having excellent weather resistance and water resistance. It is an elastomer or a polyolefin-based elastomer.

【0029】また衝撃吸収材(i)の他の素材として、
曲げ弾性率が5,000kgf/cm2 以上である様々
の素材を使用することができるが、防錆性や耐水性など
に優れたものを使用することが望ましい。その具体例と
しては、熱可塑性樹脂や熱硬化性樹脂、あるいはカーボ
ンブラック、タルク、ガラスビーズなどの充填材や金属
繊維、ガラス繊維、カーボン繊維などの繊維状強化材、
ウイスカーなどで強化された熱可塑性樹脂や熱硬化性樹
脂、金属等を用いることもできる。金属としては、鉄、
アルミニウム、ニッケル、銅、チタン、亜鉛、錫、鉛、
ジュラルミンなどのアルミニウム合金、真鍮、ステンレ
ス鋼などが挙げられるが、中でも特に好ましいのは、耐
候性や耐水性に優れたアルミニウム、銅、真鍮、ジュラ
ルミン、ステンレス鋼等である。
As another material of the shock absorbing material (i),
Various materials having a flexural modulus of 5,000 kgf / cm 2 or more can be used, but it is desirable to use a material having excellent rust resistance and water resistance. Specific examples thereof include thermoplastic resins and thermosetting resins, or fillers such as carbon black, talc and glass beads, and metal fibers, glass fibers, fibrous reinforcing materials such as carbon fibers,
It is also possible to use a thermoplastic resin reinforced with whiskers, a thermosetting resin, a metal or the like. As the metal, iron,
Aluminum, nickel, copper, titanium, zinc, tin, lead,
Examples thereof include aluminum alloys such as duralumin, brass, stainless steel, and the like. Among them, particularly preferable are aluminum, copper, brass, duralumin, stainless steel, etc., which have excellent weather resistance and water resistance.

【0030】なお、これらの樹脂や金属等で衝撃吸収体
を成形した場合、座屈変形が進行して逃げ空間となる小
部屋が小さくなったときの反力の立ち上がりが急激にな
り過ぎることがあるので、小部屋内を発泡樹脂やゴムな
ど他の衝撃吸収素材で充填することも有効となる。また
このように小部屋内を衝撃吸収材で充填しておけば、該
小部屋内へのごみなどの侵入も阻止されるので好まし
い。次に衝撃吸収材(i)の具体例を示し、その衝撃吸
収機構を詳しく説明する。
When a shock absorber is formed of these resins or metals, the reaction force rises too rapidly when the buckling deformation progresses and the small room serving as the escape space becomes smaller. Therefore, it is also effective to fill the small room with another shock absorbing material such as foamed resin or rubber. In addition, it is preferable to fill the inside of the small chamber with the impact absorbing material in this manner, because the invasion of dust and the like into the small chamber is prevented. Next, a concrete example of the shock absorbing material (i) will be shown, and the shock absorbing mechanism will be described in detail.

【0031】図1は本発明で使用する衝撃吸収材の代表
例を示す見取り図であり、前記曲げ弾性性率の要件を満
たす弾性樹脂を用いて一体成形されたハニカム状の衝撃
吸収材を示している。この衝撃吸収材1は、衝撃負荷方
向(図画の上下方向)に六角形の貫通孔2,2,……が
同一間隔で多数形成されており、これらの貫通孔2,
2,……を仕切る隔壁3の弾性変形と各貫通孔方向への
座屈変形によって衝撃力の吸収が行なわれる。
FIG. 1 is a sketch showing a typical example of the shock absorbing material used in the present invention, showing a honeycomb-shaped shock absorbing material integrally molded using an elastic resin satisfying the requirement of the bending elastic modulus. There is. The impact absorbing material 1 has a large number of hexagonal through-holes 2, 2, ... Formed at the same intervals in the impact load direction (vertical direction of the drawing).
The impact force is absorbed by the elastic deformation of the partition wall 3 for partitioning 2, ... And the buckling deformation in the direction of each through hole.

【0032】すなわち本発明の衝撃吸収材は、弾性樹脂
によって構成される上記隔壁3自体の弾性と、上記貫通
孔2,2,……を逃げ空間とする弾性変形によって衝撃
を吸収する。また、図示する如く、衝撃負荷方向に貫通
した多数の貫通孔2,2,……によって、平面視でハニ
カム状あるいは格子状等の多角形を形成しつつ連続する
隔壁3を形成したものでは、全体として適度の剛性も与
えられる。その結果、衝撃吸収材全体としては上記弾性
変形による衝撃吸収作用と適度の剛性を兼ね備えたもの
となり、地震等によって受ける強力な振動等による衝撃
を効率よく吸収・緩和し得るものとなる。また図示する
如く、弾性樹脂成形体に形成された貫通孔2,2,……
を仕切る隔壁3の貫通方向端部に段差Dを複数箇所に形
成しておけば、衝撃を受けたときに該段差部Dよりも突
出した部分に応用が集中して座屈変形を起こすため、初
期の急激な衝撃を該座屈によってより効率良く吸収する
ことが可能となる。従って、想定される衝撃力の程度に
応じて該段差部Dの高さHや数を適正に設定すれば、初
期の衝撃吸収能が高められると共に衝撃を受けたときに
生じる反力を一層低減することが可能となる。
That is, the shock absorbing material of the present invention absorbs the shock by the elasticity of the partition wall 3 itself made of an elastic resin and the elastic deformation of the through holes 2, 2, ... Further, as shown in the figure, in the case where a continuous partition wall 3 is formed by forming a polygonal shape such as a honeycomb shape or a lattice shape in a plan view with a large number of through holes 2, 2, ... Penetrating in the impact load direction, A moderate rigidity is also given as a whole. As a result, the shock absorbing material as a whole has both a shock absorbing function due to the elastic deformation and an appropriate rigidity, and it is possible to efficiently absorb and mitigate the shock due to strong vibration or the like which is received by an earthquake or the like. Further, as shown in the drawing, through holes 2, 2, ...
If the step D is formed at a plurality of positions at the end of the partition wall 3 in the penetrating direction, the application concentrates on the part protruding from the step D when an impact is applied, causing buckling deformation. It becomes possible to more efficiently absorb the initial sudden shock by the buckling. Therefore, if the height H and the number of the stepped portions D are appropriately set according to the level of the assumed impact force, the initial shock absorbing capacity is enhanced and the reaction force generated when a shock is applied is further reduced. It becomes possible to do.

【0033】上記の様に、衝撃吸収材の特定部位に段差
部を設け、この部位を最初に座屈変形させて初期の急激
な衝撃を効果的に吸収する他の手段としては、衝撃吸収
材の特定部位を薄肉にしたり欠損部を設け、これらの部
位に応力が集中するようにすることも可能である。
As described above, as another means for providing a step portion at a specific portion of the shock absorbing material and causing this portion to be buckled and deformed first to effectively absorb the initial sudden shock, the shock absorbing material is used. It is also possible to reduce the thickness of specific portions of the above or to provide a defective portion so that stress concentrates on these portions.

【0034】この衝撃吸収材として満足のいく衝撃吸収
性能を与えるには、例えば図1に示した様な成形体を貫
通孔形成方向(図の上下方向)に圧縮したときの荷重
(反力)−圧縮率曲線から求められる圧縮エネルギー吸
収量を50tf・m/m3 以上、より好ましくは100
tf・m/m3 以上とするのがよい。
In order to give a satisfactory impact absorbing performance as this impact absorbing material, for example, the load (reaction force) when the molded body as shown in FIG. 1 is compressed in the through hole forming direction (vertical direction in the figure). A compression energy absorption amount obtained from a compression rate curve of 50 tf · m / m 3 or more, more preferably 100
It is preferable that tf · m / m 3 or more.

【0035】ここで荷重(反力)−圧縮率曲線とは、衝
撃吸収材を圧縮したときの荷重(反力)と圧縮率の相関
性を示す曲線であり、例えば図8にその一例を示す如
く、圧縮の初期においては圧縮率に比例して荷重(反
力)−圧縮率曲線が急激立ち上がり、その後の傾斜は徐
々に緩慢となり、圧縮率の増大にも拘わらず荷重(反
力)はほぼ一定となって局部的に反力が極大値を示すプ
ラトー点に達する。そして更に圧縮力が加わっても、前
記貫通孔2,2,……を逃げ空間として隔壁3の座屈変
形が起こり、該隔壁3の座屈変形が進行する間はほぼ一
定レベルの反力を維持した後、逃げ空間となる貫通孔
2,2,……が小さくなると該曲線は急激に立ち上が
る。
Here, the load (reaction force) -compression rate curve is a curve showing the correlation between the load (reaction force) and the compression rate when the impact absorbing material is compressed, and an example thereof is shown in FIG. Thus, in the initial stage of compression, the load (reaction force) -compression ratio curve rises sharply in proportion to the compression ratio, and thereafter the slope gradually becomes slower, and the load (reaction force) is almost constant despite the increase in compression ratio. It becomes constant and the reaction force locally reaches the plateau point at which the maximum value is reached. Further, even if a compressive force is applied, the partition wall 3 undergoes buckling deformation using the through holes 2, 2, ... As escape spaces, and a reaction force of a substantially constant level is generated while the buckling deformation of the partition wall 3 progresses. After the maintenance, when the through holes 2, 2, ... Which become the escape space become small, the curve rises sharply.

【0036】プラトー強度とは、上記図8に示した曲線
における最初の立ち上がり後の平担部における最大反力
値を衝撃吸収材の受圧面積で割った値であり、また本発
明で規定する圧縮エネルギー吸収量とは、圧縮率80%
までの前記曲線で囲まれる面積(図8の斜線領域)で示
される吸収エネルギーを衝撃吸収材の体積で割った値を
意味する。該プラトー強度と最大応力値とは必ずしも一
致しないが、当該衝撃吸収材が衝撃力を受けたときに衝
突物が受ける最大応力に近い値であり、最大応力値の目
安とされる。
The plateau strength is a value obtained by dividing the maximum reaction force value in the flat portion after the first rising in the curve shown in FIG. 8 by the pressure receiving area of the shock absorbing material, and the compression specified in the present invention. Energy absorption is a compression rate of 80%
Means a value obtained by dividing the absorbed energy shown by the area surrounded by the curve (hatched area in FIG. 8) by the volume of the shock absorbing material. Although the plateau strength and the maximum stress value do not always match, the plateau strength is a value close to the maximum stress that the impacting object receives when the impact absorbing material receives an impact force, and is used as a guideline for the maximum stress value.

【0037】衝撃吸収材(i)のプラトー強度は50t
f/m2 以上、5,000tf/m 2 以下であることが
好ましく、更に好ましくは100tf/m2 以上、2,
000tf/m2 以下である。
The plateau strength of the shock absorber (i) is 50 t.
f / m2 Above, 5,000 tf / m 2 To be
Preferably 100 tf / m2 Above, 2,
000tf / m2 It is the following.

【0038】このプラトー強度が不足する場合は、衝撃
エネルギー吸収材としての機能が十分に発揮されず、逆
にプラトー強度が大き過ぎると、衝撃時に生じる反力が
大きくなって上部工や下部工、或は隣接構造物が破壊し
たり落橋を起こす恐れがでてくる。従って衝撃エネルギ
ーを効率よく吸収して衝撃緩和を図るには、該反力−圧
縮率曲線における最初の立ち上がりをできるだけ急激に
すると共に、プラトー点を過ぎた後の反力の低下を極力
少なくし、隣接物や周辺構造物が破壊する力以下で且つ
高圧縮率まで反力をほぼ一定のレベルに維詩することが
有効となる。すなわち図8における斜線部分が台形状で
その面積が広いほど、衝撃エネルギー吸収量は大きくな
る。
When the plateau strength is insufficient, the function as an impact energy absorbing material is not sufficiently exerted. On the contrary, when the plateau strength is too large, the reaction force generated at the time of impact becomes large, and the superstructure or the substructure, Or, there is a risk that adjacent structures will be destroyed or a bridge will be collapsed. Therefore, in order to absorb the impact energy efficiently and to alleviate the impact, the first rise in the reaction force-compressibility curve is made as rapid as possible, and the decrease in the reaction force after passing the plateau point is minimized, It is effective to maintain the reaction force at a substantially constant level up to a high compression rate, which is less than the force at which adjacent objects and surrounding structures are destroyed. That is, as the hatched portion in FIG. 8 has a trapezoidal shape and the area thereof is wider, the amount of impact energy absorption increases.

【0039】こうした観点から、本発明の衝撃吸収材
(i)に求められる物性を種々検討した結果、衝撃力を
十分に吸収して上部工や下部工の破壊を有効に防止する
には、前述の如く圧縮エネルギー吸収量を50tf・m
/m3 以上、より好ましくは100tf・m/m3 以上
とすべきであることが確認された。ちなみに、従来から
知られたゴム成形体の様な衝撃吸収材では、例えば図9
の応力−圧縮率曲線に示す如く最初の立ち上がりが緩慢
であるため、満足のいく衝突エネルギー吸収量を確保す
るには材料の使用量を多くしなければならず、衝撃吸収
部材(i)としてのサイズが大きくなるばかりでなく大
型で重くならざるを得ない。
From this point of view, as a result of various studies on physical properties required for the shock absorbing material (i) of the present invention, in order to sufficiently absorb the impact force and effectively prevent the destruction of the upper work and the lower work, The compression energy absorption is 50tf ・ m
/ M 3 or more, it was confirmed that it is more preferably to be between 100 tf · m / m 3 or more. By the way, in a conventionally known impact absorbing material such as a rubber molding, for example, as shown in FIG.
As shown in the stress-compressibility curve of 1., the initial rise is slow, so the amount of material used must be increased in order to secure a satisfactory amount of collision energy absorption. Not only is the size larger, but it is also larger and heavier.

【0040】ところが上記構造の衝撃吸収材(i)で
は、例えば図10に示す如く最初の立ち上がりが急激で
あると共に、適度のプラトー強度を示し、その後の圧縮
力の増大にも拘らずしばらくは約一定の反力レベルを維
持した後、最後に急激な立ち上がりを見せ、その結果、
素材そのものの曲げ弾性率とも相まって50tf・m/
3 以上という非常に高い圧縮エネルギー吸収量を有す
るものとなる。
However, in the shock absorber (i) having the above-described structure, for example, as shown in FIG. 10, the initial rise is rapid and the plateau strength is moderate, and the compressive force thereafter increases for about a while. After maintaining a constant reaction force level, at the end a sharp rise was shown, resulting in
Combined with the flexural modulus of the material itself, 50 tf · m /
It has a very high compression energy absorption amount of m 3 or more.

【0041】該衝撃吸収材を構成する好ましい樹脂は先
に示した通りであるが、それらの樹脂には必要に応じて
酸化防止剤、紫外線吸収剤、熱安定剤などの各種安定
剤、染料、顔料、カーボンブラック、タルク、ガラスビ
ーズ等の充填材、金属繊維やガラス繊維、炭素繊維等の
繊維強化材、帯電防止剤、可塑剤、難燃剤、発泡剤、離
型剤等の添加剤を適量配合して改質することも勿論可能
である。
The preferred resins constituting the impact absorbing material are as shown above, but if necessary, various stabilizers such as antioxidants, ultraviolet absorbers, heat stabilizers, dyes, etc. may be added to these resins. Filler such as pigment, carbon black, talc, glass beads, fiber reinforcing material such as metal fiber, glass fiber, carbon fiber, antistatic agent, plasticizer, flame retardant, foaming agent, release agent, etc. Of course, it is possible to mix and modify.

【0042】その形状も図1に示した様な構造に限定さ
れる訳ではなく、例えば図2(A)、(B)に示す如く
矩形や菱形等の貫通孔を多数形成した格子状物、更には
円形や楕円形、あるいは異形の貫通孔を多数形成した成
形体であっても勿論構わない。そのサイズも、適用され
る衝撃吸収部位の隙間・サイズや想定される衝撃力の程
度などを考慮して任意に決めればよい。該吸収材の成形
法にも一切制限がなく、射出成形法、押し出し成形法、
プレス成形法など任意の方法を採用できる。
The shape thereof is not limited to the structure shown in FIG. 1, and for example, as shown in FIGS. 2 (A) and 2 (B), a grid-like object having a large number of rectangular or rhombic through holes formed therein, Further, of course, it may be a molded body having a large number of circular or elliptical or irregular through holes. The size may also be arbitrarily determined in consideration of the gap / size of the applied shock absorbing part and the expected degree of impact force. There is no limitation on the method of molding the absorbent material, and the injection molding method, the extrusion molding method,
Any method such as a press molding method can be adopted.

【0043】図3は、上記衝撃吸収材(i)を利用した
本発明の衝撃吸収構造(I)を例示する要部断面説明図
であり、図3(A)は、下部工5の頂部に衝撃吸収材1
を直接挟んで上部工4,4を突き合わせて配置した例、
図3(B)は、下部工5の頂部を突出させて該突部5a
の両側に衝撃吸収材1を介して上部工4,4を突き合わ
せて配置した例、図3(C)は、頂部をL字状に突出さ
せた下部工5のL字突部5bの側壁に衝撃吸収材1を介
して上部工4を配置した例、図3(D)は、上部工4に
ブラケット8を設けると共に、落橋防止壁7を設けた下
部工5を用い、該落橋防止壁7に衝撃吸収材1を配置し
た例、図3(E)は、下部工5に落橋防止壁7を設け、
該落橋防止壁7に衝撃吸収材1を配置した例、図3
(F)は、下部工5に落橋防止壁7を配置し、上部工4
に衝撃吸収材1を配置した例、図3(G)は、両側に落
橋防止壁を立設した下部工5の内側壁および落橋防止壁
7bに衝撃吸収材1,1を配置し、この問に上部工4を
配置して横方向の衝撃吸収を図った例、を夫々示してい
る。これらの図において符号6は、いずれも支承部材を
表わしている。
FIG. 3 is an explanatory cross-sectional view of a main part illustrating a shock absorbing structure (I) of the present invention using the shock absorbing material (i), and FIG. 3 (A) is a top part of the substructure 5. Shock absorber 1
An example in which the superstructures 4 and 4 are placed so that they are directly sandwiched,
In FIG. 3B, the top of the substructure 5 is projected so that the projection 5a
3 (C) is an example in which the upper works 4 and 4 are abutted on both sides of the lower body 5 with the impact absorbing material 1 interposed therebetween, and FIG. 3 (C) shows the side wall of the L-shaped projection 5b of the lower work 5 having the L-shaped top. An example in which the superstructure 4 is arranged via the shock absorber 1, FIG. 3 (D) shows that the bracket 8 is provided on the superstructure 4 and the substructure 5 provided with the collapse prevention wall 7 is used. An example of arranging the shock absorbing material 1 in FIG. 3 (E) is shown in FIG.
An example in which the shock absorbing material 1 is arranged on the bridge prevention wall 7, FIG.
In (F), the bridge prevention wall 7 is placed on the substructure 5, and the superstructure 4
3 (G) shows an example in which the shock absorbers 1 and 1 are arranged on the inner wall of the substructure 5 having the bridge prevention walls standing upright on both sides and the bridge prevention wall 7b. 3 shows an example in which the superstructure 4 is arranged to absorb the impact in the lateral direction. In these drawings, reference numeral 6 represents a bearing member.

【0044】この様に本発明の衝撃吸収構造(I)は、
前述した物性と形状を有する衝撃吸収材(i)を、橋梁
を構成する上部工同士、上部工と下部工の間、もしく
は、落橋防止壁を有する下部工と上部工の間に配置する
ことによって、橋梁構築物が地震などで衝撃を受けたと
きの衝撃を吸収・緩和し、上部工や下部工あるいは隣接
構造物の衝撃破壊を抑え、あるいは上部工の脱落による
落橋事故などを未然に防止する。なお図3に示した下部
工と上部工の連接構造や衝撃吸収材1の取付け位置など
は代表例を示しただけであり、本発明はもとよりこれら
の例には一切限定されない。また衝撃吸収材1の取付け
法にも一切制限がなく、予め埋め込まれたナットにボル
ト止めする方法、適当な取付け治具を用いて固定する方
法などを適宜採用すればよい。
As described above, the shock absorbing structure (I) of the present invention is
By arranging the impact absorbing material (i) having the above-mentioned physical properties and shape, between the superstructures forming the bridge, between the superstructures and the substructures, or between the substructures and the superstructures having the bridge prevention wall. , It absorbs and alleviates the impact when a bridge structure receives an impact such as an earthquake, suppresses the impact damage of superstructures and substructures or adjacent structures, or prevents bridge accidents due to falling of superstructures. The connecting structure of the lower work and the upper work and the mounting position of the shock absorbing material 1 shown in FIG. 3 are only representative examples, and the present invention is not limited to these examples. Further, there is no limitation on the mounting method of the shock absorbing material 1, and a method of bolting to a nut embedded in advance, a method of fixing with a suitable mounting jig, etc. may be appropriately adopted.

【0045】次にもう一つの衝撃吸収体(ii)と、そ
れを用いた衝撃吸収構造(II)について詳しく説明す
る。
Next, another shock absorber (ii) and a shock absorbing structure (II) using the same will be described in detail.

【0046】このタイプの衝撃吸収構造は、上部工間ま
たは上部工−下部工を連結する治具に衝撃吸収材(i
i)が設置された構造を有している。該治具としては、
ケーブル、鉄筋状の金属棒、金属板等があり、該治具端
部の上部工または下部工との接続箇所に衝撃吸収材(i
i)が設けられる。
This type of shock absorbing structure includes a shock absorbing material (i.e., a jig for connecting upper work or upper work-lower work).
i) is installed. As the jig,
There are cables, rebar-shaped metal rods, metal plates, etc., and a shock absorbing material (i.
i) is provided.

【0047】この衝撃吸収材(ii)は、プラトー強度
が400tf/m2 以上、圧縮エネルギー吸収量が20
0tf・m/m3 以上で、且つ衝撃負荷方向の壁構造が
筒状を呈している。
This impact absorbing material (ii) has a plateau strength of 400 tf / m 2 or more and a compression energy absorption amount of 20.
The wall structure of 0 tf · m / m 3 or more and in the impact load direction has a tubular shape.

【0048】該衝撃吸収材(ii)のプラトー強度は2
0,000tf/m2 以下が好ましく、更に好ましくは
1,000〜10,000tf/m2 の範囲である。
The plateau strength of the shock absorber (ii) is 2
Preferably 0,000tf / m 2 or less, more preferably in the range of 1,000~10,000tf / m 2.

【0049】該プラトー強度が不足する場合は、衝撃エ
ネルギー吸収材としての機能が十分に発揮されず、逆に
プラトー強度が大き過ぎると、衝撃時に生じる反力が大
きくなって上部工や下部工あるいは隣接構造物が破壊し
たり落橋を起こす恐れがでてくる。
When the plateau strength is insufficient, the function as an impact energy absorbing material is not sufficiently exerted. On the contrary, when the plateau strength is too large, the reaction force generated at the time of impact becomes large and the superstructure or the substructure or There is a risk that adjacent structures will be destroyed or a bridge will be dropped.

【0050】上記物性を確保するには、該成形体の構成
素材として、曲げ弾性率が200kgf/cm2 以上、
より好ましくは400kgf/cm2 以上、更に好まし
くは700kgf/cm2 以上で、5,000kgf/
cm2 以下、より好ましくは4,000kgf/cm2
以下の樹脂、または曲げ弾性率が5,000kgf/c
2 以上の金属等を選択することが望ましい。これらの
樹脂や金属等の好ましい例は、先に衝撃吸収材(i)で
例示したのと同様である。
In order to secure the above-mentioned physical properties, a bending elastic modulus of 200 kgf / cm 2 or more is used as a constituent material of the molded body,
More preferably 400 kgf / cm 2 or more, more preferably at 700 kgf / cm 2 or more, 5,000 kgf /
cm 2 or less, more preferably 4,000 kgf / cm 2
The following resins, or flexural modulus of 5,000kgf / c
It is desirable to select a metal or the like having a size of m 2 or more. Preferable examples of these resins and metals are the same as those exemplified for the impact absorbing material (i) above.

【0051】この衝撃吸収材(ii)は、フランジ部を
有しているのが好ましく、フランジ部を設けることで衝
撃吸収材(ii)に衝撃負荷が加わったときに、衝撃吸
収材全体で負荷を均等に受けることができ、筒状の衝撃
吸収材(ii)が適正な位置で変形し、安定して効率よ
く衝撃を吸収することができる。
The impact absorbing material (ii) preferably has a flange portion, and when the impact absorbing material (ii) is subjected to an impact load by providing the flange portion, the entire impact absorbing material is loaded. Can be evenly received, the cylindrical shock absorber (ii) can be deformed at an appropriate position, and the shock can be stably and efficiently absorbed.

【0052】更に該衝撃吸収材(ii)においても、衝
撃負荷が発生したときに、衝撃負荷方向の壁構造の特定
部分が最初に変形する構造とすることが好ましい。その
様な構造としては、衝撃負荷方向の筒状の壁構造に欠損
部や薄肉部を設けた構造、あるいは蛇腹構造などが例示
される。
Further, it is preferable that the impact absorbing material (ii) also has a structure in which a specific portion of the wall structure in the impact load direction is first deformed when an impact load occurs. Examples of such a structure include a structure in which a defective portion or a thin portion is provided in a tubular wall structure in the impact load direction, or a bellows structure.

【0053】また、衝撃吸収材(ii)による衝撃吸収
効果を常に安定して発揮させるには、筒状の壁構造の変
形過程で、中空部、特にその末端部が内側に不規則に倒
れこむのを防ぐことが望ましく、そのためには、例えば
前記中空筒状部の末端にフランジを付ける方法、中空筒
状部の末端を塞ぐ方法、中空筒状部の末端の肉厚を厚く
する方法、中空筒状部の末端に弾性率が変形可能部より
大きな素材からなる補強具(例えば金属や樹脂のリン
グ)を取り付ける方法、中空筒状部端部の筒の内側形状
に合致する様な凸部を有する板や中空筒状部の末端の形
状に合致する凹部を設けた板を取り付ける方法、などが
挙げられる。
Further, in order to constantly exert the shock absorbing effect of the shock absorbing material (ii), the hollow portion, particularly the end portion thereof, falls irregularly inward during the deformation process of the tubular wall structure. It is desirable to prevent, for that purpose, for example, a method of attaching a flange to the end of the hollow tubular portion, a method of closing the end of the hollow tubular portion, a method of increasing the wall thickness of the end of the hollow tubular portion, a hollow A method of attaching a reinforcing tool (for example, a ring of metal or resin) made of a material having a larger elastic modulus than the deformable part to the end of the tubular part, and a convex part that matches the inner shape of the tube at the end of the hollow tubular part Examples of the method include a method of attaching a plate or a plate provided with a recess that matches the shape of the end of the hollow cylindrical portion.

【0054】また、中空部の内面側に、当該衝撃吸収材
の構成素材よりも弾性率の低い素材からなる充填材を充
填し、座屈変形時における衝撃吸収作用を更に高めるこ
とも有効である。
It is also effective to fill the inner surface of the hollow portion with a filler made of a material having a lower elastic modulus than the constituent material of the shock absorbing material to further enhance the shock absorbing action during buckling deformation. .

【0055】こうした筒状成形体からなる衝撃吸収材
(ii)は、橋梁を構成する上部工同士または上部工一
下部工間の連結部に設置される連結治具の端部に設置さ
れる。より具体的には、該筒状衝撃吸収材(ii)の中
空部に連結治具を挿通して端止め部材により該連結治具
の片側もしくは両側に装着され、連結治具に衝撃が加わ
ったときに、該吸収材の座屈変形によって衝撃力を吸収
すると共に、連結治具にかかる力を減衰する機能を発揮
する。
The shock absorbing material (ii) made of such a tubular molded body is installed at the end of a connecting jig installed at a connecting portion between upper works or upper works and lower works which constitute a bridge. More specifically, the connecting jig is inserted into the hollow portion of the tubular impact absorbing material (ii) and is attached to one side or both sides of the connecting jig by an end stop member, and the impact is applied to the connecting jig. At the same time, it exerts a function of absorbing the impact force by the buckling deformation of the absorber and attenuating the force applied to the connecting jig.

【0056】このとき、連結治具の端止め部はボルト・
ナット等によって固定し、吸収材によって減衰された衝
撃力が端止め部に加わっても連結ケーブルが離脱したり
破壊することのない様にしておくことが望ましい。
At this time, the end stopper of the connecting jig is
It is desirable that the connecting cable is fixed by a nut or the like so that the connecting cable does not come off or break even if the impact force attenuated by the absorber is applied to the end stop portion.

【0057】この衝撃吸収材(ii)は、後記図示例で
も明らかにする如く連結治具を挿通することのできる中
空部(穴)を有する筒状で、圧縮力を受けた時の荷重
(反力)−圧縮率曲線がたとえば図8に示す様なカーブ
を描くものであればその形状は問わない。筒状成形体の
具体的な形状も図示した様な円筒状の他、六角筒状など
の多角形筒状、あるいは異形筒状など、要は連結治具を
挿通する中空部(穴)を有している限り、その形状には
一切制限されず、また穴の形状も一切制限されない。
The impact absorbing material (ii) is a tubular shape having a hollow portion (hole) through which a connecting jig can be inserted, as will be made clear in an example shown later, and is a load (reaction) when a compressive force is applied. The shape thereof does not matter as long as the force) -compressibility curve draws a curve as shown in FIG. 8, for example. In addition to the cylindrical shape shown in the figure, the concrete shape of the cylindrical molded body also has a polygonal cylindrical shape such as a hexagonal cylindrical shape, or a deformed cylindrical shape. As long as it does, the shape is not limited at all, and the shape of the hole is not limited at all.

【0058】この衝撃吸収材(ii)も、前述の如く特
定範囲の曲げ弾性率を有する樹脂、好ましくエラストマ
ーによって構成されるが、その成形法にも格別の制約は
なく、射出成形、圧縮成形、押出成形など任意の方法で
成形することができ、場合によっては中実状の棒体を成
形し、事後的に切削や穴開け加工などにより筒状に加工
することも可能である。
This impact absorbing material (ii) is also composed of a resin having a flexural modulus of elasticity in a specific range as described above, preferably an elastomer, but its molding method is not particularly limited, and injection molding, compression molding, It can be formed by any method such as extrusion molding, and in some cases, it is also possible to form a solid rod body and then extrude it into a tubular shape by cutting or punching.

【0059】次に代表的な例を示す図面を参照しつつ、
衝撃吸収材(ii)および連結治具衝撃吸収装置を用い
た衝撃吸収構造(II)の構成を具体的に説明する。
Next, referring to the drawings showing typical examples,
The structure of the shock absorbing structure (II) using the shock absorbing material (ii) and the connecting jig shock absorbing device will be specifically described.

【0060】図4は、本発明の衝撃吸収構造(II)であ
る連結治具衝撃吸収装置を上部工同士の間に配置した橋
梁の一例を示す要部断面図、図5は、本発明の他の衝撃
吸収構造(II)である衝撃吸収装置を上部工と下部工と
の筒に配設した橋梁の一例を示す要部断面図、図6は、
本発明に係る衝撃吸収構造(II)である衝撃吸収装置の
代表的な配設例を示す詳細図である。
FIG. 4 is a sectional view of an essential part showing an example of a bridge in which the connecting jig impact absorbing device which is the impact absorbing structure (II) of the present invention is arranged between superstructures, and FIG. FIG. 6 is a cross-sectional view of a main part showing an example of a bridge in which a shock absorbing device which is another shock absorbing structure (II) is arranged in a cylinder of a superstructure and a substructure.
It is a detailed view showing a typical example of arrangement of a shock absorption device which is a shock absorption structure (II) concerning the present invention.

【0061】これらの例では、連結治具として22の部
分がワイヤーからなるワイヤー型を示したが、この22
の部分は金属棒であっても金属板であっても良い。
In these examples, the wire jig in which the portion 22 is made of wire is shown as the connecting jig.
The part may be a metal rod or a metal plate.

【0062】橋梁は、例えば図4に示す如く一般に橋脚
の上部に配設される下部工28の上に上部工26と道路
27を配置した構造を有しており、下部工28から上部
工26が外れて落下することのない様に、連結ケーブル
22で繋いでいる。また他の例として、図5に示す如く
下部工28をL字状に道路27方向まで突出させ、これ
に上部工26を配設して連結ケーブル22で繋ぎ、上部
工26の落下を防止している。
The bridge has a structure in which a superstructure 26 and a road 27 are arranged on a substructure 28 generally arranged on the upper part of the bridge pier as shown in FIG. 4, for example. It is connected by a connecting cable 22 so that it will not come off and fall. As another example, as shown in FIG. 5, a substructure 28 is projected in an L-shape toward the road 27, and a superstructure 26 is disposed on the substructure 28 and connected by a connecting cable 22 to prevent the superstructure 26 from falling. ing.

【0063】本発明の衝撃吸収構造(II)である衝撃吸
収装置は、上記図4,5等に用いられる連結ケーブル2
2にかかる衝撃を吸収してそれ自身の破壊を防止すると
共に、周辺構造物の衝撃破壊を抑えるために配設される
もので、例えば図6に示す如く構成される。即ち、上部
工26,26の両端部(図5の例では、上部工26と下
部工28)に設けられた貫通穴に連結ケーブル22を挿
通し、その両端部を筒状の衝撃吸収材21、21に挿通
してその外側に支持板24,24を装着し、更にその外
側にワッシャー23' を配してナット23で締め付ける
ことにより連結ケーブル22を締結する構成となってい
る。
The shock absorbing device which is the shock absorbing structure (II) of the present invention is the connecting cable 2 used in FIGS.
It is arranged in order to absorb the impact applied to 2 and prevent the destruction of itself, and to suppress the impact destruction of the peripheral structure. For example, it is configured as shown in FIG. That is, the connecting cable 22 is inserted through the through holes provided in both ends of the upper work 26, 26 (in the example of FIG. 5, the upper work 26 and the lower work 28), and the both ends of the connecting cable 22 are tubular shock absorbers 21. , 21 and support plates 24, 24 are attached to the outside thereof, and a washer 23 ′ is further provided on the outside thereof to tighten the nut 23 to fasten the connecting cable 22.

【0064】図6の例では、連結ケーブル22をしっか
りと締め付け固定した例を示したが、温度変化や振動に
よる構造物の微細な動きに対応できる様、若干緩ませた
状態とすることもあり、あるいは支持板24とナット2
3の間にスプリング等の弾性材を挿入し、これにより構
造物の温度変化による伸縮に対応させたり、更にはスプ
リング以外の緩衝部材を挿入することも可能である。ま
た、上部工26の厚さや幅などによっては連結ケーブル
22を縦方向あるいは横方向に複数配設したり、直列方
向に繋げて配置するなど、その設置方法には一切制限さ
れない。
In the example of FIG. 6, the connecting cable 22 is firmly tightened and fixed. However, it may be in a slightly loosened state so as to cope with minute movements of the structure due to temperature change and vibration. , Or support plate 24 and nut 2
It is also possible to insert an elastic material such as a spring between the three so as to accommodate expansion and contraction of the structure due to temperature change, and to insert a cushioning member other than the spring. Further, depending on the thickness and width of the superstructure 26, there are no restrictions on the installation method, such as a plurality of connecting cables 22 arranged in the vertical direction or the horizontal direction or connecting them in series.

【0065】また衝撃吸収材21に形成される中空部
(穴)のサイズや形状は、連結治具22を挿通し得る限
り一切制限がなく、また連結治具22との間で隙間が大
きくなり過ぎる様な場合は、スリーブ等を挿通して隙間
を小さくすることも有効となる。そして、ナット23な
どを含めた締結部の外側には、図示する如く防護カバー
25を被せ、衝撃吸収装置全体としての耐久性や耐侯性
を高めると共に、橋梁構造全体としての美観を高めるこ
とが望ましい。
The size and shape of the hollow portion (hole) formed in the shock absorbing material 21 are not limited as long as the connecting jig 22 can be inserted, and the gap between the connecting jig 22 is large. In the case of excessive passage, it is also effective to insert a sleeve or the like to reduce the gap. Then, it is desirable to cover the outside of the fastening part including the nut 23 and the like with a protective cover 25 as shown in the figure to enhance the durability and weather resistance of the entire shock absorbing device and enhance the aesthetic appearance of the entire bridge structure. .

【0066】以上、発明の橋梁の衝撃吸収構造を衝撃吸
収材(i)を用いた衝撃吸収構造(I)と、衝撃吸収材
(ii)を用いた衝撃吸収構造(II)の代表的な例を挙
げて説明してきたが、本発明はこれらの例に限定される
ものではない。また、衝撃吸収材(i)を衝撃吸収構造
(II)の様に連結用治具に装着して用いても、衝撃吸収
材(ii)を衝撃吸収構造(I)の用に橋梁の上部工間
または上部工−下部工間に設置して用いても構わないこ
とは言うまでもない。
Typical examples of the shock absorbing structure (I) using the shock absorbing material (i) and the shock absorbing structure (II) using the shock absorbing material (ii) as the shock absorbing structure of the bridge of the present invention have been described above. However, the present invention is not limited to these examples. Even if the impact absorbing material (i) is mounted on a connecting jig as in the impact absorbing structure (II) and used, the impact absorbing material (ii) is used for the shock absorbing structure (I) as a bridge superstructure. It goes without saying that it may be installed between the upper work and the lower work.

【0067】[0067]

【実施例】以下、実施例および比較例を挙げて本発明を
より具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前後記の趣旨に適
合し得る範囲で適当に設計を変更して実施することも可
能であり、それらはいずれも本発明の技術的範囲に合ま
れる。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples. However, the present invention is not limited by the following Examples, and is within a range applicable to the gist of the preceding and following. It is also possible to implement by appropriately changing the design, and all of them are within the technical scope of the present invention.

【0068】また下記実施例、比較例では、橋梁の上部
工や下部工の連接部に衝撃吸収材を取り付けて上部工を
実際揺らし、該衝撃吸収材の性能を調べることは実質的
に不可能であるので、その様な条件を模擬的に再現して
試験を行った。また、実験で採用した物性試験や圧縮試
験などは下記の方法によって行なった。
Further, in the following Examples and Comparative Examples, it is practically impossible to examine the performance of the shock absorber by attaching the shock absorber to the connecting portion of the bridge superstructure and substructure to actually shake the superstructure. Therefore, such a condition was simulated and reproduced for the test. Further, the physical property test and compression test adopted in the experiment were conducted by the following methods.

【0069】〔曲げ弾性率〕:一般的に採用されるAS
TM−D790に準拠して求めた。
[Flexural Modulus]: AS generally adopted
It was determined according to TM-D790.

【0070】〔衝突圧縮試験〕:図11に示す様な試験
装置を使用し、自重約7t(トン)の落下物体10を傾
斜した軌条9に沿って落下させ、図12に拡大して示す
如く、固定台11の衝突面側にロードセル12を介して
固定した供試用の衝撃吸収材1に1.8m/sの速度で
衝突させ、レーザー変位計14によって衝撃吸収材1の
衝撃吸収性能を評価する。13は加速度計を示してい
る。
[Collision compression test]: Using a test apparatus as shown in FIG. 11, a falling object 10 having its own weight of about 7 t (ton) is dropped along the inclined rail 9, and as shown in an enlarged view in FIG. The impact absorption performance of the impact absorption material 1 is evaluated by the laser displacement meter 14 by colliding it with the test impact absorption material 1 fixed via the load cell 12 on the collision surface side of the fixed base 11 at a speed of 1.8 m / s. To do. Reference numeral 13 indicates an accelerometer.

【0071】〔受圧面積〕:落下物体と衝撃吸収材との
接触面積をいう。衝撃吸収材(i)においては、隔壁部
分の接触面積ではなく、成形体としての面積を表した。
[Pressure receiving area]: The contact area between the falling object and the impact absorbing material. In the impact absorbing material (i), not the contact area of the partition wall portion but the area of the molded body is shown.

【0072】〔プラトー強度〕:荷重(反力)−圧縮率
曲線(図8参照)が圧縮の初期において圧縮率に約比例
して立ち上がり、その後徐々に穏やかとなって最大反力
(平坦部)となった時の反力を受圧面積で割って求め
た。
[Plateau strength]: The load (reaction force) -compression rate curve (see FIG. 8) rises in proportion to the compression rate in the initial stage of compression, and then gradually becomes gentle and becomes the maximum reaction force (flat portion). It was calculated by dividing the reaction force when it became.

【0073】〔単位体積当りの圧縮エネルギー吸収
量〕:荷重(反力)−圧縮率曲線において、1tf当り
の変位量が0.2mm程度に達した限界圧縮量の時点に
おける衝撃吸収材の単位体積当りのエネルギー吸収量を
求めた。
[Amount of compressive energy absorbed per unit volume]: In the load (reaction force) -compressibility curve, the unit volume of the impact absorbing material at the time when the displacement amount per tf reaches the limit compression amount of about 0.2 mm The amount of energy absorbed per hit was calculated.

【0074】〔最大反力〕:上記衝突圧縮試験におい
て、落下物体が衝撃吸収材に衝突したときに発生する最
大の反力を求めた。
[Maximum Reaction Force]: In the above collision compression test, the maximum reaction force generated when a falling object collides with the shock absorbing material was determined.

【0075】〔最大圧縮変位〕:上記衝突試験におい
て、落下物体が衝撃吸収材に衝突したときに観察される
最大の圧縮変位を求めた。
[Maximum Compressive Displacement]: In the above collision test, the maximum compressive displacement observed when the falling object collided with the shock absorbing material was determined.

【0076】〔固定台への影響の有無〕:上記衝突圧縮
試験では、衝撃吸収材の受圧面積500mm×100m
mに対し、固定台が破壊する力を25tfと想定してお
り、上記最大反力が25tfを超えるものについては固
定台への影響が有りとした。
[Presence or absence of influence on fixed base]: In the above-mentioned collision compression test, the pressure receiving area of the shock absorbing material is 500 mm × 100 m.
It is assumed that the force with which the fixing base breaks is 25 tf with respect to m, and that the maximum reaction force exceeding 25 tf has an effect on the fixing base.

【0077】〔吸収エネルギー量〕:落下物体の衝突前
後の速度から算出される運動エネルギーの差を衝撃吸収
材が吸収したエネルギー量とした。
[Absorbed Energy Amount]: The difference in kinetic energy calculated from the velocity before and after the collision of the falling object is defined as the amount of energy absorbed by the impact absorbing material.

【0078】実施例1 東洋紡績社製のポリエステル系エラストマー「ペルプレ
ンP−90B」を使用し、図1に示すようなハニカム状
衝撃吸収材[肉厚(t)=4.3mm、1辺長さ(L)
=25mm、厚み(h)=100mm]を射出成形し
た。全体寸法は、横(w)500mm×縦(d)100
mm×厚み(h)100mmとした。該ハニカム状衝撃
吸収材の性能試験(15℃の値)結果を、構成素材の物
性などと共に表1に示す。
Example 1 Using a polyester elastomer "Perprene P-90B" manufactured by Toyobo Co., Ltd., a honeycomb-shaped shock absorbing material [wall thickness (t) = 4.3 mm, one side length as shown in FIG. 1 was used. (L)
= 25 mm, thickness (h) = 100 mm] was injection molded. Overall dimensions are horizontal (w) 500 mm x vertical (d) 100
mm × thickness (h) was 100 mm. The performance test results (value at 15 ° C.) of the honeycomb-shaped impact absorbing material are shown in Table 1 together with the physical properties of the constituent materials.

【0079】実施例2 東洋紡績社製のポリエステル系エラストマー「ペルプレ
ンP−150B」を使用し、上記実施例1と同じ形状・
寸法のハニカム状衝撃吸収材を射出成型した。該衝撃吸
収材の性能試験(40℃の値)結果を、構成素材の物性
などと共に表1に示す。
Example 2 Using polyester elastomer "Perprene P-150B" manufactured by Toyobo Co., Ltd., the same shape as in Example 1
A honeycomb-shaped shock absorbing material having a size was injection-molded. The results of the performance test (value at 40 ° C.) of the impact absorbing material are shown in Table 1 together with the physical properties of the constituent materials.

【0080】実施例3 アルミニウムを使用し、図1に示すような6角断面構造
のハニカム状衝撃吸収材[肉厚(t)=0.07mm、
1辺長さ(L)=5.5mm、厚み(h)=100m
m]を作製した。全体寸法は、横(w)100mm×縦
(d)100mm)100mmとした。該ハニカム状衝
撃吸収材の性能試験(15℃の値)結果を、構成素材の
物性などと共に表1に示す。
Example 3 A honeycomb-shaped shock absorbing material having a hexagonal cross section structure as shown in FIG. 1 using aluminum [wall thickness (t) = 0.07 mm,
One side length (L) = 5.5 mm, thickness (h) = 100 m
m] was prepared. The overall dimension was 100 mm in width (w) × 100 mm in length (d). The performance test results (value at 15 ° C.) of the honeycomb-shaped impact absorbing material are shown in Table 1 together with the physical properties of the constituent materials.

【0081】実施例4 東洋紡績社製のナイロン「T−222」を使用し、図1
に示す6角断面構造のハニカム状衝撃吸収材[肉厚
(t)=4.3mm、1辺長さ(L)=25mm、厚み
(h)=100mm]を射出成形した。全体寸法は、横
(w)200mm×縦(d)200mmとした。該ハニ
カム状衝撃吸収材の性能試験(40℃の値)結果を、構
成素材の物性などと共に表1に示す。
Example 4 Using nylon "T-222" manufactured by Toyobo Co., Ltd.,
A honeycomb-shaped shock absorber having a hexagonal cross-section structure [wall thickness (t) = 4.3 mm, one side length (L) = 25 mm, thickness (h) = 100 mm] was injection-molded. The overall dimensions were 200 mm in width (w) × 200 mm in length (d). The performance test results (value at 40 ° C.) of the honeycomb-shaped impact absorbing material are shown in Table 1 together with the physical properties of the constituent materials.

【0082】比較例1 一般に緩衝材として用いられている硬度63Aの市販ゴ
ム板(CR)[全体寸法;横(w)500mm×縦
(d)100mm×厚み(b)100mm]を切り出
し、実施例1と同様にして性能評価(15℃)を行なっ
た。結果を表1に示す。
Comparative Example 1 A commercially available rubber plate (CR) having a hardness of 63 A, which is generally used as a cushioning material [overall dimension; width (w) 500 mm × length (d) 100 mm × thickness (b) 100 mm] was cut out and used as an example. Performance evaluation (15 ° C.) was performed in the same manner as in 1. The results are shown in Table 1.

【0083】[0083]

【表1】 [Table 1]

【0084】実施例5 東洋紡績社製のポリエステル系エラストマー「ペルプレ
ンP−55B」を用いて、図7に示す寸法・形状の両端
フランジ付きの筒状吸収材を作製した。該衝撃吸収材の
性能試験(15℃の値)結果を、構成素材の物性などと
共に表2に示す。
Example 5 Using a polyester elastomer "Perprene P-55B" manufactured by Toyobo Co., Ltd., a tubular absorbent material having flanges at both ends and having dimensions and shapes shown in FIG. 7 was produced. The results of the performance test (value at 15 ° C.) of the impact absorbing material are shown in Table 2 together with the physical properties of the constituent materials.

【0085】実施例6 東洋紡績社製のナイロン「T−222」を使用し、図7
に示す中空筒状の衝撃吸収材[高さ=100mm、外径
80mm]を作製した。該中空筒状衝撃吸収材の性能試
験(40℃の値)結果を、構成素材の物性などと共に表
2に示す。
Example 6 Using nylon "T-222" manufactured by Toyobo Co., Ltd.,
The hollow cylindrical shock absorber [height = 100 mm, outer diameter 80 mm] shown in FIG. The results of the performance test (value at 40 ° C.) of the hollow cylindrical impact absorbing material are shown in Table 2 together with the physical properties of the constituent materials.

【0086】比較例2 硬度45Aの市販のゴム塊(CR)を切削加工し、上記
実施例5と同じ寸法・形状の中空筒状衝撃吸収材を作製
した。該衝撃吸収材の性能試験(15℃の値)結果を、
構成素材の物性などと共に表2に示す。
COMPARATIVE EXAMPLE 2 A commercially available rubber block (CR) having a hardness of 45 A was cut to produce a hollow cylindrical impact absorbing material having the same size and shape as in Example 5 above. The performance test results (value at 15 ° C.) of the impact absorbing material are
Table 2 shows the physical properties of the constituent materials.

【0087】比較例3 硬度63Aの市販のゴム塊を切削加工し、上記実施例5
と同じ寸法・形状の中空筒状衝撃吸収材を作製した。該
衝撃吸収材の性能試験(15℃の値)結果を、構成素材
の物性などと共に表2に示す。
Comparative Example 3 A commercially available rubber lump having a hardness of 63 A was cut, and the above-mentioned Example 5 was used.
A hollow cylindrical shock absorber having the same size and shape as the above was produced. The results of the performance test (value at 15 ° C.) of the impact absorbing material are shown in Table 2 together with the physical properties of the constituent materials.

【0088】[0088]

【表2】 [Table 2]

【0089】[0089]

【発明の効果】本発明は以上の様に構成されており、こ
の衝撃吸収材は優れた衝撃吸収性能を有しているので、
該吸収材を用いた衝撃吸収構造は、地震等による上部工
同士、上部工と下部工の衝突による衝撃や治具を用いた
連結部分にかかる衝撃を効果的に吸収・緩和することが
でき、下部工や上部工、更には隣接構造物の衝撃による
破壊や離脱などを確実に阻止することができ、地震等に
も十分に耐える橋梁を与える。しかもこの衝撃吸収構造
は優れた耐錆性、耐水性、耐侯性を有する衝撃吸収材を
用いているので、内陸部はもとより沿岸地区や海洋連絡
橋などに適用したときでも、メンテナンスフリーで長期
間優れた衝撃緩和性能を持続する。
The present invention is configured as described above, and since this shock absorbing material has excellent shock absorbing performance,
The shock absorbing structure using the absorbing material can effectively absorb and mitigate the shock caused by the collision between the superstructures due to an earthquake or the like, the shock caused by the collision between the superstructure and the substructure, and the connection part using the jig. The substructure and superstructure, as well as the destruction and separation of adjacent structures due to impact can be reliably prevented, and a bridge that can withstand earthquakes and the like can be provided. Moreover, since this shock absorbing structure uses a shock absorbing material with excellent rust resistance, water resistance, and weather resistance, it is maintenance-free for a long period of time not only when applied to inland areas but also to coastal areas and ocean connecting bridges. Maintains excellent shock absorbing performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝撃吸収構造(I)に用いられる衝撃
吸収材(i)の代表例を示す見取り図である。
FIG. 1 is a sketch showing a typical example of a shock absorbing material (i) used in a shock absorbing structure (I) of the present invention.

【図2】本発明の衝撃吸収構造(I)に用いられる衝撃
吸収材(i)の他の形状を例示する見取り図である。
FIG. 2 is a sketch diagram illustrating another shape of the shock absorbing material (i) used in the shock absorbing structure (I) of the present invention.

【図3】衝撃吸収材(i)の配設例を示す概略説明図で
ある。
FIG. 3 is a schematic explanatory view showing an arrangement example of a shock absorbing material (i).

【図4】本発明の衝撃吸収構造(II)である連結ケーブ
ル衝撃吸収装置を、橋梁の上部工間に配設した状態を例
示する断面説明図である。
FIG. 4 is a cross-sectional explanatory view illustrating a state in which the connecting cable impact absorbing device that is the impact absorbing structure (II) of the present invention is arranged in the upper part of the bridge.

【図5】本発明の衝撃吸収構造(II)である連結ケーブ
ル衝撃吸収装置を、橋梁の上部工と下部工間に配設した
状態を例示する要部断面明図である。
FIG. 5 is a cross-sectional view showing the main part of a state in which the connecting cable impact absorbing device that is the impact absorbing structure (II) of the present invention is arranged between the upper and lower works of a bridge.

【図6】本発明の衝撃吸収構造(II)である連結ケーブ
ル衝撃吸収装置の具体例を示す要部断面説明図である。
FIG. 6 is a cross-sectional explanatory view of a main part showing a specific example of a connecting cable shock absorbing device which is the shock absorbing structure (II) of the present invention.

【図7】本発明の衝撃吸収構造(II)に用いられる衝撃
吸収材(ii)の一例を示す断面説明図である。
FIG. 7 is a cross-sectional explanatory view showing an example of a shock absorbing material (ii) used in the shock absorbing structure (II) of the present invention.

【図8】本発明の衝撃吸収構造に用いられる衝撃吸収材
の荷重(反力)−圧縮率曲線を例示する説明図である。
FIG. 8 is an explanatory diagram illustrating a load (reaction force) -compressibility curve of the impact absorbing material used in the impact absorbing structure of the present invention.

【図9】通常のゴム弾性体の荷重(反力)−圧縮率曲線
を例示する説明図である。
FIG. 9 is an explanatory diagram illustrating a load (reaction force) -compressibility curve of a normal rubber elastic body.

【図10】本発明の衝撃吸収構造に用いられる衝撃吸収
材の荷重(反力)−圧縮率曲線の具体例を示す図であ
る。
FIG. 10 is a diagram showing a specific example of a load (reaction force) -compressibility curve of the impact absorbing material used in the impact absorbing structure of the present invention.

【図11】実施例および比較例で用いた衝撃試験装置を
示す説明図である。
FIG. 11 is an explanatory diagram showing an impact test device used in Examples and Comparative Examples.

【図12】図11における衝撃吸収材の配置状態を示す
拡大説明図である。
FIG. 12 is an enlarged explanatory view showing an arrangement state of the impact absorbing material in FIG.

【符号の説明】[Explanation of symbols]

1 衝撃吸収材(i) 2 貫通孔 3 隔壁 4 上部工 5 下部工 6 支承部材 7 落橋防止壁(鋼製ブラケット、コンクリートブロッ
ク等) 8 ブラケット 9 軌条 10 落下物体 11 固定台 12 ロードセル 13 加速度計 14 レーザー変位計 21 衝撃吸収材(ii) 22 連結ケーブル 23 ナット 24 支持板 25 防護カバー 26 上部工 27 道路 28 下部工
1 shock absorber (i) 2 through hole 3 bulkhead 4 superstructure 5 substructure 6 support member 7 bridge prevention wall (steel bracket, concrete block, etc.) 8 bracket 9 rail 10 falling object 11 fixed base 12 load cell 13 accelerometer 14 Laser displacement meter 21 Shock absorber (ii) 22 Connection cable 23 Nut 24 Support plate 25 Protective cover 26 Superstructure 27 Road 28 Substructure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上東 泰 東京都町田市忠生1−4−1 日本道路公 団 試験研究所内 (72)発明者 菅野 匡 東京都町田市忠生1−4−1 日本道路公 団 試験研究所内 (72)発明者 石田 博 東京都町田市忠生1−4−1 日本道路公 団 試験研究所内 (72)発明者 鎌田 賢 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 松山 雄二郎 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 荒木 良夫 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 根岸 聖司 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 野々村 千里 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 Fターム(参考) 2D059 AA03 AA05 GG02 GG17 GG29 GG30 GG35 GG55 3J066 AA23 BA03 BB01 BD05 BD07 BF03 BG10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasushi Kamito             1-4-1 Tadao Machida City, Tokyo             Team test laboratory (72) Inventor Tadashi Kanno             1-4-1 Tadao Machida City, Tokyo             Team test laboratory (72) Inventor Hiroshi Ishida             1-4-1 Tadao Machida City, Tokyo             Team test laboratory (72) Inventor Ken Kamata             2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo             Koki Co., Ltd. (72) Inventor Yujiro Matsuyama             2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo             Koki Co., Ltd. (72) Inventor Yoshio Araki             2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo             Koki Co., Ltd. (72) Inventor Seiji Negishi             2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo             Koki Co., Ltd. (72) Inventor Chisato Nonomura             2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo             Koki Co., Ltd. F term (reference) 2D059 AA03 AA05 GG02 GG17 GG29                       GG30 GG35 GG55                 3J066 AA23 BA03 BB01 BD05 BD07                       BF03 BG10

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 橋梁を構成する上部工間、上部工−下部
工の間、落橋防止壁を有する下部工と上部工の間、これ
らの上部工間または上部工−下部工を連結する治具に衝
撃吸収材が配置された橋梁の衝撃吸収構造であって、該
衝撃吸収材は曲げ弾性率が200kgf/cm2 以上の
材料で成形された成形体からなり、衝撃負荷方向に壁構
造を有していることを特徴とする橋梁の衝撃吸収構造。
1. A jig for connecting a superstructure, a superstructure-a substructure, a substructure having a fall prevention wall, and a superstructure or a superstructure-a substructure for constructing a bridge. A shock-absorbing structure for a bridge in which a shock-absorbing material is arranged in the structure, and the shock-absorbing material is formed of a material having a bending elastic modulus of 200 kgf / cm 2 or more, and has a wall structure in the impact load direction. A shock absorbing structure for bridges that is characterized by
【請求項2】 衝撃吸収材の前記壁構造は、衝撃によっ
て圧縮変形し、座屈変形または永久変形することにより
衝撃を吸収するものである請求項1に記載の衝撃吸収構
造。
2. The shock absorbing structure according to claim 1, wherein the wall structure of the shock absorbing material absorbs the shock by compressive deformation due to shock, buckling deformation or permanent deformation.
【請求項3】 衝撃吸収材は、衝撃負荷方向に多数の壁
構造を有している請求項1または2に記載の衝撃吸収構
造。
3. The shock absorbing structure according to claim 1, wherein the shock absorbing material has a large number of wall structures in a shock load direction.
【請求項4】 衝撃吸収材の前記壁構造は、衝撃負荷方
向の面の少なくとも一部で互いに接続され、衝撃負荷方
向に隔離された小部屋構造を有している請求項1〜3の
いずれかに記載の衝撃吸収構造。
4. The impact absorbing material according to claim 1, wherein the wall structure of the impact absorbing material has a compartment structure which is connected to each other at least at a part of a surface in the impact load direction and is isolated in the impact load direction. The shock absorbing structure described in Crab.
【請求項5】 衝撃吸収材は、衝撃負荷方向に圧縮され
たときの圧縮エネルギー吸収量が50tf・ m/m3
上である請求項1〜4のいずれかに記載の衝撃吸収構
造。
5. The shock absorbing structure according to claim 1, wherein the shock absorbing material has a compression energy absorption amount of 50 tf · m / m 3 or more when compressed in a shock load direction.
【請求項6】 衝撃吸収材は、曲げ弾性率が500〜2
0,000kgf/cm2 の樹脂で構成されている請求
項1〜5のいずれかに記載の衝撃吸収構造。
6. The shock absorber has a flexural modulus of 500 to 2
The shock absorbing structure according to any one of claims 1 to 5, which is made of a resin of 50,000 kgf / cm 2 .
【請求項7】 衝撃吸収材は、曲げ弾性率が5,000
kgf/cm2 以上の金属によって構成されている請求
項1〜5のいずれかに記載の衝撃吸収構造。
7. The shock absorbing material has a flexural modulus of 5,000.
The shock absorbing structure according to any one of claims 1 to 5, which is made of a metal having a weight of kgf / cm 2 or more.
【請求項8】 衝撃吸収材は、該衝撃吸収材に衝撃負荷
が発生したときに、衝撃吸収材における衝撃負荷方向の
壁構造の特定部分が最初に変形する構造を有している請
求項1〜7のいずれかに記載の衝撃吸収構造。
8. The shock absorbing material has a structure in which, when a shock load is generated on the shock absorbing material, a specific portion of the wall structure in the shock loading direction of the shock absorbing material is first deformed. The shock absorbing structure according to any one of to 7.
【請求項9】 前記特定部分が、壁構造に設けられた欠
損部、段差部または薄肉部である請求項8に記載の衝撃
吸収構造。
9. The shock absorbing structure according to claim 8, wherein the specific portion is a cut portion, a step portion, or a thin portion provided in the wall structure.
【請求項10】 前記小部屋構造は、衝撃吸収方向に垂
直な断面の形状が6角形以下の多角形よりなる小部屋の
繰り返し構造を有している請求項4〜9のいずれかに記
載の衝撃吸収構造。
10. The small room structure according to claim 4, wherein the small room structure has a repeating structure of small rooms each having a polygonal shape whose cross section perpendicular to the impact absorption direction is a hexagon or less. Shock absorption structure.
【請求項11】 前記小部屋構造における衝撃吸収方向
に垂直な断面の形状が、6角形のハニカム構造である請
求項10に記載の衝撃吸収構造。
11. The shock absorbing structure according to claim 10, wherein a cross section of the small chamber structure perpendicular to the shock absorbing direction has a hexagonal honeycomb structure.
【請求項12】 衝撃吸収材のプラトー強度が400t
f/m2 以上、圧縮エネルギー吸収量が200tf・ m
/m3 以上であり、かつ該衝撃吸収材の衝撃負荷方向の
壁構造が筒状である請求項1または2に記載の衝撃吸収
構造。
12. The plateau strength of the shock absorber is 400 t.
f / m 2 or more, compression energy absorption amount is 200 tf · m
/ M 3 or more, and the wall structure in the shock load direction of the shock absorbing material is tubular, and the shock absorbing structure according to claim 1 or 2.
【請求項13】 衝撃吸収材が、曲げ弾性率200〜
5,000kgf/cm2 の樹脂で構成されている請求
項12に記載の衝撃吸収構造。
13. The impact absorbing material has a flexural modulus of 200 to 200.
The shock absorbing structure according to claim 12, which is made of a resin of 5,000 kgf / cm 2 .
【請求項14】 衝撃吸収材が、曲げ弾性率5,000
kgf/cm2 以上の金属で構成されている請求項12
に記載の衝撃吸収構造。
14. The impact absorbing material has a flexural modulus of 5,000.
13. It is composed of a metal of kgf / cm 2 or more.
Impact absorption structure described in.
【請求項15】 衝撃吸収材がフランジ部を有している
請求項12〜14のいずれかに記載の衝撃吸収構造。
15. The shock absorbing structure according to claim 12, wherein the shock absorbing material has a flange portion.
【請求項16】 衝撃吸収材が、衝撃吸収材に衝撃負荷
が発生したときに、衝撃吸収材における衝撃負荷方向の
壁構造の特定部分が最初に変形する構造を有している請
求項12〜15のいずれかに記載の衝撃吸収構造。
16. The shock absorbing material has a structure in which a specific portion of the wall structure in the shock loading direction in the shock absorbing material is first deformed when a shock load is generated in the shock absorbing material. 15. The shock absorbing structure according to any one of 15.
【請求項17】 衝撃吸収材は、衝撃負荷方向の壁構造
に欠損部または薄肉部を有している請求項12〜16の
いずれかに記載の衝撃吸収構造。
17. The shock absorbing structure according to claim 12, wherein the shock absorbing material has a cut portion or a thin portion in a wall structure in a shock load direction.
【請求項18】 衝撃吸収材が、蛇腹構造を有している
請求項12〜16のいずれかに記載の衝撃吸収構造。
18. The shock absorbing structure according to claim 12, wherein the shock absorbing material has a bellows structure.
【請求項19】 衝撃吸収材が、上部工間または上部工
−下部工を連結する治具の端部に設置されている請求項
12〜18のいずれかに記載の衝撃吸収構造。
19. The shock absorbing structure according to claim 12, wherein the shock absorbing material is installed at an end portion of a jig for connecting upper work or upper work-lower work.
【請求項20】 治具が衝撃吸収材に通挿されている請
求項19に記載の衝撃吸収構造。
20. The shock absorbing structure according to claim 19, wherein the jig is inserted into the shock absorbing material.
【請求項21】 治具が連結ケーブルである請求項20
に記載の衝撃吸収構造。
21. The jig is a connecting cable.
Impact absorption structure described in.
JP2002306416A 1997-06-30 2002-10-21 Shock absorber of bridge Expired - Fee Related JP3808822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306416A JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9-174907 1997-06-30
JP17490797 1997-06-30
JP9-174908 1997-06-30
JP17490897 1997-06-30
JP2002306416A JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16465298A Division JP3437089B2 (en) 1997-06-30 1998-06-12 Bridge shock absorbing structure

Publications (3)

Publication Number Publication Date
JP2003184032A true JP2003184032A (en) 2003-07-03
JP2003184032A5 JP2003184032A5 (en) 2004-07-15
JP3808822B2 JP3808822B2 (en) 2006-08-16

Family

ID=27617216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306416A Expired - Fee Related JP3808822B2 (en) 1997-06-30 2002-10-21 Shock absorber of bridge

Country Status (1)

Country Link
JP (1) JP3808822B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337305A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd System and method for measuring collision load
JP2007170164A (en) * 2006-07-03 2007-07-05 Osaka Prefecture Movement restricting device of structure
CN1330828C (en) * 2004-11-11 2007-08-08 徐国彬 Universal horizontal vibration damping holder
JP2018066435A (en) * 2016-10-19 2018-04-26 日産自動車株式会社 Impact absorption member and front roof cross member using impact absorption member
CN110055880A (en) * 2019-05-31 2019-07-26 中铁二院工程集团有限责任公司 A kind of railroad bridge damping energy consumption anti-fall girder apparatus
KR20210035985A (en) * 2019-09-25 2021-04-02 매크로드 주식회사 Elastic disk structure comprising flow holes formed inside the body and bridge bearing comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635935A (en) * 1986-06-27 1988-01-11 昭和飛行機工業株式会社 Cushioning material made of honeycomb core
JPH05295708A (en) * 1992-04-23 1993-11-09 Pub Works Res Inst Ministry Of Constr Structure of knock-off device for road bridge
JPH05321966A (en) * 1992-05-20 1993-12-07 Toyobo Co Ltd Resin shock absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635935A (en) * 1986-06-27 1988-01-11 昭和飛行機工業株式会社 Cushioning material made of honeycomb core
JPH05295708A (en) * 1992-04-23 1993-11-09 Pub Works Res Inst Ministry Of Constr Structure of knock-off device for road bridge
JPH05321966A (en) * 1992-05-20 1993-12-07 Toyobo Co Ltd Resin shock absorber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330828C (en) * 2004-11-11 2007-08-08 徐国彬 Universal horizontal vibration damping holder
JP2006337305A (en) * 2005-06-06 2006-12-14 Nissan Motor Co Ltd System and method for measuring collision load
JP2007170164A (en) * 2006-07-03 2007-07-05 Osaka Prefecture Movement restricting device of structure
JP4641514B2 (en) * 2006-07-03 2011-03-02 大阪府 Structure movement restriction device
JP2018066435A (en) * 2016-10-19 2018-04-26 日産自動車株式会社 Impact absorption member and front roof cross member using impact absorption member
CN110055880A (en) * 2019-05-31 2019-07-26 中铁二院工程集团有限责任公司 A kind of railroad bridge damping energy consumption anti-fall girder apparatus
CN110055880B (en) * 2019-05-31 2024-01-30 中铁二院工程集团有限责任公司 Damping energy-consumption beam falling prevention device for railway bridge
KR20210035985A (en) * 2019-09-25 2021-04-02 매크로드 주식회사 Elastic disk structure comprising flow holes formed inside the body and bridge bearing comprising the same
KR102411500B1 (en) * 2019-09-25 2022-06-21 매크로드 주식회사 Elastic disk structure comprising flow holes formed inside the body and bridge bearing comprising the same

Also Published As

Publication number Publication date
JP3808822B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
KR100384571B1 (en) Resin shock absorber
US8250818B2 (en) Self-centering energy dissipative brace apparatus with tensioning elements
CN105926794A (en) Assembly type soft steel damper optimized through equal-stress line
JP6173553B1 (en) Seismic control device for bridge
AU741796B2 (en) Shock absorber
EP0889179B1 (en) Bridge of shock-absorbing construction
US7647733B2 (en) Reinforcing structure for building
JP2003184032A (en) Shock absorbing structure for bridge
JP2007162221A (en) Fender
CN114775410A (en) Limiting self-resetting railway swinging hollow pier with built-in corrugated web damper
JP3437089B2 (en) Bridge shock absorbing structure
JP2003184032A5 (en)
JP2011153491A (en) Safety barrier
CN110259205A (en) A kind of comprehensive antidetonation toughness mill construction system using every cushion technique
CN106835952B (en) A kind of combined anti-seismic system and combined anti-seismic bridge
JP7165555B2 (en) Function-separated shock absorber
JP3639954B2 (en) Buffer type protective fence and its upper frame
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JPH05295713A (en) Impulse force absorbing device for drop stone preventive body
JPH09302621A (en) Low noise type base isolation stacked rubber bearing
JPH08312719A (en) Base isolation structure
KR101579058B1 (en) Seismic reinforcing method of bridge
CN212801397U (en) Hydraulic engineering retaining wall
CN209958217U (en) Multistage horizontal force shock attenuation bridge telescoping device
CN214737329U (en) Replaceable self-adaptive bridge anti-seismic stop block device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees