JP3216620B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3216620B2
JP3216620B2 JP32093998A JP32093998A JP3216620B2 JP 3216620 B2 JP3216620 B2 JP 3216620B2 JP 32093998 A JP32093998 A JP 32093998A JP 32093998 A JP32093998 A JP 32093998A JP 3216620 B2 JP3216620 B2 JP 3216620B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
semiconductor device
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32093998A
Other languages
Japanese (ja)
Other versions
JP2000150741A (en
Inventor
宏彰 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32093998A priority Critical patent/JP3216620B2/en
Publication of JP2000150741A publication Critical patent/JP2000150741A/en
Application granted granted Critical
Publication of JP3216620B2 publication Critical patent/JP3216620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はパッケージ基板上に
半導体チップを搭載する半導体装置に関し、特に半導体
チップの裏面に金属膜を形成して放熱性を高めたプレー
ティッドヒートシンク(PHS)構造の半導体装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a semiconductor chip mounted on a package substrate, and more particularly to a semiconductor device having a plated heat sink (PHS) structure in which a metal film is formed on the back surface of the semiconductor chip to enhance heat dissipation. About.

【0002】[0002]

【従来の技術】近年における半導体装置の高出力化にと
もない、半導体チップにおいて発生する熱による温度上
昇のための電気特性や信頼性の低下が大きな問題になり
つつある。そのため、この種の温度の上昇を抑制するこ
とが重要な要素の一つとなっており、特に熱伝導特性の
悪いGaAs基板を用いた半導体装置では、GaAs基
板厚を薄くして裏面に接地電極を兼ねて放熱用のPHS
であるAu層を設け、GaAs/Auの2層構造とし放
熱特性を向上させる手法が採用されている。図4はPH
S構造の半導体装置の一例を示す図であり、半導体チッ
プ1はGaAs基板11の下面にAu層12を設けたP
HS構造とし、この半導体チップ1をAuSn等のソル
ダ3によってCu等の金属板からなるマウント基板2B
上にマウントする。また、前記マウント基板2Bには絶
縁板4によってリード端子5が支持されており、前記半
導体チップ1の電極パッド13とリード端子5とをボン
ディングワイヤ6により電気接続を行っている。このた
め、この半導体装置では、半導体チップ1で発生する熱
は熱伝導性の高いAu層12を介してすみやかにマウン
ト基板2Bにまで電熱され、マウント基板2Bの表面か
ら高い効率で放熱されることになり、半導体装置の温度
上昇を抑制することが可能となる。
2. Description of the Related Art With the recent increase in output power of semiconductor devices, reduction in electrical characteristics and reliability due to temperature rise due to heat generated in semiconductor chips is becoming a serious problem. For this reason, it is one of the important factors to suppress such a rise in temperature. Particularly, in a semiconductor device using a GaAs substrate having poor heat conduction characteristics, the thickness of the GaAs substrate is reduced and a ground electrode is provided on the back surface. PHS for heat dissipation
In this case, a method of improving the heat radiation characteristics by providing an Au layer having a two-layer structure of GaAs / Au is adopted. Figure 4 shows PH
FIG. 3 is a diagram showing an example of a semiconductor device having an S structure. The semiconductor chip 1 is a P-type semiconductor device having an Au layer 12 provided on a lower surface of a GaAs substrate 11.
The semiconductor chip 1 has an HS structure, and the semiconductor chip 1 is mounted on a mount substrate 2B made of a metal plate such as Cu by a solder 3 such as AuSn.
Mount on top. Further, lead terminals 5 are supported on the mount substrate 2B by an insulating plate 4, and the electrode pads 13 of the semiconductor chip 1 and the lead terminals 5 are electrically connected by bonding wires 6. Therefore, in this semiconductor device, heat generated in the semiconductor chip 1 is quickly heated to the mount substrate 2B via the Au layer 12 having high thermal conductivity, and is radiated with high efficiency from the surface of the mount substrate 2B. And the temperature rise of the semiconductor device can be suppressed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このP
HS構造の半導体装置では、半導体チップ1が半導体
(GaAs基板11)と金属(Au層12)との2層構
造をしていることが要因となり、次のような問題が生じ
ている。すなわち、前記した半導体装置の製造方法につ
いてみた場合、先ず図5(a)のようにGaAs基板1
1とAu層12の2層構造である半導体チップ1と、C
uやCuを主成分とする合金などの単層の基板からなる
マウント基板2Bとを加熱する。この加熱により、図5
(b)のように、単層基板構造のマウント基板2Bは平
坦なままであるが、半導体チップ1は2層構造であるた
め、GaAsとAuとの熱膨張率の相違に伴うバイメタ
ル効果により、半導体チップ1は上に凹となる反りを生
じる。次いで、図5(c)のように、ソルダであるAu
Sn3をマウント基板2Bにのせ、溶融した後に半導体
チップ1をAuSnソルダ3上に押し付ける。このと
き、前記した半導体チップ1の反りによりAuSnソル
ダ3の厚さが場所により異なってしまう。そして、この
状態で冷却すると、AuSnソルダ3の厚さの分布が保
持されたまま固化し、したがって半導体チップ1の反り
は戻らない。そのため、完成された半導体装置では、図
5(d)のように、マウント基板2Bは平坦であるが、
半導体チップ1は反りを保持した構成となってしまう。
However, this P
In the semiconductor device having the HS structure, the following problem occurs because the semiconductor chip 1 has a two-layer structure of a semiconductor (GaAs substrate 11) and a metal (Au layer 12). That is, when looking at the method of manufacturing the semiconductor device described above, first, as shown in FIG.
A semiconductor chip 1 having a two-layer structure of
The mounting substrate 2B made of a single-layer substrate made of an alloy mainly containing u or Cu is heated. By this heating, FIG.
As shown in (b), the mount substrate 2B having a single-layer substrate structure remains flat, but since the semiconductor chip 1 has a two-layer structure, the bimetal effect accompanying the difference in the coefficient of thermal expansion between GaAs and Au causes The semiconductor chip 1 has an upwardly concave warpage. Next, as shown in FIG.
The semiconductor chip 1 is pressed on the AuSn solder 3 after the Sn3 is placed on the mount substrate 2B and melted. At this time, the thickness of the AuSn solder 3 varies depending on the location due to the warpage of the semiconductor chip 1 described above. Then, when cooling is performed in this state, the AuSn solder 3 is solidified while maintaining the thickness distribution, so that the warpage of the semiconductor chip 1 does not return. Therefore, in the completed semiconductor device, the mount substrate 2B is flat as shown in FIG.
The semiconductor chip 1 has a configuration in which warpage is maintained.

【0004】このため、半導体チップに反りが生じた状
態の半導体装置では、次のワイヤボンディング工程で半
導体チップの表面が傾いていることにより、光の反射方
向がそれるために生じるマーク検出率の低下が生じる。
また、電極パッドが傾いているために、ボンディングツ
ールが電極パッド面に適切な力で当接されなくなり、ボ
ンディングワイヤの接着不良が生じるるという問題も生
じる。さらに、通常では金属からなるマウント基板の熱
膨張率が、半導体、ここではGaAsからなる半導体チ
ップの熱膨張率より大きいため、マウント後の冷却時に
はマウント基板から半導体チップに圧縮応力が加わり、
半導体チップに割れや欠けが生じる等、半導体装置の信
頼性が低下するという問題も生じる。
For this reason, in a semiconductor device in which the semiconductor chip is warped, the mark detection rate caused by the deviation of the light reflection direction due to the inclination of the surface of the semiconductor chip in the next wire bonding step is reduced. A drop occurs.
In addition, since the electrode pad is inclined, the bonding tool is not brought into contact with the electrode pad surface with an appropriate force, and there is a problem that a bonding failure of the bonding wire occurs. Furthermore, since the coefficient of thermal expansion of a mount substrate usually made of metal is larger than the coefficient of thermal expansion of a semiconductor, here, a semiconductor chip made of GaAs, a compressive stress is applied to the semiconductor chip from the mount substrate during cooling after mounting.
There is also a problem that the reliability of the semiconductor device is reduced, such as cracking or chipping of the semiconductor chip.

【0005】なお、このような半導体チップに生じる反
りを防止するために、特許第2629653号公報に記
載の技術では、半導体チップの対向する2辺のそれぞれ
を支持体によりマウント基板に対して押さえる構造を採
用しているが、この構造では別部材の支持体が必要であ
り、半導体装置の小型化、低価格化を図る上での障害と
なる。また、特許第2757805号公報では、半導体
チップの下面に形成するPHS構造を異なる金属の複数
層に形成し、半導体チップ自体における反りの防止を図
っているが、この技術では半導体チップの構造が複雑に
なり、かつ製造工数も増加して高価格になるという問題
も生じる。
In order to prevent such a warpage of the semiconductor chip, the technique described in Japanese Patent No. 2629653 discloses a structure in which two opposing sides of the semiconductor chip are pressed against a mount substrate by a support. However, this structure requires a separate support member, which is an obstacle to miniaturization and cost reduction of the semiconductor device. Further, in Japanese Patent No. 2757805, the PHS structure formed on the lower surface of the semiconductor chip is formed in a plurality of layers of different metals to prevent the warpage of the semiconductor chip itself. In addition, there is a problem that the number of manufacturing steps increases and the price becomes high.

【0006】本発明の目的の一つはPHS構造の半導体
チップをマウント基板にマウントした場合でも、半導体
チップにおける反りの発生を防止し、信頼性の高い半導
体装置の製造を可能とした半導体装置を提供することに
ある。
One of the objects of the present invention is to provide a semiconductor device capable of preventing the occurrence of warpage in a semiconductor chip even when a semiconductor chip having a PHS structure is mounted on a mounting substrate and enabling the manufacture of a highly reliable semiconductor device. To provide.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体層の裏
面に金属層が形成されたPHS構造の半導体チップをマ
ウント基板上にマウントしている半導体装置において、
前記マウント基板の少なくとも一部を熱膨張率の異なる
材料からなる多層構造とし、かつ加熱された際の反りが
前記半導体チップが加熱されたときの反りと整合するよ
うに構成したことを特徴とする。ここで、前記マウント
基板は、平面全領域、あるいはマウントされる半導体チ
ップの長辺に沿って延長される部分が多層構造として構
成される。例えば、本発明においては、半導体チップは
GaAs基板の裏面にAu層が一体に形成されたPHS
構造とされ、前記マウント基板はCu基板の全領域にA
l層が、または一部の領域にW層が積層された構成とさ
れる。
According to the present invention, there is provided a semiconductor device in which a semiconductor chip having a PHS structure in which a metal layer is formed on the back surface of a semiconductor layer is mounted on a mounting substrate.
At least a part of the mount substrate has a multilayer structure made of materials having different coefficients of thermal expansion, and is configured such that a warp when heated matches a warp when the semiconductor chip is heated. . Here, the mount substrate has a multilayer structure in which the entire area of the plane or a portion extending along the long side of the semiconductor chip to be mounted is formed. For example, in the present invention, the semiconductor chip is a PHS in which an Au layer is integrally formed on the back surface of a GaAs substrate.
And the mounting substrate has A
The structure is such that the l layer or the W layer is laminated in a part of the region.

【0008】本発明の半導体装置では、マウント基板を
熱膨張率がそれぞれ異なる多層構造にし、それぞれの層
の膜厚を調整することでバイメタル効果により、半導体
チップと整合した反りをマウント基板に生じさせる。こ
の状態で半導体チップをマウントすると、マウント基板
との反りが整合するため、ソルダは厚さが均一に形成さ
れる。このため、室温まで冷却するとソルダが固化する
と同時に反りがなくなり、マウント基板が平坦になると
同時に半導体チップも平坦になる。したがって、次のボ
ンディング工程で半導体チップの表面が傾いていること
が要因とされるマーク検出率の低下や、電極パッドが傾
いていることが要因とされるボンディングワイヤの接着
不良が改善される。
In the semiconductor device of the present invention, the mount substrate has a multilayer structure having different coefficients of thermal expansion, and by adjusting the thickness of each layer, a warp matched with the semiconductor chip is generated on the mount substrate by the bimetal effect. . When the semiconductor chip is mounted in this state, the solder is formed with a uniform thickness because the warpage with the mounting substrate is matched. For this reason, when cooled to room temperature, the solder is solidified and the warpage is eliminated, and the mount substrate becomes flat and the semiconductor chip becomes flat. Accordingly, in the next bonding step, the mark detection rate caused by the inclination of the surface of the semiconductor chip is reduced, and the bonding failure of the bonding wire caused by the inclination of the electrode pad is improved.

【0009】 〔発明の詳細な説明〕次に、本発明の実施形態を図面を
参照して説明する。図1は本発明の半導体装置の第1の
実施形態の斜視図であり、図4に示した半導体装置と同
様な構成とした例である。半導体チップ1はPHS構造
に構成されており、マイクロ波高出力素子としてGaA
s基板11を用いて構成されているが、GaAs基板1
1を薄く研磨し、その下面に接地電極を兼ねて放熱用の
PHSであるAu層12が設けられている。また、Ga
As基板11の表面には複数個の電極パッド13が配設
されている。一方、マウント基板2は、熱膨張率がそれ
ぞれ異なる金属を積層した多層金属構造として形成され
ている。ここでは、Cu(銅)層21の下層にAl(ア
ルミニウム)層22を一体に積層した構成とされてい
る。そして、前記マウント基板2の表面にAuSnソル
ダ3によって前記半導体チップ1をマウントする。ま
た、前記マウント基板2には絶縁板4を介してリード端
子5が支持されており、前記半導体チップ1の電極パッ
ド13とリード端子5とがボンディングワイヤ6により
電気接続されている。
[Detailed Description of the Invention] Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a semiconductor device according to a first embodiment of the present invention, which is an example having the same configuration as the semiconductor device shown in FIG. The semiconductor chip 1 has a PHS structure, and has GaAs as a microwave high-power element.
Although it is configured using the s substrate 11, the GaAs substrate 1
1 is thinly polished, and an Au layer 12 serving as a PHS for heat dissipation is provided on the lower surface thereof, also serving as a ground electrode. Also, Ga
A plurality of electrode pads 13 are provided on the surface of the As substrate 11. On the other hand, the mount substrate 2 is formed as a multilayer metal structure in which metals having different coefficients of thermal expansion are stacked. Here, an Al (aluminum) layer 22 is integrally laminated below the Cu (copper) layer 21. Then, the semiconductor chip 1 is mounted on the surface of the mount substrate 2 with the AuSn solder 3. Lead terminals 5 are supported on the mount substrate 2 via an insulating plate 4, and the electrode pads 13 of the semiconductor chip 1 and the lead terminals 5 are electrically connected by bonding wires 6.

【0010】図2は図1の半導体装置の製造方法を工程
順に示す図である。先ず、図2(a)のように、GaA
s基板11の下面にAu層12を一体に形成したPHS
構造の半導体チップ1と、Cu層21の下層にAl層2
2を一体に形成した2層構造のマウント基板2を用意す
る。そして、図2(b)のように、前記半導体チップ1
とマウント基板2とを、AuSnの溶融温度(約280
℃)よりも若干高めの300℃程度に加熱する。このと
き、半導体チップ1は、これまでと同様にGaAsとA
uとの熱膨張率の相違により、バイメタル効果によって
反りが発生する。一方、前記マウント基板2はCuとA
lの積層構造であり、両者の熱膨張率の相違により、バ
イメタル効果によって反りが発生する。ここで、マウン
ト基板2を構成するCuの熱膨張率は約17E−6/K
程度であり、Alの熱膨張率は約23.7E−6/K程
度である。一方、半導体チップ1を構成するGaAsの
熱膨張率は約5.9E−6/K程度であり、Auの熱膨
張率は14.2E−6/K程度である。したがって、前
記半導体チップ1とマウント基板2はそれぞれ、バイメ
タル効果により上に凹となる反りを生じる。この時、C
u層21とAl層22の厚さを適当に選ぶことにより、
その反り量を半導体チップ1の反り量と整合するよう
に、つまり、半導体チップ1の裏面(Au面)の曲率半
径と、マウント基板2の表面(Cu面)の曲率半径の差
が、前記AuSnソルダ3の厚さと同等になるように設
定する。
FIG. 2 is a diagram showing a method of manufacturing the semiconductor device of FIG. 1 in the order of steps. First, as shown in FIG.
PHS in which Au layer 12 is integrally formed on the lower surface of s substrate 11
A semiconductor chip 1 having a structure and an Al layer 2 under the Cu layer 21
A mounting substrate 2 having a two-layer structure in which the mounting substrate 2 is integrally formed is prepared. Then, as shown in FIG.
And the mounting substrate 2 at the melting temperature of AuSn (about 280).
C.) and heated to about 300.degree. At this time, the semiconductor chip 1 is made of GaAs and A
Due to the difference in coefficient of thermal expansion from u, warpage occurs due to the bimetal effect. On the other hand, the mounting substrate 2 is made of Cu and A
1 and a warp occurs due to a bimetal effect due to a difference in thermal expansion coefficient between the two. Here, the coefficient of thermal expansion of Cu constituting the mount substrate 2 is about 17E-6 / K.
, And the coefficient of thermal expansion of Al is about 23.7E-6 / K. On the other hand, the thermal expansion coefficient of GaAs constituting the semiconductor chip 1 is about 5.9E-6 / K, and the thermal expansion coefficient of Au is about 14.2E-6 / K. Therefore, the semiconductor chip 1 and the mount substrate 2 each have a warp that is concave upward due to the bimetal effect. At this time, C
By appropriately selecting the thicknesses of the u layer 21 and the Al layer 22,
The difference between the curvature radius of the semiconductor chip 1 and the curvature radius of the back surface (Au surface) of the semiconductor chip 1 and the curvature radius of the front surface (Cu surface) of the mount substrate 2 is determined by the AuSn. The thickness is set to be equal to the thickness of the solder 3.

【0011】しかる上で、図2(c)のように、マウン
ト基板2上にAuSnソルダ3を乗せると、マウント基
板2の熱によってAuSnソルダ3は溶融され、さらに
このAuSnソルダ3の溶融後にAuSnソルダ3上に
半導体チップ1を押し付けることにより、半導体チップ
1をマウント基板2の表面上にマウントし、両者を一体
化する。このとき、前記したように、半導体チップ1の
Au面の曲率半径と、マウント基板2のCu面の曲率半
径との差がAuSnソルダ3の厚さと同等であるため、
半導体チップ1とマウント基板2とは両者間の間隔を均
等に保った状態、換言すればAuSnソルダ3を均一な
厚さに保った状態でマウントが行われる。そして、前記
半導体チップ1とマウント基板2とを冷却することによ
り、図2(d)のように、半導体チップ1及びマウント
基板2の反りは平坦に戻るが、このときAuSnソルダ
3の厚さが均一なため、半導体チップ1の反りもマウン
ト基板2に平行になり平坦となる。なお、通常では、強
度上の点からマウント基板2の厚さは半導体チップ1の
厚さに比べて厚いため、冷却後のマウント基板2の平坦
性に半導体チップ1が与える影響は小さい。
Then, as shown in FIG. 2C, when the AuSn solder 3 is placed on the mount substrate 2, the AuSn solder 3 is melted by the heat of the mount substrate 2, and after the AuSn solder 3 is melted, the AuSn solder 3 is melted. By pressing the semiconductor chip 1 on the solder 3, the semiconductor chip 1 is mounted on the surface of the mounting substrate 2, and the two are integrated. At this time, as described above, since the difference between the radius of curvature of the Au surface of the semiconductor chip 1 and the radius of curvature of the Cu surface of the mount substrate 2 is equal to the thickness of the AuSn solder 3,
The semiconductor chip 1 and the mounting substrate 2 are mounted in a state where the distance between them is kept uniform, in other words, in a state where the AuSn solder 3 is kept in a uniform thickness. By cooling the semiconductor chip 1 and the mounting substrate 2, the warpage of the semiconductor chip 1 and the mounting substrate 2 returns to a flat state as shown in FIG. 2D, but at this time, the thickness of the AuSn solder 3 is reduced. Because of the uniformity, the warpage of the semiconductor chip 1 is parallel to the mount substrate 2 and becomes flat. Normally, since the thickness of the mount substrate 2 is thicker than the thickness of the semiconductor chip 1 from the point of strength, the effect of the semiconductor chip 1 on the flatness of the mount substrate 2 after cooling is small.

【0012】このように、半導体チップ1のマウント後
は、半導体チップ1の表面は平坦状態とされるため、次
のワイヤボンディング工程において、半導体チップ1の
表面が傾いていることが要因となるマーク検出率の低下
や、電極パッド13の表面が傾いていることが要因とさ
れるボンディングワイヤ6の接着不良が改善される。さ
らに、通常では、マウント基板2の熱膨張率は、GaA
sが主体の半導体チップ1の熱膨張率より大きいため、
冷却時には半導体チップ1に圧縮応力が加わり、信頼性
の低下の要因となるおそれがあるが、加熱時に上側に凹
に沿っているマウント基板2では凹側の表面に圧縮応力
が生じているため、これが熱膨張による伸張を緩和する
ことになり、その分冷却時の半導体チップ1に加わる圧
縮応力が緩和でき、前記したような問題は抑制できる。
したがって、第1の実施形態の半導体装置では、信頼性
の高い半導体装置を得ることが可能となる。
As described above, after the semiconductor chip 1 is mounted, the surface of the semiconductor chip 1 is in a flat state. Therefore, in the next wire bonding step, the mark caused by the inclination of the surface of the semiconductor chip 1 is a factor. Adhesion failure of the bonding wire 6 caused by a decrease in the detection rate and an inclination of the surface of the electrode pad 13 is improved. Further, usually, the thermal expansion coefficient of the mounting substrate 2 is GaAs.
Since s is larger than the thermal expansion coefficient of the main semiconductor chip 1,
Compressive stress is applied to the semiconductor chip 1 during cooling, which may cause a decrease in reliability. However, since compressive stress is generated on the concave side surface of the mount substrate 2 along the upper concave portion during heating, As a result, the expansion due to thermal expansion is alleviated, the compressive stress applied to the semiconductor chip 1 during cooling can be alleviated, and the above-described problem can be suppressed.
Therefore, in the semiconductor device of the first embodiment, a highly reliable semiconductor device can be obtained.

【0013】図3は本発明の第2の実施形態の斜視図で
あり、図1と等価な部分には同一符号を付してある。前
記第1の実施形態では、マウント基板の全体がCuとA
lの2層構造として構成されているが、マウント基板の
反りを決定する部分だけを2層構造とすることも可能で
ある。通常高出力用の半導体チップは基本FETを並列
に接続した構成をとるため、横長のチップとなり、長辺
方向の反りが問題となる場合が多い。そこで、第2の実
施形態では、マウント基板2Aとして、Cu層21の表
面側にタングステン(W)層23を積層したW/Cuの
2層構造を採用するが、W層23はCu層21の両側に
沿った領域にのみ形成している。すなわち、マウント基
板2の全領域をW/Cuの2層構造にした場合には、W
とソルダとしてのAuSnの接着性が悪く、また別なソ
ルダを適用したとしてもWの熱伝導性が悪いため、十分
な放熱特性が得られない。したがって、第2の実施形態
では、PHS構造の半導体チップ1をマウントする領域
以外の部分で、半導体チップ1の長辺方向には連続とな
るようにマウント基板2AをW層23とCu層21の2
層構造とし、その一方で半導体チップ1のマウント領域
は特に2層構造とはしないでCu層21の単層構造とし
ている。なお、図3において、マウント基板2A上に絶
縁板4を介してリード端子5が支持されており、このリ
ード端子5と半導体チップ1の電極パッド13とがボン
ディングワイヤ6によって電気接続されることは第1の
実施形態と同じである。
FIG. 3 is a perspective view of a second embodiment of the present invention, and portions equivalent to those in FIG. 1 are denoted by the same reference numerals. In the first embodiment, the entire mounting substrate is made of Cu and A
Although it is configured as a two-layer structure of l, only the part that determines the warpage of the mount substrate may be formed as a two-layer structure. Normally, a semiconductor chip for high output has a configuration in which basic FETs are connected in parallel, so that it is a horizontally long chip, and warping in the long side direction often becomes a problem. Therefore, in the second embodiment, a W / Cu two-layer structure in which a tungsten (W) layer 23 is laminated on the surface side of the Cu layer 21 is adopted as the mount substrate 2A. It is formed only in the region along both sides. That is, when the entire area of the mount substrate 2 has a two-layer structure of W / Cu, W
However, even if another solder is applied, the thermal conductivity of W is poor, so that sufficient heat radiation characteristics cannot be obtained. Therefore, in the second embodiment, the mounting substrate 2A is formed of the W layer 23 and the Cu layer 21 so as to be continuous in the long side direction of the semiconductor chip 1 in a portion other than the region where the semiconductor chip 1 having the PHS structure is mounted. 2
On the other hand, the mounting region of the semiconductor chip 1 has a single-layer structure of the Cu layer 21 instead of the two-layer structure. In FIG. 3, a lead terminal 5 is supported on a mount substrate 2A via an insulating plate 4, and it is possible that the lead terminal 5 and the electrode pad 13 of the semiconductor chip 1 are electrically connected by a bonding wire 6. This is the same as the first embodiment.

【0014】この構成では、Wの熱膨張率は約4.5E
−6/K程度であり、Cuの熱膨張率は約17E−6/
K程度であるので、W/Cuの2層構造部分の面積がC
uの単層領域の面積に比べて十分大きな場合には、図2
に示したマウント方法で半導体チップ1をマウント基板
2Aにマウントすることにより、半導体チップ1の長辺
方向においては、第1の実施形態と同様に半導体チップ
1を平坦化する効果がある。なお、半導体チップ1の短
辺方向では若干の反りが生じるが、辺の長さが短いため
に反りによる半導体チップ表面の傾斜や電極パッドの傾
斜は僅かであり、特に問題にはならない。また、短辺方
向の反りをも防止する場合には、図3のマウント基板2
Aの単層領域の両端部をW/Cuの2層構造にしてもよ
い。この第2の実施形態では、半導体チップ1とマウン
ト基板2Aとの接着性や放熱特性を考慮することなく、
半導体チップの反りを制御するためだけに2層構造とな
る材料を選択することができ、設計の自由度を高めるこ
とが可能となる。
In this configuration, the coefficient of thermal expansion of W is about 4.5E
−6 / K, and the coefficient of thermal expansion of Cu is about 17E-6 / K.
K, the area of the W / Cu two-layer structure is C
In the case where the area is sufficiently larger than the area of the single-layer region of u, FIG.
By mounting the semiconductor chip 1 on the mounting substrate 2A by the mounting method described in (1), there is an effect of flattening the semiconductor chip 1 in the long side direction of the semiconductor chip 1 as in the first embodiment. Although the semiconductor chip 1 slightly warps in the short side direction, since the length of the side is short, the inclination of the semiconductor chip surface and the inclination of the electrode pad due to the warp are slight, and do not cause any particular problem. In order to prevent warpage in the short side direction, the mounting substrate 2 shown in FIG.
Both ends of the single-layer region of A may have a two-layer structure of W / Cu. In the second embodiment, without considering the adhesiveness between the semiconductor chip 1 and the mounting substrate 2A and the heat radiation characteristics,
A material having a two-layer structure can be selected only for controlling the warpage of the semiconductor chip, and the degree of freedom in design can be increased.

【0015】ここで、前記第1及び第2の実施形態にお
けるマウント基板の2層構造を構成する熱膨張率の異な
る材料の層厚については特に言及していないが、これは
半導体チップにおいて生じる反り量に追従して層厚を計
算すればよい。また、マウント基板を構成する材料は、
金属に限られるものはなく、熱伝導性のよい材料であれ
ば任意に採用できる。また、マウント基板は2層に限ら
れるものではなく、3層以上の構成としてもよい。
Here, although no particular mention is made of the layer thicknesses of the materials having different coefficients of thermal expansion constituting the two-layer structure of the mount substrate in the first and second embodiments, this is due to the warpage occurring in the semiconductor chip. The layer thickness may be calculated according to the amount. Also, the material constituting the mounting substrate is
The material is not limited to metal, and any material having good heat conductivity can be adopted. Further, the mount substrate is not limited to two layers, and may have a configuration of three or more layers.

【0016】[0016]

【発明の効果】以上説明したように本発明は、PHS構
造の半導体チップをマウントするためのマウント基板の
構成として、少なくとも一部を熱膨張率の異なる材料か
らなる多層構造とし、かつ加熱された際の反りが半導体
チップが加熱されたときの反りと整合するように構成し
ているので、加熱状態でのマウントを行った後は、半導
体チップの表面はマウント基板と共に平坦状態とされる
ため、次の工程におけるマーク検出やボンディングワイ
ヤの接続を好適に行うことができ、信頼性の高い半導体
装置を得ることかてきる。また、マウント基板の平面全
領域を多層構造とすることで、前記した効果を高めるこ
とができ、また、半導体チップの長辺に沿って延長され
る部分を多層構造とすることで、半導体チップのマウン
ト性が損なわれることなく、前記した効果を得ることも
可能となる。
As described above, according to the present invention, a mounting substrate for mounting a semiconductor chip having a PHS structure has a multilayer structure at least partially formed of materials having different coefficients of thermal expansion and is heated. Since the warpage at the time is configured to match the warpage when the semiconductor chip is heated, after mounting in a heated state, the surface of the semiconductor chip is flattened together with the mount substrate, In the next step, mark detection and bonding wire connection can be suitably performed, and a highly reliable semiconductor device can be obtained. In addition, the above-described effect can be enhanced by forming the entire area of the mounting substrate in a multilayer structure, and the portion extending along the long side of the semiconductor chip is formed in a multilayer structure, so that the semiconductor chip has a multilayer structure. The above-described effects can be obtained without impairing the mountability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の半導体装置の外観斜
視図である。
FIG. 1 is an external perspective view of a semiconductor device according to a first embodiment of the present invention.

【図2】図1の半導体装置の製造方法における半導体チ
ップのマウント工程を工程順に示す図である。
FIG. 2 is a view showing a mounting step of a semiconductor chip in the method of manufacturing the semiconductor device of FIG. 1 in the order of steps;

【図3】本発明の第2の実施形態の半導体装置の外観斜
視図である。
FIG. 3 is an external perspective view of a semiconductor device according to a second embodiment of the present invention.

【図4】従来の半導体装置の外観斜視図である。FIG. 4 is an external perspective view of a conventional semiconductor device.

【図5】従来の半導体装置の製造方法における半導体チ
ップのマウント工程を工程順に示す図である。
FIG. 5 is a view showing a semiconductor chip mounting step in a conventional method of manufacturing a semiconductor device in the order of steps.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 マウント基板 2A マウント基板 2B マウント基板 3 AuSnソルダ 4 絶縁板 5 リード端子 6 ボンディングワイヤ 11 GaAs基板 12 Au層 13 電極パッド 21 Cu層 22 Al層 23 W層 Reference Signs List 1 semiconductor chip 2 mount substrate 2A mount substrate 2B mount substrate 3 AuSn solder 4 insulating plate 5 lead terminal 6 bonding wire 11 GaAs substrate 12 Au layer 13 electrode pad 21 Cu layer 22 Al layer 23 W layer

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体層の裏面に金属層が形成されたP
HS構造の半導体チップをマウント基板上にマウントし
ている半導体装置において、前記マウント基板の少なく
とも一部を熱膨張率の異なる材料からなる多層構造と
し、かつ加熱された際の反りが前記半導体チップが加熱
されたときの反りと整合するように構成したことを特徴
とする半導体装置。
1. A semiconductor device comprising a metal layer formed on a back surface of a semiconductor layer.
In a semiconductor device in which a semiconductor chip having an HS structure is mounted on a mount substrate, at least a part of the mount substrate has a multilayer structure made of a material having a different coefficient of thermal expansion, and the semiconductor chip is warped when heated. A semiconductor device, which is configured to match warpage when heated.
【請求項2】 前記マウント基板は、平面全領域が多層
構造である請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the mount substrate has a multilayer structure over the entire plane.
【請求項3】 前記マウント基板は、マウントされる半
導体チップの長辺に沿って延長される部分が多層構造で
ある請求項1に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a portion of the mount substrate extending along a long side of the semiconductor chip to be mounted has a multilayer structure.
【請求項4】 前記半導体チップはGaAs基板の裏面
にAu層が一体に形成されており、前記マウント基板は
Cu基板の全領域にAl層積層されている請求項
記載の半導体装置。
Wherein said semiconductor chip is an Au layer is formed integrally on the rear surface of the GaAs substrate, the mounting substrate is a semiconductor device according to claim 2 in which an Al layer is laminated on the entire area of the Cu substrate.
【請求項5】 前記半導体チップはGaAs基板の裏面
にAu層が一体に形成されており、前記マウント基板は
Cu基板の一部の領域にW層が積層されている請求項3
に記載の半導体装置。
5. The semiconductor device according to claim 1, wherein the semiconductor chip is a back surface of a GaAs substrate.
And an Au layer is integrally formed, and the mounting substrate is
4. A W layer is laminated on a partial region of the Cu substrate.
3. The semiconductor device according to claim 1.
【請求項6】 前記半導体チップはソルダによって前記
マウント基板にマウントされ、前記半導体チップの反り
時の曲率半径と前記マウント基板の反り時の曲率半径と
の差が前記ソルダの層厚と同等である請求項1ないし5
のいずれかに記載の半導体装置。
6. The semiconductor chip is mounted on the mount substrate by solder, and a difference between a curvature radius of the semiconductor chip when warped and a curvature radius of the mount substrate when warped is equal to the thickness of the solder. Claims 1 to 5
The semiconductor device according to any one of the above.
【請求項7】 前記半導体チップは表面に電極パッドが
配設され、前記電極パッドは前記マウント基板に搭載さ
れたリード端子にボンディングワイヤにより電気接続さ
れる請求項1ないしのいずれかに記載に半導体装置。
Wherein said semiconductor chip electrode pads on the surface is arranged, the electrode pads as described in any one of the claims 1 to be electrically connected by bonding wires to the lead terminal mounted on the mounting substrate 6 Semiconductor device.
JP32093998A 1998-11-11 1998-11-11 Semiconductor device Expired - Fee Related JP3216620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32093998A JP3216620B2 (en) 1998-11-11 1998-11-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32093998A JP3216620B2 (en) 1998-11-11 1998-11-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2000150741A JP2000150741A (en) 2000-05-30
JP3216620B2 true JP3216620B2 (en) 2001-10-09

Family

ID=18126978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32093998A Expired - Fee Related JP3216620B2 (en) 1998-11-11 1998-11-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3216620B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958535B2 (en) * 2000-09-22 2005-10-25 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and semiconductor module using the same
JP5480722B2 (en) * 2010-05-28 2014-04-23 新光電気工業株式会社 Heat dissipation component and semiconductor package provided with the same
JP2014183128A (en) * 2013-03-18 2014-09-29 Fujikura Ltd Laminate structure and semiconductor device
DE102015114521B4 (en) * 2015-08-31 2018-07-26 Infineon Technologies Ag Method for soldering an insulating substrate onto a carrier
US11304290B2 (en) * 2017-04-07 2022-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods

Also Published As

Publication number Publication date
JP2000150741A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US6650006B2 (en) Semiconductor package with stacked chips
US7518155B2 (en) Light emitting element mounting member, and semiconductor device using the same
JP2548350B2 (en) Heat dissipation interconnect tape used for tape self-bonding
JP3333409B2 (en) Semiconductor module
US20070126016A1 (en) Light emitting device and manufacture method thereof
JPS6038867B2 (en) Isolated semiconductor device
JP2757805B2 (en) Semiconductor device
JPH04293259A (en) Semiconductor device and manufacture thereof
JP3336982B2 (en) Semiconductor device and method of manufacturing the same
JP3216620B2 (en) Semiconductor device
JP3912130B2 (en) Submount
KR102267462B1 (en) Element submount and method for manufacturing the same
TWI775075B (en) Ceramic substrate assemblies and components with metal thermally conductive bump pads
JP2000286289A (en) Board laminated with metal, and semiconductor device
JP3139523B2 (en) Radiation fin
JPH0637217A (en) Semiconductor device
JPH07321258A (en) Semiconductor device
JPH07105460B2 (en) Semiconductor device
JPS6159660B2 (en)
WO2021240944A1 (en) Semiconductor device
JP2521624Y2 (en) Semiconductor device
KR100708604B1 (en) Light emitting diode using low melting point metal bump and method of manufacturing the same
KR100481926B1 (en) General chip type semiconductor package and flip chip type semiconductor package and manufacturing method
JP3769139B2 (en) Power semiconductor module
JP2004186322A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees