JP3215680B1 - Catalyst for removing CO in hydrogen gas - Google Patents

Catalyst for removing CO in hydrogen gas

Info

Publication number
JP3215680B1
JP3215680B1 JP07327099A JP7327099A JP3215680B1 JP 3215680 B1 JP3215680 B1 JP 3215680B1 JP 07327099 A JP07327099 A JP 07327099A JP 7327099 A JP7327099 A JP 7327099A JP 3215680 B1 JP3215680 B1 JP 3215680B1
Authority
JP
Japan
Prior art keywords
catalyst
platinum
zirconia carrier
supported
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07327099A
Other languages
Japanese (ja)
Other versions
JP2003200048A (en
Inventor
哲 五十嵐
洋和 東
学 溝渕
登 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP07327099A priority Critical patent/JP3215680B1/en
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to EP00909671A priority patent/EP1161991B1/en
Priority to DE60044334T priority patent/DE60044334D1/en
Priority to KR10-2000-7014988A priority patent/KR100386435B1/en
Priority to PCT/JP2000/001600 priority patent/WO2000054879A1/en
Priority to US09/720,262 priority patent/US6777117B1/en
Priority to CNB008009414A priority patent/CN1174802C/en
Priority to CA002336847A priority patent/CA2336847C/en
Application granted granted Critical
Publication of JP3215680B1 publication Critical patent/JP3215680B1/en
Priority to HK02103250.7A priority patent/HK1042064B/en
Publication of JP2003200048A publication Critical patent/JP2003200048A/en
Priority to US10/823,609 priority patent/US20050031920A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

【要約】 【課題】 水素ガス中のCOを広い温度範囲で効率良く
除去することができる水素ガス中のCO除去用触媒を提
供する。 【解決手段】 ジルコニア担体に、少なくとも白金を担
持させてCO除去用触媒を調製する。
An object of the present invention is to provide a catalyst for removing CO in hydrogen gas which can efficiently remove CO in hydrogen gas in a wide temperature range. SOLUTION: A catalyst for removing CO is prepared by supporting at least platinum on a zirconia carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素リッチなガス
に含まれるCOを選択的に水性ガスシフト反応によって
転化除去するために用いられるCO除去用触媒に関する
ものである。
The present invention relates to a catalyst for removing CO used for selectively converting and removing CO contained in a hydrogen-rich gas by a water gas shift reaction.

【0002】[0002]

【従来の技術】炭化水素系の気体や液体、固体、あるい
はメタノール等のアルコールなど、燃料を水蒸気と水蒸
気改質反応させて得られる水素リッチな改質ガスは、燃
料電池発電システムにおいて、燃料水素の供給源として
利用されている。燃料電池は、使用する燃料や電解質の
種類、作動温度などで分類されるが、固体高分子型燃料
電池は作動温度が低く、出力密度が高く、小型軽量化や
作動時間の短縮化が期待できるので、自動車、小型発電
器、家庭用コジェネレーションシステム等への利用が考
えられている。
2. Description of the Related Art A hydrogen-rich reformed gas obtained by subjecting a fuel to steam reforming with steam, such as a hydrocarbon gas, a liquid, a solid, or an alcohol such as methanol, is used in a fuel cell power generation system. Used as a source of Fuel cells are classified according to the type of fuel and electrolyte used, operating temperature, etc.Polymer fuel cells have low operating temperatures, high power densities, and can be expected to be smaller, lighter, and shorter in operating time. Therefore, use in automobiles, small generators, home cogeneration systems, and the like has been considered.

【0003】ここで、固体高分子型燃料電池は、パーフ
ルオロスルフォン酸系の高分子膜をプロトン伝導性固体
電解質として使用するものであり、50〜100℃の温
度で作動する。しかしこのように固体高分子型燃料電池
は低温作動のため、水素リッチな改質ガス中に含まれる
不純物によって被毒され易い。特に電極に使用されてい
る白金はCOによって被毒され易く、改質ガス中に所定
濃度以上のCOが含まれていると発電性能が低下する。
Here, the polymer electrolyte fuel cell uses a perfluorosulfonic acid-based polymer membrane as a proton-conductive solid electrolyte, and operates at a temperature of 50 to 100 ° C. However, since the polymer electrolyte fuel cell operates at a low temperature, it is easily poisoned by impurities contained in the hydrogen-rich reformed gas. In particular, the platinum used for the electrode is easily poisoned by CO, and if the reformed gas contains more than a predetermined concentration of CO, the power generation performance decreases.

【0004】そこで、燃料を水素リッチな改質ガスに改
質する改質器の後段にCO除去装置を設け、COを選択
的に水性ガスシフト反応によって転化除去して、CO濃
度を1%以下に低減する必要がある。そしてこのCO除
去のために用いられるCO除去用触媒として、従来から
一般にCu−Zn系触媒が使用されている。
Therefore, a CO remover is provided downstream of the reformer for reforming the fuel into a hydrogen-rich reformed gas, and CO is selectively converted and removed by a water gas shift reaction to reduce the CO concentration to 1% or less. Need to reduce. As a CO removal catalyst used for the CO removal, a Cu—Zn-based catalyst has been generally used conventionally.

【0005】[0005]

【発明が解決しようとする課題】しかしCu−Zn系触
媒は活性が低いため、COを1%以下に低減させるため
には大量に使用する必要があり、また活性が経時劣化す
るため、定期的に触媒交換をする必要があるという問題
があった。従って、従来のCu−Zn系触媒では、起動
と停止が繰り返して行なわれる小型・可搬型の燃料電池
システムには適用することが難しいものであった。
However, since the activity of the Cu-Zn catalyst is low, it is necessary to use a large amount to reduce CO to 1% or less, and the activity deteriorates with time. However, there is a problem that the catalyst needs to be replaced. Therefore, it is difficult to apply the conventional Cu—Zn-based catalyst to a small and portable fuel cell system in which starting and stopping are repeatedly performed.

【0006】本発明は上記の点に鑑みてなされたもので
あり、水素ガス中のCOを広い温度範囲で効率良く除去
することができる水素ガス中のCO除去用触媒を提供す
ることを目的とするものである。
The present invention has been made in view of the above points, and has as its object to provide a catalyst for removing CO in hydrogen gas which can efficiently remove CO in hydrogen gas over a wide temperature range. Is what you do.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
水素ガス中のCO除去用触媒は、ジルコニア担体に、少
なくとも白金を担持させて成ることを特徴とするもので
ある。
According to the first aspect of the present invention, there is provided a catalyst for removing CO in hydrogen gas, wherein at least platinum is supported on a zirconia carrier.

【0008】また請求項2の発明は、上記請求項1にお
いて、上記白金の担持量が、ジルコニア担体重量に対し
て、0.1〜10重量%であることを特徴とするもので
ある。
Further, the invention of claim 2 is characterized in that, in the above-mentioned claim 1, the amount of the supported platinum is 0.1 to 10% by weight based on the weight of the zirconia carrier.

【0009】また請求項3の発明は、ジルコニア担体に
上記白金の他に、レニウムを担持させて成ることを特徴
とするものである。
A third aspect of the present invention is characterized in that the zirconia carrier carries rhenium in addition to the platinum.

【0010】また請求項4の発明は、上記レニウムの担
持量が、ジルコニア担体重量に対して、0.1〜10重
量%であることを特徴とするものである。
The invention according to claim 4 is characterized in that the amount of rhenium supported is 0.1 to 10% by weight based on the weight of the zirconia carrier.

【0011】また請求項5の発明は、ジルコニア担体に
白金の他に、イットリウム、カルシウム、クロム、サマ
リウム、セリウム、タングステン、ネオジウム、プラセ
オジム、マグネシウム、モリブデン、ランタンから選ば
れる少なくとも一種の金属を担持させて成ることを特徴
とするものである。
According to a fifth aspect of the present invention, the zirconia carrier has at least one metal selected from the group consisting of yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum, and lanthanum, in addition to platinum. It is characterized by comprising.

【0012】また請求項6の発明は、上記請求項5の金
属の担持量が、ジルコニア担体重量に対して、0.1〜
10重量%であることを特徴とするものである。
Further, the invention according to claim 6 is characterized in that the amount of the metal loaded in claim 5 is 0.1 to 0.1% based on the weight of the zirconia carrier.
It is characterized by being 10% by weight.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0014】本発明において触媒担体としてジルコニア
担体を用いるものであり、ジルコニア担体は例えば出発
原料である水酸化ジルコニウム水和物を焼成することに
よって調製することができる。
In the present invention, a zirconia carrier is used as a catalyst carrier. The zirconia carrier can be prepared, for example, by calcining a starting material, zirconium hydroxide hydrate.

【0015】このジルコニア担体に白金を担持させるに
あたっては、ジルコニア担体に白金の塩の水溶液を加
え、これを撹拌しながら蒸発乾固させ、得られた乾固形
物を加熱して乾燥し、この乾燥物を粉砕した後に焼成す
ることによって行なうことができる。そしてこれをプレ
スしてペレット状にし、得られたペレットを0.5〜
1.0mmの粒径に粉砕することによって、ジルコニア
担体に白金を担持させたCO除去用触媒として使用する
ことができるものである。
When platinum is supported on the zirconia support, an aqueous solution of a platinum salt is added to the zirconia support, the mixture is evaporated to dryness with stirring, and the resulting dry solid is dried by heating. It can be performed by baking after pulverizing the product. Then, this is pressed to form a pellet, and the obtained pellet is 0.5 to
By pulverizing to a particle diameter of 1.0 mm, the catalyst can be used as a CO removal catalyst in which platinum is supported on a zirconia carrier.

【0016】ここで、CO除去用触媒において、白金の
担持量は、ジルコニア担体重量に対して、0.1〜10
重量%の範囲が好ましい。白金の担持量が0.1重量%
未満の場合は、水性ガスシフト反応によってH2中のC
OをCO2に転化させて除去する際の触媒活性を十分に
得ることが困難であり、また白金の担持量が10重量%
を超えても触媒活性はそれ以上向上せず、コスト的に不
利になる。
Here, in the CO removal catalyst, the amount of supported platinum is 0.1 to 10% based on the weight of the zirconia carrier.
A range of weight% is preferred. 0.1% by weight of platinum carried
Is less than C in H 2 by the water gas shift reaction.
It is difficult to obtain sufficient catalytic activity when removing O by converting it to CO 2 , and the amount of supported platinum is 10% by weight.
If the temperature exceeds the above, the catalytic activity is not further improved, and the cost is disadvantageous.

【0017】ジルコニア担体には白金の他に他の金属を
担持させてCO除去用触媒を得ることもできる。この他
の金属としては、レニウムや、イットリウム、カルシウ
ム、クロム、サマリウム、セリウム、タングステン、ネ
オジウム、プラセオジム、マグネシウム、モリブデン、
ランタンを用いることができるものであり、これらの中
から一種あるいは二種以上を選んでジルコニア担体に担
持させることができる。
A catalyst for removing CO can be obtained by supporting other metals besides platinum on the zirconia carrier. Other metals include rhenium, yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum,
Lanthanum can be used, and one or more of these can be selected and supported on a zirconia carrier.

【0018】白金の他に上記の金属をジルコニア担体に
担持させたCO除去用触媒を調製するにあたっては、金
属としてイットリウム、カルシウム、クロム、サマリウ
ム、セリウム、タングステン、ネオジウム、プラセオジ
ム、マグネシウム、モリブデン、ランタンを用いる場合
には、塩化白金酸水溶液と共にこれらの金属の塩の水溶
液を加え、これを撹拌しながら蒸発乾固させ、得られた
乾固形物を加熱して乾燥し、この乾燥物を粉砕した後に
焼成することによって、行なうことができる。そしてこ
れをプレスしてペレット状にし、得られたペレットを
0.5〜1.0mmの粒径に粉砕することによって、ジ
ルコニア担体に白金とこれらの金属を担持させたCO除
去用触媒として使用することができるものである。
In preparing a CO removal catalyst in which the above metal is supported on a zirconia carrier in addition to platinum, yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum, lanthanum are used as metals. When using, an aqueous solution of these metal salts was added together with an aqueous solution of chloroplatinic acid, and the mixture was evaporated to dryness with stirring, and the obtained dry solid was dried by heating, and the dried product was pulverized. This can be performed by baking later. Then, this is pressed to form a pellet, and the obtained pellet is pulverized to a particle size of 0.5 to 1.0 mm to be used as a CO removal catalyst in which platinum and these metals are supported on a zirconia carrier. Is what you can do.

【0019】また白金の他に金属としてレニウムをジル
コニア担体に担持させたCO除去用触媒を調製する場合
には、まずレニウムの塩の水溶液をジルコニア担体に加
え、これを撹拌しながら蒸発乾固させ、得られた乾固形
物を加熱して乾燥し、この乾燥物を粉砕した後に焼成す
ることによって、レニウムをジルコニア担体に担持させ
る。このようにしてレニウムをジルコニア担体に担持さ
せた後、上記と同様にして白金をジルコニア担体に担持
させることによって、白金とレニウムをジルコニア担体
に担持させたCO除去用触媒を得ることができるもので
ある。
When preparing a catalyst for removing CO in which rhenium as a metal in addition to platinum is supported on a zirconia support, first, an aqueous solution of a rhenium salt is added to the zirconia support, and this is evaporated to dryness with stirring. The resulting dried solid is heated and dried, and the dried product is pulverized and then fired, whereby rhenium is supported on the zirconia carrier. After supporting rhenium on the zirconia carrier in this manner, by supporting platinum on the zirconia carrier in the same manner as described above, a CO removal catalyst in which platinum and rhenium are supported on the zirconia carrier can be obtained. is there.

【0020】白金の他に上記の各金属をジルコニア担体
に担持させることによって、CO除去の触媒活性を高め
ることができると共に、H2中のCOをCO2に転化させ
て除去する際に、COがH2と反応してメタン化するメ
タネーション反応が起こることを防止することができる
ものである。特に上記金属としてレニウムを用いること
によって、CO除去の触媒活性を高める効果を高く得る
ことができる。ここで、CO除去用触媒において、上記
の金属の担持量は、ジルコニア担体重量に対して、金属
に換算して0.1〜10重量%の範囲が好ましい。上記
の金属の担持量が0.1重量%未満の場合は、メタネー
ション反応を防止する効果を十分に得ることが難しく、
また上記の金属の担持量が10重量%を超えてもメタネ
ーション反応を防止する効果はそれ以上向上せず、コス
ト的に不利になる。
[0020] By addition to the above metal of the platinum is supported on the zirconia support, it is possible to increase the catalytic activity of the CO removal, in removing by conversion of CO in H 2 to CO 2, CO Can react with H 2 to prevent methanation reaction from occurring. In particular, by using rhenium as the metal, it is possible to obtain a high effect of increasing the catalytic activity for removing CO. Here, in the CO removal catalyst, the amount of the metal supported is preferably in the range of 0.1 to 10% by weight in terms of metal, based on the weight of the zirconia carrier. When the amount of the metal supported is less than 0.1% by weight, it is difficult to sufficiently obtain the effect of preventing the methanation reaction,
Further, even if the amount of the metal supported exceeds 10% by weight, the effect of preventing the methanation reaction is not further improved, which is disadvantageous in cost.

【0021】[0021]

【実施例】次に、本発明を実施例によって具体的に説明
する。
Next, the present invention will be described specifically with reference to examples.

【0022】(実施例1〜5)水酸化ジルコニウムn水
和物(三津和化学薬品株式会社製)を、焼成炉を用い
て、60ミリリットル/分の空気気流中で500℃まで
1時間昇温し、同温度で1時間保持する条件で焼成処理
することによって、酸化ジルコニウムにし、これをジル
コニア担体とした。
(Examples 1 to 5) The temperature of zirconium hydroxide n-hydrate (manufactured by Mitsui Chemicals, Inc.) was raised to 500 ° C. for 1 hour in an air stream at 60 ml / min using a firing furnace. Then, a baking treatment was performed at the same temperature for one hour to obtain zirconium oxide, which was used as a zirconia carrier.

【0023】上記のようにして得られたジルコニア担体
を湯浴上の蒸発皿に所定量入れ、これに純水を混ぜて馴
染ませた。ここに塩化白金酸六水和物(ナカライテスク
株式会社製)の水溶液を加え、さらに純水を加えて所定
濃度になるようにした。これを湯浴上で撹拌しながら、
水分の蒸発に伴って蒸発皿の壁面に付着する金属塩を純
水で洗い落とし、1時間蒸発乾固させ、得られた乾固形
物を約100℃で15時間以上乾燥させた。乾燥物をメ
ノウ乳鉢で粉末状に砕いた後、焼成炉を用いて、60m
リットル/minの空気気流中で500℃まで1時間昇
温し、同温度で1時間保持する条件で焼成処理した。次
に、手動式油圧圧縮機を用いて約3600kg/cm2
の圧力で10秒間プレスし、得られたペレットを0.5
〜1.0mmの粒径に粉砕して、ジルコニア担体に白金
を担持させたCO除去用触媒を得た。
A predetermined amount of the zirconia carrier obtained as described above was placed in an evaporating dish on a hot water bath, and mixed with pure water to be familiarized. An aqueous solution of chloroplatinic acid hexahydrate (manufactured by Nacalai Tesque, Inc.) was added thereto, and pure water was further added to adjust the concentration to a predetermined concentration. While stirring this on a hot water bath,
The metal salt adhering to the wall surface of the evaporating dish with the evaporation of water was washed off with pure water, evaporated to dryness for 1 hour, and the obtained dry solid was dried at about 100 ° C. for 15 hours or more. After the dried product was crushed into a powder form in an agate mortar, it was baked in a baking oven for 60 m.
In a liter / min air flow, the temperature was raised to 500 ° C. for 1 hour, and calcination was performed under the condition of maintaining the temperature at the same temperature for 1 hour. Then, using a manual hydraulic compressor, about 3600 kg / cm 2
And the resulting pellets were pressed for 0.5 seconds.
The catalyst was pulverized to a particle size of about 1.0 mm to obtain a CO removal catalyst in which platinum was supported on a zirconia carrier.

【0024】ここで、塩化白金酸水溶液の添加量を調整
することによって、白金の担持量が表1のようになる実
施例1〜5のCO除去用触媒を調製した。
Here, by adjusting the amount of the chloroplatinic acid aqueous solution to be added, the catalysts for removing CO of Examples 1 to 5 in which the supported amount of platinum was as shown in Table 1 were prepared.

【0025】[0025]

【表1】 [Table 1]

【0026】上記の実施例1〜5のCO除去用触媒につ
いて、CO除去性能を評価した。評価実験は次のように
して行なった。まずCO除去用触媒0.7ミリリットル
を反応管に充填し、水素を流しながら500℃まで1時
間で昇温し、その後1時間同温度を保持して還元処理を
行なった。次にヘリウムを流しながら1時間で200℃
まで降温した後、ヘリウムの供給を止め、H2OとCO
をH2O/CO=1.3のモル比で混合したCO含有ガ
スを3650SV[1/h](CO基準)の条件で供給
し、反応温度200℃でCO除去反応の実験を開始し
た。反応が安定した後、反応管の入り口と出口の試料を
採取してガスクロマトグラフィ(熱伝導度検出器)によ
って分析し、COがCO2に転化されるCO転化率を求
めた。また、反応温度を250℃、300℃、350℃
に昇温させ、同様に反応が安定した後の試料を採取して
分析し、CO転化率を求めた。
With respect to the CO removing catalysts of Examples 1 to 5, the CO removing performance was evaluated. The evaluation experiment was performed as follows. First, 0.7 ml of a CO removal catalyst was charged into a reaction tube, and the temperature was raised to 500 ° C. for 1 hour while flowing hydrogen, and then the reduction treatment was performed at the same temperature for 1 hour. Next, 200 ° C for 1 hour while flowing helium
After the temperature dropped to, the supply of helium was stopped, and H 2 O and CO
Was fed under the conditions of H 2 and O / CO = 1.3 CO-containing gas mixture in a molar ratio of 3650SV [1 / h] (CO standard), the experiment was started the CO removal reaction at a reaction temperature of 200 ° C.. After the reaction was stabilized, samples at the inlet and outlet of the reaction tube were collected and analyzed by gas chromatography (thermal conductivity detector) to determine the CO conversion at which CO was converted to CO 2 . The reaction temperature is set at 250 ° C, 300 ° C, 350 ° C.
, And a sample after the reaction was similarly stabilized was collected and analyzed to determine the CO conversion.

【0027】尚、比較例として、Cu/ZnO触媒(日
揮化学株式会社製「N211」)を用い、300℃で還
元処理をするようにした他は、同様にしてCO除去の実
験を行なった。
As a comparative example, an experiment for removing CO was performed in the same manner except that the reduction treatment was performed at 300 ° C. using a Cu / ZnO catalyst (“N211” manufactured by JGC Chemicals, Inc.).

【0028】結果を図1に示す。図1の結果にみられる
ように、各実施例のPt/ZrO2触媒は比較例のCu
/ZnO触媒よりも活性が高いことが確認される。
FIG. 1 shows the results. As can be seen from the results of FIG. 1, the Pt / ZrO 2 catalysts of the respective examples are comparable to those of the comparative example.
It is confirmed that the activity is higher than that of the / ZnO catalyst.

【0029】次に、触媒の活性経時変化を測定した。実
験は実施例3、実施例4、比較例の触媒について行なっ
た。まず上記の還元処理を行なった後、ヘリウムを流し
ながら1時間で250℃まで降温させ、ヘリウムを止め
て上記と同様にしてCO含有ガスを供給し、反応が安定
した後、30分毎に反応管の入り口と出口の試料を採取
してガスクロマトグラフィによって分析し、CO転化率
を求めた。
Next, the change with time of the activity of the catalyst was measured. The experiments were performed on the catalysts of Example 3, Example 4, and Comparative Example. First, after performing the above-mentioned reduction treatment, the temperature was lowered to 250 ° C. in one hour while flowing helium, the helium was stopped, and a CO-containing gas was supplied in the same manner as above, and the reaction was stabilized. Samples at the inlet and outlet of the tube were taken and analyzed by gas chromatography to determine the CO conversion.

【0030】結果を図2に示す。図2の結果にみられる
ように、比較例のCu/ZnO触媒は実験開始直後より
活性が徐々に劣化しているのに対して、実施例3,4の
Pt/ZrO2触媒の活性は劣化しないことが確認され
る。
FIG. 2 shows the results. As can be seen from the results in FIG. 2, the activity of the Cu / ZnO catalyst of the comparative example gradually deteriorated immediately after the start of the experiment, whereas the activity of the Pt / ZrO 2 catalyst of Examples 3 and 4 deteriorated. Will be confirmed.

【0031】(実施例6)上記の(実施例1〜5)で調
製したジルコニア担体を湯浴上の蒸発皿に所定量入れ、
これに純水を混ぜて馴染ませた。ここに塩化白金酸六水
和物(ナカライテスク株式会社製)の水溶液と硝酸ラン
タン六水和物(和光純薬工業株式会社製)の水溶液を加
え、さらに純水を加えて所定濃度になるようにした。こ
れを湯浴上で撹拌しながら、水分の蒸発に伴って蒸発皿
の壁面に付着する金属塩を純水で洗い落とし、1時間蒸
発乾固させ、得られた乾固形物を約100℃で15時間
以上乾燥させた。乾燥物をメノウ乳鉢で粉末状に砕いた
後、焼成炉を用いて、60mリットル/minの空気気
流中で500℃まで1時間昇温し、同温度で1時間保持
する条件で焼成処理することによって、ジルコニア担体
に白金を3.0重量%の担持量で、ランタンを5.0重
量%の担持量でそれぞれ担持させた。次に、手動式油圧
圧縮機を用いて約3600kg/cm2の圧力で10秒
間プレスし、得られたペレットを0.5〜1.0mmの
粒径に粉砕して、ジルコニア担体に白金とランタンを担
持させたCO除去用触媒を得た。
(Example 6) A predetermined amount of the zirconia carrier prepared in (Examples 1 to 5) was placed in an evaporating dish on a hot water bath.
This was mixed with pure water and blended. An aqueous solution of chloroplatinic acid hexahydrate (manufactured by Nacalai Tesque Co., Ltd.) and an aqueous solution of lanthanum nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are added thereto, and pure water is further added so as to have a predetermined concentration. I made it. While stirring this in a hot water bath, metal salts adhering to the wall surface of the evaporating dish as the water evaporates are washed away with pure water, and evaporated to dryness for 1 hour. Let dry for more than an hour. After the dried product is crushed into a powder in an agate mortar, the temperature is raised to 500 ° C. for 1 hour in an air stream of 60 ml / min using a firing furnace, and the firing is performed under the condition of maintaining the temperature for 1 hour. Thus, platinum was loaded on the zirconia support at a loading of 3.0% by weight, and lanthanum was loaded at a loading of 5.0% by weight. Next, using a manual hydraulic compressor, the mixture was pressed at a pressure of about 3600 kg / cm 2 for 10 seconds, and the obtained pellets were crushed to a particle size of 0.5 to 1.0 mm, and platinum and lanthanum were added to the zirconia carrier. Was obtained.

【0032】(実施例7〜16)硝酸ランタン六水和物
の代わりに表2の担持金属原料を用い、上記(実施例
6)と同様にして、白金の他に表3に示す他の金属をジ
ルコニア担体に担持させたCO除去用触媒を得た。
(Examples 7 to 16) In the same manner as in the above (Example 6) except that the supported metal raw materials shown in Table 2 were used instead of lanthanum nitrate hexahydrate, other metals shown in Table 3 were used in addition to platinum. Was supported on a zirconia support to obtain a CO removal catalyst.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】上記のようにして得た実施例6〜16及び
実施例3の触媒について、上記と同様にしてCO除去の
実験を行なった。結果を図3に示す。図3は反応温度3
50℃でCOをCO2に転化させて除去するにあたっ
て、COがCH4へ転化されずCO2に転化される率であ
る反応選択率を示すものであり、実施例6〜16の触媒
は、白金のみを担持する実施例3のものよりも反応選択
率が高いことが確認される。
The catalysts of Examples 6 to 16 and Example 3 obtained as described above were subjected to an experiment for removing CO in the same manner as described above. The results are shown in FIG. FIG. 3 shows the reaction temperature 3
At the time of converting CO to CO 2 at 50 ° C. to remove it, the reaction selectivity is a rate at which CO is converted to CO 2 without being converted to CH 4 , and the catalysts of Examples 6 to 16 are: It is confirmed that the reaction selectivity is higher than that of Example 3 supporting only platinum.

【0036】(実施例17)上記の(実施例1〜5)で
調製したジルコニア担体を湯浴上の蒸発皿に所定量入
れ、これに純水を混ぜて馴染ませた。ここに過レニウム
酸アンモニウム(三津和化学薬品株式会社製)の水溶液
を加え、さらに純水を加えて所定濃度になるようにし
た。これを湯浴上で撹拌しながら、水分の蒸発に伴って
蒸発皿の壁面に付着する金属塩を純水で洗い落とし、約
100℃で15時間以上乾燥させ、ジルコニア担体にレ
ニウムを担持させた。次に、このレニウムを担持させた
ジルコニア担体を用い、上記の(実施例1〜5)と同様
にして白金を担持させ、白金を3.0重量%の担持量
で、レニウムを1.0重量%の担持量でジルコニア担体
にそれぞれ担持させたCO除去用触媒を得た。
(Example 17) A predetermined amount of the zirconia carrier prepared in the above (Examples 1 to 5) was put in an evaporating dish on a hot water bath, and mixed with pure water to make it familiar. An aqueous solution of ammonium perrhenate (manufactured by Mitsui Chemicals, Inc.) was added thereto, and pure water was further added to adjust the concentration to a predetermined value. While stirring this in a hot water bath, the metal salt adhering to the wall surface of the evaporating dish with the evaporation of water was washed away with pure water, dried at about 100 ° C. for 15 hours or more, and rhenium was supported on the zirconia carrier. Next, using this zirconia carrier carrying rhenium, platinum was carried in the same manner as in the above (Examples 1 to 5), and platinum was carried at 3.0 wt% and rhenium was added at 1.0 wt%. % Of the zirconia carrier, to obtain a catalyst for CO removal.

【0037】(実施例18)過レニウム酸アンモニウム
(三津和化学薬品株式会社製)の水溶液の添加量を調整
するようにした他は上記実施例(実施例17)と同様に
して、白金を3.0重量%の担持量で、レニウムを3.
0重量%の担持量でジルコニア担体にそれぞれ担持させ
たCO除去用触媒を得た。
Example 18 The procedure of Example 17 was repeated except that the amount of the aqueous solution of ammonium perrhenate (manufactured by Mitsui Chemicals, Inc.) was adjusted. At a loading of 0.0% by weight, rhenium was added at 3.
A catalyst for CO removal supported on a zirconia carrier at a supported amount of 0% by weight was obtained.

【0038】上記のようにして得た実施例17,18及
び実施例3、比較例の触媒について、上記と同様にして
CO除去の実験を行なった。結果を図4に示す。図4に
みられるように、実施例17,18の触媒は高い活性を
有し、特に250℃以下の低温で高活性であることが確
認される。
The catalysts of Examples 17 and 18 and Example 3 and Comparative Example obtained as described above were subjected to an experiment for removing CO in the same manner as described above. FIG. 4 shows the results. As shown in FIG. 4, it is confirmed that the catalysts of Examples 17 and 18 have high activity, and particularly high activity at a low temperature of 250 ° C. or lower.

【0039】[0039]

【発明の効果】上記のように本発明の請求項1に係る水
素ガス中のCO除去用触媒は、ジルコニア担体に、少な
くとも白金を担持させて成ることを特徴とするものであ
り、水性ガスシフト反応によって水素ガス中のCOをC
2 に転化させて除去するにあたって、水素ガス中のC
Oを広い温度範囲で効率良く除去することができ、起動
・停止を繰り返す小型で可搬型の燃料電池発電システム
に容易に適用することができるものである。
As described above, the catalyst for removing CO in hydrogen gas according to the first aspect of the present invention is characterized in that at least platinum is supported on a zirconia carrier, and the water gas shift reaction is carried out. CO in hydrogen gas by C
When converting to O 2 for removal , C in hydrogen gas
O can be efficiently removed in a wide temperature range, and can be easily applied to a small and portable fuel cell power generation system that repeatedly starts and stops.

【0040】また請求項2の発明は、上記請求項1にお
いて、白金の担持量が、ジルコニア担体重量に対して、
0.1〜10重量%であることを特徴とするものであ
り、白金によるCO除去の触媒活性を有効に得ることが
きるものである。
Further, according to the invention of claim 2, in the above-mentioned claim 1, the amount of supported platinum is based on the weight of the zirconia carrier.
0.1 to 10% by weight, and it is possible to effectively obtain catalytic activity for removing CO by platinum.
One in which possible.

【0041】また請求項3の発明は、ジルコニア担体に
上記白金の他に、レニウムを担持させて成ることを特徴
とするものであり、CO除去の触媒活性を高めることが
できると共に、メタネーション反応が起こることを防止
することができるものである。
Further, the invention of claim 3 is characterized in that the zirconia carrier carries rhenium in addition to the above platinum, so that the catalytic activity for removing CO can be enhanced and the methanation reaction can be carried out. Can be prevented from occurring.

【0042】また請求項4の発明は、上記レニウムの担
持量が、ジルコニア担体重量に対して、0.1〜10重
量%であることを特徴とするものであり、メタネーショ
ン反応を防ぐ効果を有効に得ることができるものであ
る。
Further, the invention of claim 4 is characterized in that the amount of rhenium supported is 0.1 to 10% by weight based on the weight of the zirconia carrier, and the effect of preventing methanation reaction is provided. It can be obtained effectively.

【0043】また請求項5の発明は、ジルコニア担体に
白金の他に、イットリウム、カルシウム、クロム、サマ
リウム、セリウム、タングステン、ネオジウム、プラセ
オジム、マグネシウム、モリブデン、ランタンから選ば
れる少なくとも一種の金属を担持させて成ることを特徴
とするものであり、CO除去の触媒活性を高めることが
できると共に、メタネーション反応が起こることを防止
することができるものである。
According to a fifth aspect of the present invention, at least one metal selected from the group consisting of yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum, and lanthanum is supported on the zirconia carrier. It is characterized in that the catalyst activity for removing CO can be enhanced and the methanation reaction can be prevented from occurring.

【0044】また請求項6の発明は、上記請求項5の金
属の担持量が、ジルコニア担体重量に対して、0.1〜
10重量%であることを特徴とするものであり、メタネ
ーション反応を防ぐ効果を有効に得ることができるもの
である。
According to a sixth aspect of the present invention, the amount of the metal of the fifth aspect is 0.1 to 0.1% based on the weight of the zirconia carrier.
The content is 10% by weight, and an effect of preventing a methanation reaction can be effectively obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜5及び比較例における反応温度とC
O転化率の関係を示すグラフである。
FIG. 1 shows the reaction temperature and C in Examples 1 to 5 and Comparative Example.
It is a graph which shows the relationship of O conversion.

【図2】実施例3,4及び比較例における反応時間とC
O転化率の関係を示すグラフである。
FIG. 2 shows the reaction time and C in Examples 3, 4 and Comparative Example.
It is a graph which shows the relationship of O conversion.

【図3】実施例3及び実施例6〜16における反応選択
率を示すグラフである。
FIG. 3 is a graph showing the reaction selectivity in Example 3 and Examples 6 to 16.

【図4】実施例3,17,18及び比較例における反応
温度とCO転化率の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the reaction temperature and the CO conversion in Examples 3, 17, 18 and Comparative Example.

フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 3/56 B01J 23/64 104M (72)発明者 橋本 登 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 平8−217406(JP,A) 特開 昭50−84490(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C01B 3/00 - 3/58 H01M 8/00 - 8/24 Continued on the front page (51) Int.Cl. 7 Identification code FI C01B 3/56 B01J 23/64 104M (72) Inventor Noboru Hashimoto 1048 Ojidoma, Kadoma-shi, Osaka Matsushita Electric Works, Ltd. (56) References JP-A-8-217406 (JP, A) JP-A-50-84490 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 C01B 3/00- 3/58 H01M 8/00-8/24

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジルコニア担体に、少なくとも白金を担
持させて成ることを特徴とする水性ガスシフト反応によ
って水素ガス中のCOをCO 2 に転化させて除去する
O除去用触媒。
1. A water gas shift reaction characterized in that at least platinum is supported on a zirconia carrier .
To remove CO by converting CO in hydrogen gas to CO 2
O removal catalyst.
【請求項2】 上記白金の担持量が、ジルコニア担体重
量に対して、0.1〜10重量%であることを特徴とす
る請求項1に記載の水素ガス中のCO除去用触媒。
2. The catalyst for removing CO in hydrogen gas according to claim 1, wherein the supported amount of the platinum is 0.1 to 10% by weight based on the weight of the zirconia carrier.
【請求項3】 ジルコニア担体に上記白金の他に、レニ
ウムを担持させて成ることを特徴とする請求項1又は2
に記載の水素ガス中のCO除去用触媒。
3. A zirconia carrier comprising rhenium supported thereon in addition to the platinum.
3. The catalyst for removing CO in hydrogen gas according to item 1.
【請求項4】 上記レニウムの担持量が、ジルコニア担
体重量に対して、0.1〜10重量%であることを特徴
とする請求項3に記載の水素ガス中のCO除去用触媒。
4. The catalyst for removing CO in hydrogen gas according to claim 3, wherein the amount of rhenium supported is 0.1 to 10% by weight based on the weight of the zirconia carrier.
【請求項5】 ジルコニア担体に白金の他に、イットリ
ウム、カルシウム、クロム、サマリウム、セリウム、タ
ングステン、ネオジウム、プラセオジム、マグネシウ
ム、モリブデン、ランタンから選ばれる少なくとも一種
の金属を担持させて成ることを特徴とする請求項1乃至
4のいずれかに記載の水素ガス中のCO除去用触媒。
5. A zirconia carrier comprising at least one metal selected from the group consisting of yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum and lanthanum, in addition to platinum. The catalyst for removing CO in hydrogen gas according to any one of claims 1 to 4.
【請求項6】 上記請求項5の金属の担持量が、ジルコ
ニア担体重量に対して、0.1〜10重量%であること
を特徴とする請求項5に記載の水素ガス中のCO除去用
触媒。
6. The method for removing CO in hydrogen gas according to claim 5, wherein the supported amount of the metal of the fifth aspect is 0.1 to 10% by weight based on the weight of the zirconia carrier. catalyst.
JP07327099A 1999-03-18 1999-03-18 Catalyst for removing CO in hydrogen gas Expired - Lifetime JP3215680B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP07327099A JP3215680B1 (en) 1999-03-18 1999-03-18 Catalyst for removing CO in hydrogen gas
CA002336847A CA2336847C (en) 1999-03-18 2000-03-16 Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
KR10-2000-7014988A KR100386435B1 (en) 1999-03-18 2000-03-16 Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
PCT/JP2000/001600 WO2000054879A1 (en) 1999-03-18 2000-03-16 Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
US09/720,262 US6777117B1 (en) 1999-03-18 2000-03-16 Catalysts for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
CNB008009414A CN1174802C (en) 1999-03-18 2000-03-16 Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
EP00909671A EP1161991B1 (en) 1999-03-18 2000-03-16 Use of a catalyst for the water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
DE60044334T DE60044334D1 (en) 1999-03-18 2000-03-16 USE OF A CATALYST FOR THE WATER-GAS CONVERSION REACTION, METHOD FOR REMOVING GRAIN GENERATION FROM A FUEL CELL
HK02103250.7A HK1042064B (en) 1999-03-18 2002-04-30 Use of a catalyst for the water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
US10/823,609 US20050031920A1 (en) 1999-03-18 2004-04-14 Catalysts for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and fuel cell generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07327099A JP3215680B1 (en) 1999-03-18 1999-03-18 Catalyst for removing CO in hydrogen gas

Publications (2)

Publication Number Publication Date
JP3215680B1 true JP3215680B1 (en) 2001-10-09
JP2003200048A JP2003200048A (en) 2003-07-15

Family

ID=13513313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07327099A Expired - Lifetime JP3215680B1 (en) 1999-03-18 1999-03-18 Catalyst for removing CO in hydrogen gas

Country Status (1)

Country Link
JP (1) JP3215680B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039742A1 (en) * 2001-11-07 2003-05-15 Sued-Chemie Catalysts Japan, Inc. Method for preparing catalyst for carbon monoxide shift reaction
JP2005246116A (en) * 2004-03-01 2005-09-15 Ne Chemcat Corp Catalyst for removing carbon monoxide in hydrogen gas
JP2006511430A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Catalyst formulation for hydrogen generation
JP2006511333A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Alkali-containing catalyst formulation for hydrogen production at medium and low temperatures
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
JP2006511424A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-alkali / alkaline earth catalyst compound for hydrogen generation
US7147680B2 (en) 2001-01-26 2006-12-12 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus and method and fuel cell power generation system and method
JP2007098295A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Shift catalyst and its preparation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265076B2 (en) 2002-12-26 2007-09-04 Matsushita Electric Industrial Co, Ltd. CO removal catalyst, method of producing CO removal catalyst, hydrogen purifying device and fuel cell system
US6932848B2 (en) * 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
TWI316871B (en) * 2003-07-21 2009-11-11 Entegris Inc Hydride gas purification for the semiconductor industry
KR101320387B1 (en) * 2005-01-25 2013-10-22 삼성에스디아이 주식회사 Catalytic system for the removal of carbon monoxide and fuel processor using the same
JP5618315B2 (en) * 2009-08-25 2014-11-05 国立大学法人筑波大学 Oxide-added supported platinum catalyst for steam reforming of ethanol and oxide-added supported platinum catalyst for steam reforming of ethanol
KR101163060B1 (en) 2010-04-13 2012-07-05 한국과학기술연구원 Pt-Y homogenous alloy catalyst and method for improving stability of Pt alloy catalyst, and fuel cell comprising the catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147680B2 (en) 2001-01-26 2006-12-12 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus and method and fuel cell power generation system and method
WO2003039742A1 (en) * 2001-11-07 2003-05-15 Sued-Chemie Catalysts Japan, Inc. Method for preparing catalyst for carbon monoxide shift reaction
JP2006511430A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Catalyst formulation for hydrogen generation
JP2006511333A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Alkali-containing catalyst formulation for hydrogen production at medium and low temperatures
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
JP2006511424A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-alkali / alkaline earth catalyst compound for hydrogen generation
JP2005246116A (en) * 2004-03-01 2005-09-15 Ne Chemcat Corp Catalyst for removing carbon monoxide in hydrogen gas
JP4537091B2 (en) * 2004-03-01 2010-09-01 エヌ・イーケムキャット株式会社 Catalyst for removing carbon monoxide from hydrogen gas
JP2007098295A (en) * 2005-10-05 2007-04-19 Hitachi Ltd Shift catalyst and its preparation method

Also Published As

Publication number Publication date
JP2003200048A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
EP1161991B1 (en) Use of a catalyst for the water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
JP3215680B1 (en) Catalyst for removing CO in hydrogen gas
US7833934B2 (en) Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
Fonseca et al. Ceria-zirconia supported Au as highly active low temperature Water-gas shift catalysts
Dong et al. Effect of preparation conditions of CuO–CeO2–ZrO2 catalyst on CO removal from hydrogen-rich gas
TWI294413B (en) Method for converting co and hydrogen into methane and water
Roh et al. Low temperature selective CO oxidation in excess of H 2 over Pt/Ce—ZrO 2 catalysts
Colussi et al. Ceria-based palladium zinc catalysts as promising materials for water gas shift reaction
US6713032B2 (en) Catalyst for removing carbon monoxide in hydrogen rich gas and production method therefor
JP2001180912A (en) Hydrogen refining equipment
Mironova et al. Lamp processing of the surface of PdCu membrane foil: hydrogen permeability and membrane catalysis
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
KR100286425B1 (en) Reforming Catalysts for a Direct Internal Reforming Molten Carbonate Fuel Cell and Processes for Preparing the Same
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
Zhou et al. An anodic alumina supported Ni–Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol
JP6701778B2 (en) Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
WO2001047806A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2006346535A (en) Co removal catalyst and fuel cell system
JP2005034682A (en) Co modification catalyst and its production method
WO2001003828A1 (en) Water-gas-shift reaction catalyst, method for removing carbon monoxide in hydrogen gas and fuel cell power generation system
Patel et al. Production of hydrogen with low carbon monoxide formation via catalytic steam reforming of methanol
JP3975803B2 (en) Method for producing CO selective oxidation catalyst
JP2006297194A (en) Fuel reforming catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term