JP3212904B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method

Info

Publication number
JP3212904B2
JP3212904B2 JP08824997A JP8824997A JP3212904B2 JP 3212904 B2 JP3212904 B2 JP 3212904B2 JP 08824997 A JP08824997 A JP 08824997A JP 8824997 A JP8824997 A JP 8824997A JP 3212904 B2 JP3212904 B2 JP 3212904B2
Authority
JP
Japan
Prior art keywords
amount
sludge
reaction tank
reaction
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08824997A
Other languages
Japanese (ja)
Other versions
JPH10277580A (en
Inventor
雅彦 三浦
健治 桂
進 長谷川
Original Assignee
神鋼パンテツク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼パンテツク株式会社 filed Critical 神鋼パンテツク株式会社
Priority to JP08824997A priority Critical patent/JP3212904B2/en
Publication of JPH10277580A publication Critical patent/JPH10277580A/en
Application granted granted Critical
Publication of JP3212904B2 publication Critical patent/JP3212904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性汚泥を含む
廃水、例えば、下水処理場、屎尿処理場などの下水処理
プロセスから排出される生汚泥や生物性汚泥、食品工
場、化学工場などの廃水処理プロセスから排出される有
機性汚泥を含有する有機性廃水を生物消化により処理す
る方法に関する。
The present invention relates to wastewater containing organic sludge, for example, raw sludge or biological sludge discharged from sewage treatment processes such as sewage treatment plants and human waste treatment plants, food plants, chemical plants and the like. The present invention relates to a method for treating organic wastewater containing organic sludge discharged from a wastewater treatment process by biological digestion.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
より、この種の有機性廃水の処理方法として、好気性消
化法、嫌気性メタン発酵法などの好気性または嫌気性の
微生物分解により、有機性汚泥の有機成分を生物消化し
て、有機物を炭酸ガス、メタンガスなどのガス成分とす
ると共に生物消化により生じた微生物バイオマス(微生
物菌体が主体)ならびに未処理の残存汚泥からなる余剰
汚泥を含んだ処理汚泥を、沈殿槽などで個液分離するこ
とにより処理水は適宜排水される一方、余剰汚泥は、通
常、海洋投棄または陸地埋立によって処理されている。
しかしながら、海洋に投棄することは、環境破壊にもつ
ながることになるため、地球環境保護が叫ばれている昨
今においては、ほとんど禁止される方向にある。また、
陸地埋立においても、埋立処分地の確保が年々困難にな
ってきている。
2. Description of the Related Art Conventionally, organic wastewater of this type has been treated by aerobic or anaerobic microbial decomposition such as aerobic digestion and anaerobic methane fermentation. Bio-digestion of organic components of anaerobic sludge to convert organic matter into gas components such as carbon dioxide gas and methane gas, as well as surplus sludge consisting of microbial biomass (mainly microbial cells) generated by bio-digestion and untreated residual sludge The treated water is appropriately drained by separating the treated sludge into individual liquids in a sedimentation tank or the like, while the excess sludge is usually treated by ocean dumping or land reclamation.
However, dumping into the ocean will lead to environmental destruction, and in recent years when global environmental protection is being called for, it is almost banned. Also,
In land reclamation, it is becoming more difficult every year to secure landfill sites.

【0003】そこで、本出願人は、下水余剰汚泥を処理
しようとした場合に、下水余剰汚泥に含まれる微生物
(好熱菌)による酸化分解反応と熱による物理化学的な
熱変成の両作用が同時に効率よく十分に生じ、汚泥を生
物学的に酸化分解して、汚泥を極めて減容化できる汚泥
の消化処理方法として、「有機質を含む余剰汚泥または
生汚泥を、高温条件の消化処理および中温条件の消化処
理を交互に行うことにより生物学的に消化処理する場合
に、高温条件の消化処理を60〜70℃の温度範囲とな
るような条件で操作することを特徴とする汚泥の消化処
理方法」に関する特許出願をした(特開平8−2435
95号公報参照)。
[0003] Therefore, the applicant of the present invention, when trying to treat excess sewage sludge, has both effects of oxidative decomposition reaction by microorganisms (thermophilic bacteria) contained in excess sewage sludge and physicochemical thermal denaturation by heat. At the same time, as a method of digesting sludge that efficiently and sufficiently generates sludge and biologically oxidatively decomposes sludge to greatly reduce the volume of sludge, `` excessive sludge containing organic matter or raw sludge is subjected to digestion treatment under high temperature conditions and medium temperature When performing biological digestion by alternately performing digestion under conditions, digestion under sludge is characterized by operating digestion under high temperature conditions in a temperature range of 60 to 70 ° C. Patent Application for “Method” (Japanese Unexamined Patent Publication No.
No. 95).

【0004】しかし、上記特許公報に記載された方法
は、高温の反応槽の温度は60〜70℃であり、依然と
してかなりの高温であるため、高温の反応槽内の溶存酸
素濃度が低く、高温の反応槽内に通入する酸素の供給量
が多量になる。結果として、反応系外に放出される排気
ガスによって反応槽の保有熱が奪い去られるので、反応
を維持するために多量の熱源が必要である。
However, in the method described in the above-mentioned patent publication, the temperature of the high-temperature reaction vessel is 60 to 70 ° C., and the temperature is still quite high. The supply amount of oxygen flowing into the reaction tank becomes large. As a result, the exhaust gas discharged outside the reaction system removes the heat retained in the reaction tank, so that a large amount of heat source is required to maintain the reaction.

【0005】一方、汚泥が生物学的に酸化分解される過
程において必要とされる酸素量は、以下に説明するよう
に一定ではない。すなわち、一般的に回分処理における
有機物の生物学的な酸化分解反応は、図6に模式的に示
すように推移する。同図の縦軸は各物質の濃度を示し、
横軸は経過時間を示す。図6に示すように、微生物によ
る酸化分解反応に伴って溶解性有機物(記号「」)の
量は減少し、これに対応するように微生物(記号
「」)の量は増加する。同時に、被処理水中の溶存酸
素(DO、記号「」)の量も減少する。そして、微生
物の増加にやや遅れるようにして、微生物によって生成
される酵素である「プロテアーゼ」(記号「」)の量
が増加する。プロテアーゼ()の生成とともに、溶存
酸素()の量は急激に減少し、ほぼ「ゼロ」の状態で
推移する。やがて、有機物()がなくなると、微生物
()およびプロテアーゼ()も次第に減少する。こ
の場合、反応槽内に通入される空気量が一定であると、
溶存酸素()はプロテアーゼ()の減少とは逆に増
加傾向を示す。ところが、有機物がなくなった段階では
反応槽内に多量の酸素は必要ではなく、微生物の生存に
必要なだけの少量の酸素があればよい。しかし、一定量
の空気(酸素)を反応槽内に通入している場合、酸化分
解反応に寄与しない多量の排気ガスが反応槽の保有熱を
系外に持ち出すという不都合が生じる。
[0005] On the other hand, the amount of oxygen required in the process of sludge being biologically oxidatively decomposed is not constant as described below. That is, generally, the biological oxidative decomposition reaction of an organic substance in batch processing changes as schematically shown in FIG. The vertical axis of the figure shows the concentration of each substance,
The horizontal axis indicates elapsed time. As shown in FIG. 6, the amount of the soluble organic matter (symbol "") decreases along with the oxidative decomposition reaction by the microorganism, and the amount of the microorganisms (symbol "") increases correspondingly. At the same time, the amount of dissolved oxygen (DO, symbol "") in the water to be treated also decreases. Then, the amount of the "protease" (symbol ""), which is an enzyme produced by the microorganism, increases with a slight delay from the increase in the microorganism. With the production of the protease (), the amount of dissolved oxygen () decreases rapidly, and changes to almost “zero”. Eventually, when the organic matter () is depleted, the microorganism () and the protease () gradually decrease. In this case, if the amount of air flowing into the reaction tank is constant,
Dissolved oxygen () shows a tendency to increase contrary to the decrease of protease (). However, when the organic matter has disappeared, a large amount of oxygen is not required in the reaction tank, but only a small amount of oxygen necessary for the survival of the microorganisms. However, when a certain amount of air (oxygen) is introduced into the reaction tank, there is a disadvantage that a large amount of exhaust gas not contributing to the oxidative decomposition reaction brings out the heat retained in the reaction tank outside the system.

【0006】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、反応
の進行状況に応じて反応系内に供給する通気量を制御す
ることにより、経済的に反応を進めることができる有機
性廃水の処理方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to control the amount of air supplied into a reaction system according to the progress of the reaction. Another object of the present invention is to provide a method for treating organic wastewater, which can promote the reaction economically.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、反応槽内の被処理水の温度を生物消化と熱
変成の双方を促進しうる温度とし、反応槽内の被処理水
中の生物活性に対応するように反応槽に供給する空気量
を制御することにより、反応の進行状況に応じて適正量
の空気(酸素)を供給しうるので、排気ガスとともに反
応系外に持ち去れられる熱量が少なくなり、経済的に反
応を進めることができる。
In order to achieve the above-mentioned object, the present invention provides a method for controlling the temperature of water to be treated in a reaction tank to a temperature at which both biological digestion and thermal denaturation can be promoted. By controlling the amount of air supplied to the reaction tank in accordance with the biological activity in the water, an appropriate amount of air (oxygen) can be supplied according to the progress of the reaction. The amount of heat left is reduced, and the reaction can proceed economically.

【0008】[0008]

【発明の実施の形態】すなわち、本発明は、有機質を含
む余剰汚泥または生汚泥を含有する有機性廃水を生物学
的に処理する方法において、反応槽内の被処理水の温度
を生物消化と熱変成の双方を促進しうる温度とし、被処
理水中において微生物により生成される酵素であるプロ
テアーゼの生成量に対応するように、溶存酸素濃度が
0.5mg/L以下である時期においては反応槽内へ
0.3vvm以上の空気量を通気し、溶存酸素濃度が
0.5mg/L以上である時期においては前記空気量よ
り少ない空気を反応槽内へ通気することを特徴としてい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for biologically treating organic wastewater containing excess sludge containing organic matter or raw sludge, comprising the steps of: to a temperature capable of promoting both the heat denatured, the processing
Pro, an enzyme produced by microorganisms in water
The dissolved oxygen concentration is adjusted to correspond to the amount of the
When it is 0.5mg / L or less
Ventilate an air volume of 0.3 vvm or more, and the dissolved oxygen concentration
When the amount is 0.5 mg / L or more,
It is characterized in that less air is vented into the reaction tank .

【0009】上記のように構成される本発明によれば、
有機質を含む余剰汚泥または生汚泥を含有する有機性廃
水を生物学的に処理する場合に、反応槽内の温度を微生
物((好熱菌)による酸化分解反応と熱による物理化学
的な熱変成の両作用が同時に効率よく十分に生じるよう
な温度、すなわち、60〜70℃の範囲の温度条件下に
おいて反応を進めることにより、汚泥を生物学的に酸化
分解して減容することができる。
According to the present invention configured as described above,
When biologically treating excess sludge containing organic matter or organic wastewater containing raw sludge, the temperature in the reaction tank is controlled by oxidative decomposition reaction by microorganisms ((thermophilic bacteria)) and physicochemical thermal transformation by heat. The sludge can be biologically oxidatively decomposed and reduced in volume by carrying out the reaction under a temperature at which both of the above-mentioned actions efficiently and sufficiently occur, that is, at a temperature in the range of 60 to 70 ° C.

【0010】そして、かかる微生物による汚泥の酸化分
解プロセスにおいて、被処理水中の生物活性を測定しつ
つ、知り得た生物活性に対応するように適正量の空気
(酸素)を反応槽内に通入するようにすれば、経済的に
反応を進めることができる。すなわち、微生物により生
成される酵素であるプロテアーゼの生成が盛んになる時
期に反応槽へ供給する空気量を他の時期に比べて相対的
に多くすることが好ましい。
In the process of oxidative decomposition of sludge by such microorganisms, while measuring the biological activity in the water to be treated, an appropriate amount of air (oxygen) is introduced into the reaction tank so as to correspond to the known biological activity. By doing so, the reaction can proceed economically. That is, it is preferable to increase the amount of air supplied to the reaction tank at a time when the production of the protease, which is an enzyme produced by the microorganism, is active compared to other times.

【0011】反応槽の構造は特に限定されるものでな
く、散気装置が反応槽に具備してなるものであれば使用
可能である。なお、反応槽は、バッチ式または連続方式
のいずれでも使用可能である。ただし、連続方式の場合
は、プラグフローにすれば可能となるが、プラグフロー
方式の反応槽はバッチ式の反応槽に比べて構造および生
物活性の測定も複雑となる。また、プラグフロー方式は
完全なプラグフローにすればバッチ式と同等の効果が得
られるが、完全なプラグフローの反応槽にすることは困
難である。従って、バッチ式の方が好ましい。
The structure of the reaction tank is not particularly limited, and any structure can be used as long as a diffuser is provided in the reaction tank. The reaction tank can be used in either a batch system or a continuous system. However, in the case of the continuous system, it is possible to use a plug flow, but the structure and the measurement of the biological activity of the plug flow reactor are more complicated than those of the batch reactor. In the plug flow method, if the complete plug flow is used, the same effect as that of the batch method can be obtained, but it is difficult to use a complete plug flow reaction tank. Therefore, the batch type is preferred.

【0012】[0012]

【実施例】図1に示すように、有効容積5リットルの円
筒型ガラス製の反応槽1により、有機性廃水2を処理し
た。有機性廃水はY−P培地、すなわち、酵母エキス、
ペプトンをそれぞれ、1g/リットル、2g/リットル
とした。そして、ヒーター3により反応槽1内の有機性
廃水を加熱し、汚泥分解活性として本実施例ではプロテ
アーゼ活性を有する好熱菌を添加し、温度指示調節計4
により有機性廃水2の温度を65℃に保持した。反応槽
1内への曝気量は、フロート式流量計5を通過する空気
量を0.1vvmとし、フロート式流量計6を通過する
空気量は0.2vvmとし、有機性廃水中の溶存酸素量
を測定するDO(溶存酸素)計7で測定した溶存酸素量
に対応するように電磁弁8を開閉することにより、フロ
ート式流量計6をオン・オフ制御した。なお、1vvm
とは、「5リットル空気量/5リットル反応槽容積・mi
n.」の意であり、本実施例では、反応槽内の溶存酸素
量0.5mg/リットルをオン・オフ制御する値とし
た。
EXAMPLE As shown in FIG. 1, an organic wastewater 2 was treated in a reaction vessel 1 made of a cylindrical glass having an effective volume of 5 liters. The organic wastewater is a YP medium, that is, a yeast extract,
Peptone was 1 g / liter and 2 g / liter, respectively. Then, the organic wastewater in the reaction tank 1 is heated by the heater 3, and a thermophilic bacterium having protease activity in this embodiment as sludge decomposing activity is added.
To maintain the temperature of the organic wastewater 2 at 65 ° C. The amount of aeration into the reaction tank 1 was set such that the amount of air passing through the float flow meter 5 was 0.1 vvm, the amount of air passing through the float flow meter 6 was 0.2 vvm, and the amount of dissolved oxygen in the organic wastewater. The float type flow meter 6 was turned on and off by opening and closing the solenoid valve 8 so as to correspond to the dissolved oxygen amount measured by a DO (dissolved oxygen) meter 7 for measuring the flow rate. In addition, 1vvm
"5 liter air volume / 5 liter reaction tank volume / mi"
n. In the present example, the amount of dissolved oxygen in the reaction tank was set to 0.5 mg / liter for on / off control.

【0013】そして、菌体量は波長600nmの吸光度
により測定し(A600)、プロテアーゼ活性は、「非
特異的なプロテアーゼアッセイ用の基質であるアゾコー
ル((商品名、Sigma社製)をpH7.0のリン酸
緩衝液に懸濁した液(5mg/ml)0.7mlに、等
量の試料を加え、70℃にて30分間インキュベート
し、反応終了後に波長520nmにおける吸光度を測定
する」という方法(A520)を行った。
The amount of cells was measured by the absorbance at a wavelength of 600 nm (A600), and the protease activity was determined by measuring azocol (trade name, manufactured by Sigma), a substrate for non-specific protease assay, at pH 7.0. An equivalent amount of a sample is added to 0.7 ml of a solution (5 mg / ml) suspended in a phosphate buffer solution, and incubated at 70 ° C. for 30 minutes. After the reaction is completed, the absorbance at a wavelength of 520 nm is measured. ” A520).

【0014】図2は別の実施例を示す図であり、図2
(a)はDO計7で測定した溶存酸素量に応じて2台の
ブロア9の中の1台をオン・オフ制御する方法であり、
図2((b)はDO計7で測定した溶存酸素量に応じて
ブロア9の回転数を制御する方法であり、図2(c)は
DO計7で測定した溶存酸素量に応じてブロア9の出側
の流量制御弁10の開度を制御する方法である。
FIG. 2 is a diagram showing another embodiment.
(A) is a method in which one of the two blowers 9 is turned on / off in accordance with the dissolved oxygen amount measured by the DO meter 7,
FIG. 2 (b) shows a method of controlling the rotation speed of the blower 9 according to the dissolved oxygen amount measured by the DO meter 7, and FIG. 2 (c) shows a method of controlling the rotational speed of the blower 9 according to the dissolved oxygen amount measured by the DO meter 7. 9 is a method for controlling the opening of the flow control valve 10 on the outlet side.

【0015】図3は、プロテアーゼ生成に及ぼす通気量
の効果を示す図であり、縦軸は吸光度である。同図に示
すように、0.1vvmではプロテアーゼの生成が少な
く、プロテアーゼの生成を促進するためには通気量とし
て0.3vvm程度必要であることが分かる。
FIG. 3 is a diagram showing the effect of aeration on protease production, and the vertical axis represents absorbance. As shown in the figure, it can be seen that the production of protease is small at 0.1 vvm, and that a ventilation volume of about 0.3 vvm is required to promote the production of protease.

【0016】そこで、図4に示すように、プロテアーゼ
(記号「◇」)の生成量が多くて、溶存酸素(記号
「*」)の量が極めて少ない時間帯のみ、反応槽1内に
0.3vvm通気し、他の時間帯は0.1vvm通気し
た。同図の記号「■」は菌体量を示す。
Therefore, as shown in FIG. 4, the reaction vessel 1 is filled with 0.1 μm only during a time period when the amount of produced protease (symbol “◇”) is large and the amount of dissolved oxygen (symbol “*”) is extremely small. The air was ventilated at 3 vvm, and at other times, the air was ventilated at 0.1 vvm. The symbol “■” in FIG.

【0017】図5は、従来の方法を示し、全時間帯にお
いて、反応槽1内に0.3vvm通気した。そのため、
プロテアーゼ(記号「◇」)の生成量が少なくなってか
らも溶存酸素(記号「*」)の量は極めて多い。同図の
記号「■」は菌体量を示す。図4に示す本発明の方法に
よれば、図5に示す従来の方法に比べて通気量を約2/
3に低減することができた。実際に汚泥をこの方法で処
理した実験結果は、次に説明するとおりである。すなわ
ち、図7に示すようなフローを有する下水処理システム
において、下水処理場の余剰汚泥11を2%の濃度に調
整し、図1に示すような構成の反応槽1によりフロート
式流量計6を常時閉にした場合(比較例、通気量0.1
vvm)、常時開にした場合(従来の方法、通気量0.
3vvm)、および溶存酸素量に応じてオン・オフ制御
した場合(本発明の方法)の汚泥の可溶化率を調査し
た。その結果を以下の表1に示すが、本発明の方法によ
ると、従来の方法の約2/3の通気量で同等の可溶化率
を得ることができた。
FIG. 5 shows a conventional method, in which 0.3 vvm was aerated in the reaction tank 1 in all time zones. for that reason,
The amount of dissolved oxygen (symbol “*”) is extremely large even after the amount of protease (symbol “Δ”) production decreases. The symbol “■” in FIG. According to the method of the present invention shown in FIG. 4, the air flow rate is reduced by about 2 / compared to the conventional method shown in FIG.
3 could be reduced. The experimental results of actually treating sludge by this method are as described below. That is, in the sewage treatment system having the flow as shown in FIG. 7, the excess sludge 11 in the sewage treatment plant is adjusted to a concentration of 2%, and the float type flow meter 6 is controlled by the reaction tank 1 having the configuration as shown in FIG. When normally closed (comparative example, ventilation rate 0.1
vvm), when it is normally open (conventional method, air flow rate 0.
3vvm) and the solubilization rate of sludge when on / off control was performed according to the amount of dissolved oxygen (the method of the present invention). The results are shown in Table 1 below. According to the method of the present invention, the same solubilization rate could be obtained with about 2/3 of the gas flow rate of the conventional method.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、生物活性の測定方法として、溶存酸
素量を検出する方法が容易で精度がよいため好適に用い
られ、その他に、酸化還元電位や反応槽から排出される
排気ガス中のCO2濃度やO2濃度を測定する方法を利用
することも可能である。
As a method for measuring the biological activity, a method for detecting the amount of dissolved oxygen is preferably used because it is easy and accurate. In addition, the oxidation-reduction potential and CO 2 in the exhaust gas discharged from the reaction tank are also used. It is also possible to use a method for measuring the concentration or the O 2 concentration.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、反応槽
内の反応の進行状況に適した量の空気を反応槽内に通入
することができるので、一定量の空気を反応槽内に通入
していた従来の方法に比べて大幅に供給空気量を低減で
きるため、反応槽から放散される熱量が少なくなり、反
応温度を維持するための熱源容量を小さくできる。
As described above, according to the present invention, an amount of air suitable for the progress of the reaction in the reaction tank can be introduced into the reaction tank. Since the amount of supplied air can be greatly reduced as compared with the conventional method which has been introduced into the inside, the amount of heat dissipated from the reaction tank decreases, and the heat source capacity for maintaining the reaction temperature can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための装置の一実施例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of an apparatus for performing a method of the present invention.

【図2】図2(a)〜(c)は、本発明の方法を実施す
るための装置の別の実施例を示す概略構成図である。
FIGS. 2 (a) to 2 (c) are schematic structural views showing another embodiment of an apparatus for carrying out the method of the present invention.

【図3】プロテアーゼ生成に及ぼす通気量の効果を示す
図である。
FIG. 3 is a graph showing the effect of aeration on protease production.

【図4】本発明の方法を実施した場合のプロテアーゼ量
と菌体量と溶存酸素量の時間経過を示す図である。
FIG. 4 is a diagram showing the time course of the amount of protease, the amount of bacterial cells, and the amount of dissolved oxygen when the method of the present invention is performed.

【図5】従来の方法を実施した場合のプロテアーゼ量と
菌体量と溶存酸素量の時間経過を示す図である。
FIG. 5 is a diagram showing the time course of the amount of protease, the amount of bacterial cells, and the amount of dissolved oxygen when a conventional method is performed.

【図6】汚泥が生物学的に酸化分解される様子を模式的
に示す図である。
FIG. 6 is a view schematically showing a state in which sludge is biologically oxidatively decomposed.

【図7】下水処理システムの一例を示すフロー図であ
る。
FIG. 7 is a flowchart illustrating an example of a sewage treatment system.

【符号の説明】[Explanation of symbols]

1…反応槽 2…有機性廃水 3…ヒーター 5、6…フロート式流量計 7…DO計 9…ブロア DESCRIPTION OF SYMBOLS 1 ... Reaction tank 2 ... Organic waste water 3 ... Heater 5, 6 ... Float type flow meter 7 ... DO meter 9 ... Blower

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−85297(JP,A) 特開 平5−237488(JP,A) 特開 昭63−294994(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-85297 (JP, A) JP-A-5-237488 (JP, A) JP-A-63-294994 (JP, A) (58) Field (Int.Cl. 7 , DB name) C02F 3/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機質を含む余剰汚泥または生汚泥を含
有する有機性廃水を生物学的に処理する方法において、
反応槽内の被処理水の温度を生物消化と熱変成の双方を
促進しうる温度とし、被処理水中において微生物により
生成される酵素であるプロテアーゼの生成量に対応する
ように、溶存酸素濃度が0.5mg/L以下である時期
においては反応槽内へ0.3vvm以上の空気量を通気
し、溶存酸素濃度が0.5mg/L以上である時期にお
いては前記空気量より少ない空気を反応槽内へ通気する
ことを特徴とする有機性廃水の処理方法。
1. A method for biologically treating organic wastewater containing excess sludge or raw sludge containing organic matter,
The temperature of the water to be treated within the reaction vessel to a temperature capable of promoting both the biological digestion and heat denatured, the microorganisms in the water to be treated
Corresponds to the amount of protease that is produced
As described above, when the dissolved oxygen concentration is 0.5 mg / L or less
In the above, air volume of 0.3vvm or more is ventilated into the reaction tank
When the dissolved oxygen concentration is 0.5 mg / L or more,
In addition, air that is smaller than the air amount is ventilated into the reaction tank.
A method for treating organic wastewater.
JP08824997A 1997-04-07 1997-04-07 Organic wastewater treatment method Expired - Lifetime JP3212904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08824997A JP3212904B2 (en) 1997-04-07 1997-04-07 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08824997A JP3212904B2 (en) 1997-04-07 1997-04-07 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH10277580A JPH10277580A (en) 1998-10-20
JP3212904B2 true JP3212904B2 (en) 2001-09-25

Family

ID=13937592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08824997A Expired - Lifetime JP3212904B2 (en) 1997-04-07 1997-04-07 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3212904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775759A (en) * 2019-10-11 2020-02-11 湖州师范学院 Elevator shaft water level monitoring and water inlet early warning method based on Internet of things technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4588314B2 (en) * 2003-12-08 2010-12-01 高砂熱学工業株式会社 Total energy system in buildings
JP2016140797A (en) * 2015-01-30 2016-08-08 富士電機株式会社 Method and apparatus for treating waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775759A (en) * 2019-10-11 2020-02-11 湖州师范学院 Elevator shaft water level monitoring and water inlet early warning method based on Internet of things technology

Also Published As

Publication number Publication date
JPH10277580A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
Ledakowicz et al. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes
Sangave et al. Ultrasound and enzyme assisted biodegradation of distillery wastewater
WO2005023997A1 (en) Novel microorganism and method of treating organic solid matters with the use of the microorganism
JP3048889B2 (en) Activated sludge treatment method and activated sludge treatment apparatus therefor
WO2005019121A1 (en) Method and apparatus for treating organic waste
Lim et al. Effects of temperature on biodegradation characteristics of organic pollutants and microbial community in a solid phase aerobic bioreactor treating high strength organic wastewater
JP3212904B2 (en) Organic wastewater treatment method
JP3450719B2 (en) Biological treatment method and apparatus for organic wastewater
JP4451991B2 (en) Aeration equipment
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JPH0679295A (en) Treatment of organic waste water
JP3636670B2 (en) Method and apparatus for solubilizing organic solids
JP3930102B2 (en) Treatment method for wastewater containing ethanolamine
CN112813004B (en) Ultraviolet-resistant and antioxidant immobile bacterium and application thereof
JP3730499B2 (en) Organic wastewater treatment method
WO2004028983A1 (en) A method of processing organic wastewater
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
KR19980025196A (en) Organic waste treatment method and apparatus
RU2222500C2 (en) Method of anaerobic microbiological treatment of water from organic compounds with use of nitric acid as electron acceptor
JP3188372B2 (en) Sludge solubilization method
JPH1190493A (en) Treatment of organic waste solution
JP2004344769A (en) Organic wastewater treatment apparatus or treatment method using it
JP2022182939A (en) Method for controlling nitrogen concentration in organic waste liquid and treatment system for organic waste liquid
JP2000024696A (en) Treatment of organic waste water
JPS638840B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term