JP2004344769A - Organic wastewater treatment apparatus or treatment method using it - Google Patents

Organic wastewater treatment apparatus or treatment method using it Download PDF

Info

Publication number
JP2004344769A
JP2004344769A JP2003144544A JP2003144544A JP2004344769A JP 2004344769 A JP2004344769 A JP 2004344769A JP 2003144544 A JP2003144544 A JP 2003144544A JP 2003144544 A JP2003144544 A JP 2003144544A JP 2004344769 A JP2004344769 A JP 2004344769A
Authority
JP
Japan
Prior art keywords
organic wastewater
treatment
tank
sludge
solubilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144544A
Other languages
Japanese (ja)
Inventor
Akihiro Ochi
昭博 越智
Takayoshi Koseki
貴義 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003144544A priority Critical patent/JP2004344769A/en
Publication of JP2004344769A publication Critical patent/JP2004344769A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel organic wastewater treatment apparatus capable of markedly reducing the occurring amount of excess sludge produced accompanied by the biological treatment of organic wastewater by the supply of an extremely reduced quantity of energy or a treatment method using it. <P>SOLUTION: In the organic wastewater treatment apparatus having a biological reaction tank for microbially treating organic wastewater at the normal temperature and a solubilization treatment tank for solubilizing the sludge produced in the biological reaction tank at a medium-high temperature, the solubilization treatment tank is provided with a stirring mechanism for forcibly stirring sludge by air-liquid mixed streams containing air to perform aerobic microbial treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場やし尿処理場において用いることができ、食品工場、化学工場等から排出される有機性排水の生物処理にも使用できる処理装置または処理方法に関する。
【0002】
【従来の技術】
下水や屎尿、または食品工場、化学工場等から排出される有機性排水を処理する方法としては、活性汚泥法と呼ばれる好気性生物処理法が一般的に実施されている。この方法による処理装置の一例を図3に示す。この装置では、下水などの有機性廃水20は、いったん貯留された有機性排水貯留槽1から生物反応槽3に導入され、生物反応槽3において、好気性条件下の微生物による酸化分解反応である生物酸化によって、二酸化炭素や水などの無機物にまで分解される。そして、生物反応槽3にて処理された有機性排水は、続いて固液分離槽5にて処理水301と汚泥302に固液分離され、汚泥302の一部は微生物源として生物反応槽3に返送され、残りの汚泥は余剰汚泥303として廃棄等処理される。
【0003】
この活性汚泥法では汚泥が大量に発生し、余剰汚泥の廃棄処理はかなりの負担となる。そのため、できるだけ余剰汚泥を排出しない処理方法として、余剰汚泥を中高温下で生物処理することにより可溶化して、この可溶化した汚泥を生物反応槽にもどして再び生物処理する方法が提案されている(例えば、特許文献1参照)。具体的には、加温のための熱媒を循環させるジャケット方式の可溶化処理槽を用い、通気量0.1vvmの高温好気状態で好熱菌を用いて汚泥を可溶化し、その液を生物反応槽に戻すことで、活性汚泥法における余剰汚泥を減溶化している。その際、熱効率が低いために熱交換器を用いている。しかし、未だ熱効率が低いという問題点があった。
【0004】
【特許文献1】
特開平9−10791号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題点を解消し、有機性排水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させることができ、かつ、それをきわめて少ないエネルギーの供給によって可能とする新規な有機性廃水の処理装置または処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の第1は、有機性排水を常温で微生物処理する生物反応槽と、前記生物反応槽で発生した汚泥を中高温で可溶化処理する可溶化処理槽とを有する有機性排水の処理装置であって、前記可溶化処理槽は、前記汚泥を空気を含む気液混合流により強制撹拌する撹拌機構を有して好気的微生物処理を行うものである有機性排水の処理装置である。この構成により、廃棄物となる余剰汚泥の発生量を、熱効率よく減少せしめることが可能となる。
【0007】
ここで、前記気液混合流への空気の流入量を調整する調整機構を有する有機性排水の処理装置とすることは望ましい。これにより、可溶化反応処理槽の温度を制御できるようになり、最適な条件で可溶化処理を行うことが可能となる。
【0008】
また、前記の空気の流入量が、0.001vvm以上0.05vvm以下である有機性排水の処理装置とすることは望ましい。また、前記の撹拌機構がエアレータである有機性排水の処理装置とすることは望ましい。
【0009】
発明の第2は、有機性排水を常温で生物処理し、前記生物処理により発生する汚泥を可溶化処理する有機性排水の処理方法であって、前記の可溶化処理は、中高温における好気的微生物処理で、かつ前記汚泥が空気を含む気液混合流により強制撹拌された状態で行われるものである有機性排水の処理方法である。ここで、前記気液混合流への前記空気の流入量を調整することにより、前記汚泥の温度を調整する有機性排水の処理方法とすることは望ましい。
【0010】
【発明の実施の形態】
以下、本発明の1つの実施形態を図面を用いて説明する。なお、本発明は、以下の実施の形態若しくは実施例に記載された具体的態様に限定されるものではない。
【0011】
図1は、本発明の処理装置の1例の概略構成を記載した模式図である。下水や屎尿、または食品工場、化学工場等から排出された有機性の排水20は、いったん有機性排水貯留槽1に貯留される。しかるのち有機性排水は、生物反応槽3に移送され、常法に従い、通常の活性汚泥法による生物処理を受ける。生物処理では、下水などの廃水中の汚濁物質である有機物は、各種の微生物を用いた生物学的作用により分解、安定化される。具体的には、有機物は生物反応槽3内の微生物に補食され、酸素呼吸・硝酸呼吸・発酵過程などで分解され、一部は二酸化炭素と水になり、一部は微生物の体内に取り込まれて微生物増殖の栄養となる。このような生物処理は、好気性処理と嫌気性処理とに分類されるが、この例における生物反応槽3では、生物反応槽3に設けられた吸入口31と散気管30とエアポンプ32からなる散気装置により空気が常に槽内に送り込まれて、好気性処理が行われている。さらにこれに嫌気性処理を加えても良いが、排水基準を満たす観点から好気性処理を含めておくことが好適である。
【0012】
また、生物反応槽3の生物処理では、有機性排水は特に加熱されることなく、5℃以上35℃以下程度の常温の範囲内で、通常の生物処理が行われる。これにより有機性排水中の溶解性有機物がほぼ消費される。
【0013】
次に、生物反応槽3で処理された有機性排水は、排水中に分散している不溶性の有機物や微生物の菌体と一緒に固液分離槽5に移送される。ここで固液分離が行われ、不溶性の有機物や微生物の菌体は槽内下部に沈殿して汚泥302となる。一方、汚泥302が沈殿分離された後の処理水301はBODが低下しており、さらに排水基準に合わせて必要なオゾン処理や濾過処理を加えられて、一般河川等に放出される。
【0014】
固液分離槽5に沈殿した汚泥302は、固液分離槽5の下部から随時取り出され、一部はポンプ41により移送配管51を経由して生物反応槽3に返送され、微生物源として機能する。返送量は、生物反応槽3中の微生物量が一定となるように定める。また、汚泥302の残りはポンプ42により移送配管52を経由して可溶化反応処理槽8に送られる。
【0015】
可溶化反応処理槽8では、汚泥を可溶化処理する。ここにいう可溶化とは、水不溶物であった有機物が、微生物による分解や熱処理による熱分解等を受け、低分子化等の変化の結果、水に溶けうる状態になることをいう。
【0016】
可溶化反応処理槽8では、比較的高い温度を好む好熱菌により、中高温の温度がかかっている状態で上記の可溶化が行われる。ここにいう中高温の温度としては、好ましくは40℃以上70℃以下である。さらに好ましくは45℃以上65℃以下である。
【0017】
可溶化反応処理槽8は、内部の汚泥を、空気を含む気液混合流により撹拌する強制撹拌機構を有する。この例ではエアレータ83が撹拌機構として槽内底部に設けられている。エアレーター83は、液中に設けられたモーターの駆動力により回転する回転翼、空気吸入管81が接続した空気吸入部、液吸入部82を有し、それぞれの吸入部から吸入した空気と液とを混合して、気液噴出口84より吐出する装置である。強制撹拌機構の例としては、水中ポンプの吐出口にエジェクターを取り付け、空気吸入管を接続した形式のものでも良い。いずれにせよ、気液混合流を生ぜしめることができ、そのための駆動部が汚泥中にあって廃熱を汚泥に供給するものであればよい。ここで、強制撹拌とは、重力等による自然な上昇流や下降流のごとき対流による撹拌だけではなく、強制力をもって水平方向にも合わせて撹拌することを言う。
【0018】
なお、エアレータ83は、通常仕様のものを使用することもできるが、図1の装置では、中高温で運転してもある程度の耐久性を有する高温仕様のものを選択している。また、エアレータ83の設置台数は、可溶化処理槽の形状や大きさとエアレータの仕様能力により、エアレータの強制撹拌力が及ばない範囲が槽内に生じないように適宜定めればよい。
【0019】
このように、エアレータ83を可溶化処理槽8内に設けることにより、汚泥中に空気を含む気液混合流を強制的に生ぜしめることができる。つまり、汚泥を撹拌しながら空気を供給することが可能となる。
【0020】
また、動力部であるモーターが液中にあるため、運転によって消費される電気エネルギーの大きな部分が排熱となって汚泥中に放出される。この排熱は、可溶化処理槽8内の汚泥の加温に用いることができるから、可溶化反応処理槽8の適当な保温機構と必要により組み合わせることにより、微生物が発する熱量と合わせて、加温のための外部のエネルギー源を必要としない構成が可能となる。これにより、可溶化反応処理槽8の構造が簡単になり、きわめて少ないエネルギーの供給によって中高温を維持できる効率の良い運転が可能となる。
【0021】
エアレータの空気吸入管81には、空気の通気量を調整する調整機構としてのバルブ84が設けられている。バルブ84を設けずに運転することも可能であるが、バルブ84を設けることにより可溶化処理の制御がより容易になる。なぜなら、空気の吸入量により汚泥の温度が変化し、この調整が槽の熱効率に大きく影響することが判明したからである。
【0022】
具体的には、空気の通気量が少なすぎると好気性雰囲気が失われやすく、好気性微生物の活動量が小さくなり、汚泥の可溶化が生じにくくなる。また、微生物が発生する熱量も小さいから可溶化反応処理槽8の温度を中高温に維持しにくくなる。一方、通気量が多すぎると、微生物が発する熱量は大きくなるものの、意外にも多量の排気により多量の熱が奪われる作用の方が支配的となり、その結果、やはり可溶化反応処理槽8の温度を中高温に維持しにくくなることが判明した。その結果、熱効率が低下すると考えられる。
【0023】
つまり、空気の通気量は、一定範囲内にあることが好ましく、具体的には、汚泥1立方メートルあたりで1分間あたりに1リットル以上50リットル以下(0.001vvm以上0.05vvm以下)であることが望ましい。この範囲で好気性雰囲気を実現することができ、また、排気のために奪われる熱量を比較的小さい範囲に留めることが可能となる。より望ましくは2リットル以上40リットル以下(0.002vvm以上0.04vvm以下)、さらに望ましくは4リットル以上20リットル以下(0.004vvm以上0.02vvm以下)である。
【0024】
可溶化反応処理槽8は、環境温度との関係で保温しなくとも中高温を維持できるのであれば保温しなくとも良い。しかし、季節変動なども考慮すれば保温されていることが望ましい。発生する熱を損失しにくい構造とすることによって、エアレーターの熱エネルギーと生物反応による発熱とが加わって、汚泥の温度を40℃〜70℃の中高温状態に加温し、その温度を維持しやすくなる。図1の処理装置では、可溶化反応処理槽8は約5cm厚みのグラスウールの保温材により覆われている。
【0025】
可溶化反応処理槽8で可溶化された汚泥は、ポンプ43により移送配管53を経由して生物反応槽3に移送される。このようにすることにより、廃棄処分すべき余剰汚泥を著しく減少させることができ、かつ使用するエネルギーを極力少なくして熱効率の高い処理装置とすることが可能となる。
【0026】
なお、図1の処理槽はバッチ処理により処理を行っているが、これを連続的に行うようにしても良いことは言うまでもない。また、移送配管52と移送配管53の間で熱交換が生じるように、配管を互いに平面で接するようにして設けたり、また、特別に熱交換器を設けるようにしても良い。以下、実施例を用いてより具体的に説明する。
【0027】
【実施例1】
図1に示した装置と同様の装置を用いて実験を行った。生物反応槽3に流入する有機性排水は、食品工場の排水処理装置で処理する前の流量調整槽から採取して使用した。試料のBOD濃度は200mg/リットル〜250mg/リットルで、平均220mg/リットルであった。なお、BOD濃度は、1リットルの水中の有機物が微生物の働きによって分解されるときに消費される酸素の量で定義され、河川の有機物汚濁を測る代表的な指標として日本工業規格工場排水試験方法K0102−21に定められている。
【0028】
有機性排水は、流入量3000リットル/日で生物反応槽3に供給した。生物反応槽3の容量は1000リットルであった。生物反応槽3から流出した液は、固液分離槽5に送られる。固液分離槽では沈降分離法による固液分離を行い、上澄み液301と汚泥302に分けた。
【0029】
固液分離槽5で沈降分離した汚泥は、一部を返送汚泥として生物反応槽3に返送した。また、一部の汚泥は送液ライン52を通り、浮遊物質(SS)1重量%で100リットル/日の流量で可溶化反応処理槽8に送られる。浮遊物質(SS)濃度とは、液中に存在する固形物を濾紙によって分離乾燥したとき、元の液1リットルに対する乾燥固形物重量をmgで表した数値である。
【0030】
可溶化反応処理槽8は直径700mm高さ900mmの円筒形で、処理液容量は250リットルであり、槽の周囲は約5cm厚みのグラスウールの保温材で保温されている。また、槽底部には(株)ツルミ製作所製型式4BE2−0.4kwの水中ポンプの吐出部に(株)北斗製エジェクター型式2PS−W−SSを取り付けたエアレーター83を1台設置した。
【0031】
エアレータ83は、内部のモーターにより回転する回転翼、エジェクターに空気吸入管81が接続した空気吸入部、液吸入部82を有し、それぞれの吸入部から吸入した気液を混合して気液噴出部88より可溶化処理槽8内に水平方向に吐出し、可溶化処理槽8内の液を強制撹拌すると共に液中に空気を供給出来る機能を有している。
【0032】
エアレーター83の空気吸入管81にはバルブ84を設けてあり、これを調整して、通気量を2.5リットル/分(0.01vvm)に保って汚泥を可溶化運転した。その他の加熱源は設けなかった。
【0033】
運転開始から5日経過後の定常状態において、可溶化処理槽は、外部からエネルギーを加えなくても、液温が58℃〜62℃の範囲で安定した可溶化運転が行われていた。また、エアレータの運転に要するエネルギーは24kwhであった。定常状態での可溶化処理槽にはいる液の浮遊物質(SS)は、9,340mg/リットル、可溶化反応後の液のSSは平均2,550mg/リットルであった。これから計算した汚泥の可溶化率は72.7%であった。これらの結果を表1に記載した。
【0034】
なお、SSは、日本工業規格、工場排水試験方法K102.14.1により測定した。また、BODは、日本工業規格、工場排水試験方法K0102−21によって測定した。なお、いずれの測定値も、定常状態下において複数回の測定を行ったものの平均値で表示している。
【0035】
【表1】

Figure 2004344769
【比較例1】
用いた装置の概略図を図2に示す。なお、実施例1で用いた装置と共通する部分には同じ番号を付している。実施例1で用いた装置と異なる部分を主として説明する。図2の装置では、可溶化処理槽8は、二重槽構造になっており、外周のジャケット部85には加温用の温水を循環することができる。加温用の温水は、1kwの電熱ヒーターを備えた加温装置9で所定温度に加熱されてから、温水配管10を経由してジャケット部85に供給され、温水配管10を経由して加温装置9に戻る。このようにして加温装置9とジャケット部85を循環する。槽の周囲は約5cm厚みのグラスウールの保温材により保温されている(図示していない)。
【0036】
可溶化反応処理槽8には、散気管30と給気配管81とエアポンプ86とからなる散気装置が設けられており、空気を可溶化処理反応槽8内に供給する。散気管30は、ABS樹脂製の多孔性の管(ダイセンメンブレンシステムズ(株)製、型式名BPF−5−30/18−300L)を用いた。その他の部分は実施例1で用いた装置と同様である。
【0037】
実施例1で用いた有機性排水と同様の排水を用い、実施例1と同様の条件で生物反応槽3に供給し、実施例1と同様の処理を経由して排水を可溶化反応処理槽8に供給した。
【0038】
可溶化処理反応槽8のエアポンプの吸気量を調整して、通気量を20リットル/分(0.08vvm)に保って汚泥を可溶化運転したところ、液温が58℃〜62℃の範囲で、実施例1と同様の処理能力で安定した可溶化運転が可能であった。
【0039】
定常状態での可溶化処理槽にはいる排水の浮遊物質(SS)量は、9,250mg/リットル、可溶化反応後の排水のSS分は平均2,600mg/リットルであった。これらから計算して汚泥の可溶化率として約71.9%を得た。なお、SSおよびBODは、実施例1と同様にして測定した。
【0040】
定常状態において、可溶化反応処理槽8の加温装置に供給した電気エネルギーは50kwhであり、散気装置のエアポンプに要したエネルギーは6kwhであった。これらの結果を表1に記載した。実験例1と比較すると、50kwh+6kwh−24kwh=32kwhを余分に必要としていることがわかった。
【0041】
【発明の効果】
高い熱効率で、従来法と同様の処理能力を有する装置が得られる。加温装置が必要ないことから可溶化処理槽の構造も簡単になり、設備コストが削減できる。また、特段の管理技術も必要なく運転できる。
【図面の簡単な説明】
【図1】本発明の処理装置全体の概要を示した模式図である。
【図2】比較例1で使用した処理装置全体の概要を示した模式図である。
【図3】従来の処理装置全体の概要を示した模式図である。
【符号の説明】
1 有機性排水貯留槽
2 移送配管
3 生物反応槽
4 移送配管
5 固液分離槽
8 可溶化反応処理槽
9 加温装置
10 温水配管
20 有機性排水
30 散気管
31 給気配管
32 エアポンプ
40〜42 ポンプ
51〜53 移送配管
81 給気配管
82 取水口
83 エアレーター
84 バルブ
85 ジャケット
86 エアポンプ
87 保温材
88 噴出口
301 処理水
302 汚泥
303 余剰汚泥[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a treatment apparatus or a treatment method that can be used in a sewage treatment plant or a human waste treatment plant and that can be used for biological treatment of organic wastewater discharged from a food factory, a chemical factory, and the like.
[0002]
[Prior art]
As a method of treating sewage and human waste, or organic wastewater discharged from food factories, chemical factories, and the like, an aerobic biological treatment method called an activated sludge method is generally performed. FIG. 3 shows an example of a processing apparatus according to this method. In this apparatus, an organic wastewater 20 such as sewage is introduced into a biological reaction tank 3 from an organic wastewater storage tank 1 once stored, and is subjected to an oxidative decomposition reaction by microorganisms under aerobic conditions in the biological reaction tank 3. By biological oxidation, it is decomposed into inorganic substances such as carbon dioxide and water. Then, the organic wastewater treated in the biological reaction tank 3 is subsequently solid-liquid separated into treated water 301 and sludge 302 in the solid-liquid separation tank 5, and a part of the sludge 302 is used as a microorganism source in the biological reaction tank 3. The remaining sludge is disposed of as excess sludge 303 by disposal or the like.
[0003]
In this activated sludge method, a large amount of sludge is generated, and disposal of excess sludge requires a considerable burden. Therefore, as a treatment method that does not discharge excess sludge as much as possible, a method has been proposed in which surplus sludge is solubilized by biological treatment at medium to high temperature, and the solubilized sludge is returned to the biological reaction tank and biologically treated again. (For example, see Patent Document 1). Specifically, using a jacket-type solubilization tank in which a heat medium for heating is circulated, solubilized sludge using thermophilic bacteria in a high-temperature aerobic state with a ventilation rate of 0.1 vvm, and Is returned to the biological reactor to reduce excess sludge in the activated sludge process. At that time, a heat exchanger is used because the heat efficiency is low. However, there is still a problem that the thermal efficiency is low.
[0004]
[Patent Document 1]
JP-A-9-10791
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, can significantly reduce the amount of excess sludge generated due to the biological treatment of organic wastewater, and reduces it with extremely low energy. It is an object of the present invention to provide a new organic wastewater treatment apparatus or method that can be provided by supply.
[0006]
[Means for Solving the Problems]
A first aspect of the present invention is an organic wastewater treatment apparatus having a biological reaction tank that treats organic wastewater with microorganisms at room temperature, and a solubilization treatment tank that solubilizes sludge generated in the biological reaction tank at medium and high temperatures. Wherein the solubilization treatment tank is an organic wastewater treatment apparatus that has an agitation mechanism for forcibly agitating the sludge with a gas-liquid mixed flow containing air to perform aerobic microbial treatment. With this configuration, it is possible to efficiently reduce the amount of generated excess sludge as waste.
[0007]
Here, it is desirable to provide an organic wastewater treatment apparatus having an adjustment mechanism for adjusting the amount of air flowing into the gas-liquid mixed flow. Thereby, the temperature of the solubilization reaction treatment tank can be controlled, and the solubilization treatment can be performed under optimal conditions.
[0008]
In addition, it is desirable to provide an organic wastewater treatment apparatus in which the air inflow amount is 0.001 vvm or more and 0.05 vvm or less. Further, it is desirable that the stirring mechanism is an organic wastewater treatment device that is an aerator.
[0009]
A second aspect of the present invention is a method for treating organic wastewater by subjecting organic wastewater to biological treatment at normal temperature and solubilizing sludge generated by the biological treatment. A method for treating organic wastewater, wherein the treatment is carried out in a microbial treatment and the sludge is forcibly stirred by a gas-liquid mixed stream containing air. Here, it is desirable to adopt a method of treating organic wastewater in which the temperature of the sludge is adjusted by adjusting the amount of the air flowing into the gas-liquid mixed flow.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the specific modes described in the following embodiments and examples.
[0011]
FIG. 1 is a schematic diagram illustrating a schematic configuration of an example of the processing apparatus of the present invention. The organic wastewater 20 discharged from sewage, human waste, a food factory, a chemical factory, or the like is temporarily stored in the organic wastewater storage tank 1. Thereafter, the organic wastewater is transferred to the biological reaction tank 3 and subjected to biological treatment by a usual activated sludge method according to a conventional method. In biological treatment, organic substances that are pollutants in wastewater such as sewage are decomposed and stabilized by biological action using various microorganisms. Specifically, the organic matter is eaten by the microorganisms in the biological reaction tank 3 and decomposed in the process of oxygen respiration, nitrate respiration, fermentation, etc., partly turns into carbon dioxide and water, and partly enters the body of the microorganisms. Nutrients for microbial growth. Such biological treatment is classified into aerobic treatment and anaerobic treatment. In the biological reaction tank 3 in this example, the biological treatment tank 3 includes an intake port 31 provided in the biological reaction tank 3, a diffuser 30 and an air pump 32. The air is constantly sent into the tank by the air diffuser to perform aerobic treatment. Further, an anaerobic treatment may be added to this, but it is preferable to include an aerobic treatment from the viewpoint of meeting the drainage standard.
[0012]
In addition, in the biological treatment of the biological reaction tank 3, the organic wastewater is not particularly heated, and ordinary biological treatment is performed within a range of about 5 ° C. to 35 ° C. and room temperature. Thereby, the soluble organic matter in the organic wastewater is almost consumed.
[0013]
Next, the organic wastewater treated in the biological reaction tank 3 is transferred to the solid-liquid separation tank 5 together with the insoluble organic matter and microorganisms dispersed in the wastewater. Here, solid-liquid separation is performed, and insoluble organic substances and microbial cells are precipitated in the lower part of the tank and become sludge 302. On the other hand, the treated water 301 after the sludge 302 has been settled and separated has a lower BOD, and is subjected to necessary ozone treatment and filtration treatment in accordance with the drainage standard, and is discharged to a general river or the like.
[0014]
The sludge 302 settled in the solid-liquid separation tank 5 is taken out from the lower part of the solid-liquid separation tank 5 as needed, and a part thereof is returned to the biological reaction tank 3 via the transfer pipe 51 by the pump 41 and functions as a microorganism source. . The amount returned is determined so that the amount of microorganisms in the biological reaction tank 3 is constant. The remaining sludge 302 is sent to the solubilization reaction treatment tank 8 by the pump 42 via the transfer pipe 52.
[0015]
In the solubilization reaction treatment tank 8, the sludge is solubilized. The term “solubilization” as used herein means that an organic substance that has been insoluble in water undergoes decomposition by a microorganism or thermal decomposition by heat treatment, and becomes soluble in water as a result of a change such as reduction in molecular weight.
[0016]
In the solubilization reaction treatment tank 8, the above-described solubilization is performed by a thermophilic bacterium that prefers a relatively high temperature in a state where a medium-high temperature is applied. The medium high temperature herein is preferably from 40 ° C to 70 ° C. More preferably, it is 45 ° C or higher and 65 ° C or lower.
[0017]
The solubilization reaction treatment tank 8 has a forced stirring mechanism for stirring the internal sludge by a gas-liquid mixed flow containing air. In this example, an aerator 83 is provided at the bottom of the tank as a stirring mechanism. The aerator 83 has rotating blades that rotate by the driving force of a motor provided in the liquid, an air suction part connected to the air suction pipe 81, and a liquid suction part 82. The air and the liquid sucked from the respective suction parts are And discharges the mixture through the gas-liquid jet port 84. As an example of the forced stirring mechanism, a type in which an ejector is attached to a discharge port of a submersible pump and an air suction pipe is connected may be used. In any case, a gas-liquid mixed flow can be generated, and any drive unit for that purpose may be used as long as it is in the sludge and supplies waste heat to the sludge. Here, the forced stirring means not only stirring by natural convection such as a natural upward flow or a downward flow due to gravity or the like, but also stirring in a horizontal direction with a forced force.
[0018]
The aerator 83 may be a normal type, but in the apparatus shown in FIG. 1, a high temperature type having a certain degree of durability even when operated at a medium to high temperature is selected. Further, the number of aerators 83 to be installed may be appropriately determined according to the shape and size of the solubilization tank and the specification capability of the aerator so that a range in which the forced agitating force of the aerator does not reach is generated in the tank.
[0019]
By providing the aerator 83 in the solubilization tank 8 in this manner, a gas-liquid mixed flow containing air in the sludge can be forcibly generated. That is, it is possible to supply air while stirring the sludge.
[0020]
Further, since the motor as the power unit is in the liquid, a large part of the electric energy consumed by the operation is exhausted as heat and released into the sludge. This waste heat can be used to heat the sludge in the solubilization tank 8, so that it can be used in combination with an appropriate heat retaining mechanism of the solubilization reaction tank 8 as needed, together with the amount of heat generated by the microorganisms. A configuration that does not require an external energy source for warming is possible. This simplifies the structure of the solubilization reaction treatment tank 8 and enables efficient operation of maintaining a medium to high temperature by supplying a very small amount of energy.
[0021]
The air suction pipe 81 of the aerator is provided with a valve 84 as an adjustment mechanism for adjusting the air flow rate. Although it is possible to operate without providing the valve 84, the provision of the valve 84 makes it easier to control the solubilization process. This is because it has been found that the temperature of the sludge changes depending on the amount of air intake, and that this adjustment has a great effect on the thermal efficiency of the tank.
[0022]
Specifically, if the air flow rate is too small, the aerobic atmosphere is easily lost, the activity of the aerobic microorganisms is reduced, and the solubilization of sludge is less likely to occur. Further, since the amount of heat generated by the microorganisms is small, it is difficult to maintain the temperature of the solubilization reaction treatment tank 8 at an intermediate high temperature. On the other hand, if the amount of ventilation is too large, the amount of heat generated by the microorganisms increases, but unexpectedly a large amount of exhaust removes a large amount of heat, and as a result, the solubilization reaction treatment tank 8 It has been found that it is difficult to maintain the temperature at an intermediate temperature. As a result, it is considered that the thermal efficiency decreases.
[0023]
That is, the air flow rate is preferably within a certain range, specifically, 1 liter to 50 liters per minute per cubic meter of sludge (0.001 vvm to 0.05 vvm). Is desirable. In this range, an aerobic atmosphere can be realized, and the amount of heat taken for exhaust can be kept within a relatively small range. More preferably, it is 2 liters or more and 40 liters or less (0.002 vvm or more and 0.04 vvm or less), and still more preferably 4 liters or more and 20 liters or less (0.004 vvm or more and 0.02 vvm or less).
[0024]
The solubilization reaction treatment tank 8 does not need to be kept warm as long as it can maintain a middle and high temperature without keeping it warm in relation to the environmental temperature. However, it is desirable that the temperature be kept in consideration of seasonal fluctuations. The heat generated by the aerator and the heat generated by the biological reaction are added to the structure by which the generated heat is hardly lost, and the sludge is heated to a medium to high temperature of 40 to 70 ° C. and maintained at that temperature. Easier to do. In the processing apparatus of FIG. 1, the solubilization reaction processing tank 8 is covered with a glass wool heat insulating material having a thickness of about 5 cm.
[0025]
The sludge solubilized in the solubilization reaction treatment tank 8 is transferred to the biological reaction tank 3 via the transfer pipe 53 by the pump 43. By doing so, surplus sludge to be disposed of can be significantly reduced, and the energy used can be reduced as much as possible to provide a processing device with high thermal efficiency.
[0026]
Although the processing tank of FIG. 1 performs the processing by the batch processing, it goes without saying that the processing may be performed continuously. Further, the pipes may be provided so as to be in contact with each other in a plane, or a special heat exchanger may be provided so that heat exchange occurs between the transfer pipe 52 and the transfer pipe 53. Hereinafter, a more specific description will be given using examples.
[0027]
Embodiment 1
An experiment was performed using an apparatus similar to the apparatus shown in FIG. The organic wastewater flowing into the biological reaction tank 3 was collected from a flow control tank before being treated by a wastewater treatment device of a food factory and used. The BOD concentrations of the samples ranged from 200 mg / L to 250 mg / L with an average of 220 mg / L. The BOD concentration is defined as the amount of oxygen consumed when organic matter in one liter of water is decomposed by the action of microorganisms, and is used as a representative index for measuring organic matter pollution in rivers by the Japanese Industrial Standards Factory Wastewater Test Method. K0102-21.
[0028]
The organic wastewater was supplied to the biological reaction tank 3 at an inflow rate of 3000 liter / day. The volume of the biological reaction tank 3 was 1000 liters. The liquid flowing out of the biological reaction tank 3 is sent to the solid-liquid separation tank 5. In the solid-liquid separation tank, solid-liquid separation was performed by a sedimentation separation method, and separated into a supernatant liquid 301 and a sludge 302.
[0029]
Part of the sludge settled and separated in the solid-liquid separation tank 5 was returned to the biological reaction tank 3 as return sludge. Further, a part of the sludge is sent to the solubilization reaction treatment tank 8 through the liquid sending line 52 at a flow rate of 100 liter / day with 1% by weight of the suspended solid (SS). The suspended solids (SS) concentration is a numerical value in mg of the dry solid weight per liter of the original liquid when the solids present in the liquid are separated and dried by filter paper.
[0030]
The solubilization reaction treatment tank 8 has a cylindrical shape with a diameter of 700 mm and a height of 900 mm, a treatment liquid volume of 250 liters, and the periphery of the tank is kept warm by a glass wool heat insulating material having a thickness of about 5 cm. In addition, one aerator 83 was installed at the bottom of the tank, which was equipped with an ejector model 2PS-W-SS manufactured by Hokuto Co., Ltd. at the discharge part of a 4BE2-0.4 kw submersible pump manufactured by Tsurumi Seisakusho Co., Ltd.
[0031]
The aerator 83 has rotating blades that are rotated by an internal motor, an air suction part in which an air suction pipe 81 is connected to an ejector, and a liquid suction part 82. The aerator 83 mixes the gas and liquid sucked from the respective suction parts to eject gas and liquid. It has a function of discharging horizontally from the section 88 into the solubilization tank 8 to forcibly agitate the liquid in the solubilization tank 8 and to supply air into the liquid.
[0032]
The air suction pipe 81 of the aerator 83 was provided with a valve 84. The valve 84 was adjusted, and the sludge was solubilized while maintaining the ventilation rate at 2.5 l / min (0.01 vvm). No other heating source was provided.
[0033]
In a steady state 5 days after the start of the operation, the solubilization treatment tank was performing a stable solubilization operation in a liquid temperature range of 58 ° C to 62 ° C without adding external energy. The energy required for the operation of the aerator was 24 kwh. The suspended substance (SS) of the liquid entering the solubilization tank in the steady state was 9,340 mg / liter, and the SS of the liquid after the solubilization reaction was 2,550 mg / liter on average. The solubilization rate of the sludge calculated from this was 72.7%. These results are shown in Table 1.
[0034]
In addition, SS was measured by Japanese Industrial Standards and a factory drainage test method K102.14.1. The BOD was measured according to Japanese Industrial Standards, Factory Wastewater Test Method K0102-21. In addition, all the measured values are shown as an average value of the values obtained by performing a plurality of measurements in a steady state.
[0035]
[Table 1]
Figure 2004344769
[Comparative Example 1]
FIG. 2 shows a schematic diagram of the apparatus used. Note that portions common to the devices used in the first embodiment are denoted by the same reference numerals. A description will be given mainly of a portion different from the device used in the first embodiment. In the apparatus shown in FIG. 2, the solubilization tank 8 has a double tank structure, and hot water for heating can be circulated in the jacket 85 on the outer periphery. The warm water for warming is heated to a predetermined temperature by a warming device 9 equipped with a 1 kw electric heater, and then supplied to a jacket portion 85 via a warm water pipe 10 and heated through a warm water pipe 10. Return to the device 9. Thus, the heating device 9 and the jacket 85 are circulated. The periphery of the tank is kept warm by a glass wool heat insulating material having a thickness of about 5 cm (not shown).
[0036]
The solubilization reaction processing tank 8 is provided with an air diffusion device including an air diffuser 30, an air supply pipe 81, and an air pump 86, and supplies air into the solubilization processing reaction tank 8. As the diffuser tube 30, a porous tube made of ABS resin (manufactured by Daisen Membrane Systems Co., Ltd., model name: BPF-5-30 / 18-300L) was used. Other parts are the same as those of the apparatus used in the first embodiment.
[0037]
A wastewater similar to the organic wastewater used in Example 1 was supplied to the biological reaction tank 3 under the same conditions as in Example 1, and the wastewater was subjected to the same treatment as in Example 1 to solubilize the wastewater. 8.
[0038]
The sludge was solubilized by adjusting the intake amount of the air pump of the solubilization reaction tank 8 and maintaining the ventilation rate at 20 liters / min (0.08 vvm). Thus, a stable solubilization operation was possible with the same processing capacity as in Example 1.
[0039]
The amount of suspended solids (SS) in the wastewater entering the solubilization tank in the steady state was 9,250 mg / liter, and the SS content of the wastewater after the solubilization reaction was 2,600 mg / liter on average. From these calculations, a solubilization ratio of sludge of about 71.9% was obtained. Note that SS and BOD were measured in the same manner as in Example 1.
[0040]
In a steady state, the electric energy supplied to the heating device of the solubilization reaction treatment tank 8 was 50 kwh, and the energy required for the air pump of the air diffuser was 6 kwh. These results are shown in Table 1. As compared with Experimental Example 1, it was found that 50 kwh + 6 kwh−24 kwh = 32 kwh was additionally required.
[0041]
【The invention's effect】
An apparatus having high thermal efficiency and the same processing capacity as the conventional method can be obtained. Since a heating device is not required, the structure of the solubilization treatment tank is simplified, and equipment costs can be reduced. In addition, it can be operated without any special management technology.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of an entire processing apparatus of the present invention.
FIG. 2 is a schematic diagram showing an outline of an entire processing apparatus used in Comparative Example 1.
FIG. 3 is a schematic diagram showing an outline of an entire conventional processing apparatus.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Organic wastewater storage tank 2 Transfer pipe 3 Biological reaction tank 4 Transfer pipe 5 Solid-liquid separation tank 8 Solubilization reaction treatment tank 9 Heating device 10 Hot water pipe 20 Organic drainage 30 Air diffuser 31 Air supply pipe 32 Air pump 40 to 42 Pumps 51 to 53 Transfer pipe 81 Air supply pipe 82 Intake port 83 Aerator 84 Valve 85 Jacket 86 Air pump 87 Heat insulator 88 Spout 301 Treated water 302 Sludge 303 Excess sludge

Claims (6)

有機性排水を常温で微生物処理する生物反応槽と、前記生物反応槽で発生した汚泥を中高温で可溶化処理する可溶化処理槽とを有する有機性排水の処理装置であって、前記可溶化処理槽は、前記汚泥を空気を含む気液混合流により強制撹拌する撹拌機構を有して好気的微生物処理を行うものである有機性排水の処理装置。An organic wastewater treatment apparatus comprising: a biological reaction tank that treats organic wastewater with microorganisms at ordinary temperature; and a solubilization treatment tank that solubilizes sludge generated in the biological reaction tank at a medium temperature. An organic wastewater treatment apparatus, wherein the treatment tank has an agitation mechanism for forcibly agitating the sludge with a gas-liquid mixed flow containing air to perform aerobic microbial treatment. 気液混合流への空気の流入量を調整する調整機構を有する請求項1記載の有機性排水の処理装置。The organic wastewater treatment apparatus according to claim 1, further comprising an adjusting mechanism for adjusting an amount of air flowing into the gas-liquid mixed flow. 空気の流入量が、0.001vvm以上0.05vvm以下である請求項2に記載の有機性排水の処理装置。The organic wastewater treatment apparatus according to claim 2, wherein an inflow amount of air is 0.001 vvm or more and 0.05 vvm or less. 撹拌機構がエアレータである請求項1に記載の有機性排水の処理装置。The organic wastewater treatment apparatus according to claim 1, wherein the stirring mechanism is an aerator. 有機性排水を常温で生物処理し、前記生物処理により発生する汚泥を可溶化処理する有機性排水の処理方法であって、前記の可溶化処理は、中高温における好気的微生物処理で、かつ前記汚泥が空気を含む気液混合流により強制撹拌された状態で行われるものである有機性排水の処理方法。Biological treatment of organic wastewater at normal temperature, a method of treating organic wastewater to solubilize the sludge generated by the biological treatment, wherein the solubilization treatment is an aerobic microbial treatment at medium and high temperatures, and A method of treating organic wastewater, wherein the sludge is forcibly stirred by a gas-liquid mixed flow containing air. 気液混合流への空気の流入量を調整することにより、汚泥の温度を調整する請求項5に記載の有機性排水の処理方法。The method for treating organic wastewater according to claim 5, wherein the temperature of the sludge is adjusted by adjusting the amount of air flowing into the gas-liquid mixed stream.
JP2003144544A 2003-05-22 2003-05-22 Organic wastewater treatment apparatus or treatment method using it Pending JP2004344769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144544A JP2004344769A (en) 2003-05-22 2003-05-22 Organic wastewater treatment apparatus or treatment method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144544A JP2004344769A (en) 2003-05-22 2003-05-22 Organic wastewater treatment apparatus or treatment method using it

Publications (1)

Publication Number Publication Date
JP2004344769A true JP2004344769A (en) 2004-12-09

Family

ID=33531972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144544A Pending JP2004344769A (en) 2003-05-22 2003-05-22 Organic wastewater treatment apparatus or treatment method using it

Country Status (1)

Country Link
JP (1) JP2004344769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
CN104211278A (en) * 2014-09-18 2014-12-17 句容市深水水务有限公司 Sludge-reduction biological treatment system and application method thereof
JP2017213492A (en) * 2016-05-30 2017-12-07 アクアテクノEsco事業株式会社 Sludge treatment equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
CN104211278A (en) * 2014-09-18 2014-12-17 句容市深水水务有限公司 Sludge-reduction biological treatment system and application method thereof
JP2017213492A (en) * 2016-05-30 2017-12-07 アクアテクノEsco事業株式会社 Sludge treatment equipment

Similar Documents

Publication Publication Date Title
JP2004330188A (en) Aerator with function of swirling, aeration and intermittent aeration, and advanced sewage treating method using the same
CN105347485A (en) Bio-membrane reactor realizing synchronous nitrification, denitrification and anaerobic ammoxidation and fast realization method
EP0371385A1 (en) Method and apparatus for treating waste material
JP2004344769A (en) Organic wastewater treatment apparatus or treatment method using it
JPH05277486A (en) Anaerobic treatment of organic waste water
JP4451991B2 (en) Aeration equipment
CN218507660U (en) Self-cleaning circulating type environment-friendly toilet
JP4145049B2 (en) Organic solid processing apparatus and processing method thereof
CN216584399U (en) Domestic sewage treatment device
CN110451636A (en) A kind of membrane bioreactor, sewage disposal system and processing method
JP2003053378A (en) Method and device for treating water by using separation membrane
CN108996810A (en) A kind of high concentration hard-degraded organic waste water Zero discharging system and processing method
JP3900796B2 (en) Method and apparatus for treating organic wastewater
CN108358385A (en) A kind of device for chemical industry effluent processing
JP2004530530A (en) Wastewater treatment apparatus and method with enhanced solids weight loss (ESR)
JP2004167382A (en) Methane fermentation method and methane fermentation apparatus of organic material
JP2007117867A (en) Method and equipment for treating organic solid
JP3212904B2 (en) Organic wastewater treatment method
JP2004267869A (en) Pressurization type biological wastewater cleaning method
JP3290621B2 (en) Method and apparatus for treating organic wastewater
JP3078305U (en) Lake water purification equipment
JP4109492B2 (en) Sludge treatment method
CN217516809U (en) Inverted AO electrolysis dephosphorization MBR membrane integrated equipment
JP2004141859A (en) Waste water treating apparatus and waste water treating method
CN215480018U (en) Novel AO bioreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100129