JP3208404B2 - Weight measuring device - Google Patents

Weight measuring device

Info

Publication number
JP3208404B2
JP3208404B2 JP04751093A JP4751093A JP3208404B2 JP 3208404 B2 JP3208404 B2 JP 3208404B2 JP 04751093 A JP04751093 A JP 04751093A JP 4751093 A JP4751093 A JP 4751093A JP 3208404 B2 JP3208404 B2 JP 3208404B2
Authority
JP
Japan
Prior art keywords
load
base
load receiving
receiving portion
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04751093A
Other languages
Japanese (ja)
Other versions
JPH06241877A (en
Inventor
和明 浜
和之 小林
朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP04751093A priority Critical patent/JP3208404B2/en
Publication of JPH06241877A publication Critical patent/JPH06241877A/en
Application granted granted Critical
Publication of JP3208404B2 publication Critical patent/JP3208404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、被測定物の荷重が加
わる荷重受け部と、この荷重受け部の全周を所定間隔を
あけて取囲みかつ下面が測定場所へ置かれる枠状の基部
と、この基部と荷重受け部とを連結し基部下面を設置場
所へ置いたときに荷重受け部を宙に浮かせる梁部と、こ
の梁部に取付けられた歪みゲージとを有し、荷重受け部
に荷重が加わるときに梁部に発生する歪みを歪みゲージ
で検出する重量測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load receiving portion to which a load of an object to be measured is applied, and a frame-like base which surrounds the entire circumference of the load receiving portion at a predetermined interval and whose lower surface is placed at a measuring place. And a beam part that connects the base and the load receiving part and floats the load receiving part in the air when the base lower surface is placed at the installation location, and a strain gauge attached to the beam part. The present invention relates to a weight measuring device for detecting, using a strain gauge, strain generated in a beam portion when a load is applied to a beam.

【0002】[0002]

【従来の技術】従来の歪みゲージを使用した装置として
は、図14及び図15に示すように、被測定物の荷重が
加わる荷重受け部100と、この荷重受け部100の全
周を所定間隔をあけて取囲みかつ下面が測定場所へ置か
れる基部101と、この基部101と荷重受け部100
とを連結し基部101の下面を測定場所へ置いたときに
荷重受け部100を宙に浮かせる梁部102とを有し、
夫々の梁部102の水平方向両側面に歪みゲージ103
を取付けたものが知られている。この従来装置の荷重受
け部100及び基部101は平面形状が長方形状であ
り、梁部102は両部100,101の短辺間を各2本
で連結している。これらの梁部102が荷重受け部10
0に荷重が加わったときに歪み、この歪みを歪みゲージ
103で検出する。
2. Description of the Related Art As a conventional apparatus using a strain gauge, as shown in FIGS. 14 and 15, a load receiving portion 100 to which a load of an object to be measured is applied and a whole circumference of the load receiving portion 100 are arranged at a predetermined interval. A base 101 which is surrounded by a gap and whose lower surface is placed at a measurement location;
And a beam portion 102 for suspending the load receiving portion 100 in the air when the lower surface of the base portion 101 is placed at the measurement place by connecting
Strain gauges 103 are provided on both horizontal sides of each beam 102.
Is known. The load receiving portion 100 and the base portion 101 of this conventional device have a rectangular planar shape, and the beam portion 102 connects two short sides of both portions 100 and 101 with each other. These beam portions 102 are used as load receiving portions 10.
Distortion occurs when a load is applied to 0, and this distortion is detected by the strain gauge 103.

【0003】[0003]

【発明が解決しようとする課題】従来装置では、測定す
る荷重に関連して起歪部である梁部102の断面形状が
設計されるので、必然的に梁部102の断面の高さ寸法
(垂直方向)が測定する荷重に対して決定される。した
がって、少ない本数の梁部102で強度を確保するため
には梁部102の断面の高さが高くなり、装置全体を薄
くすることが難しかった。また、図14におけるx方向
の力Fxに対しては梁部102が圧縮,引張力を受ける
構造になっているので強固であるが、y方向の力Fy対
しては梁102は曲げ力を受けるので弱くなる。このた
め、装置の強度が、受ける力の方向性によって異なり、
またy方向の力Fyによる測定精度への悪影響も考えら
れる。さらに、x方向に荷重負荷点が移動したとき(図
14のx1 )とy方向にそれが移動したとき(図14の
1 )とでは、各部(100,101,102)に働く
力の分布に対称性がなくなり、そのために偏心誤差発生
の方向性が生じたり、偏心誤差の増大をまねく結果とな
っていた。
In the conventional apparatus, the cross-sectional shape of the beam portion 102, which is a strain-flexing portion, is designed in relation to the load to be measured. (Vertical direction) is determined for the load to be measured. Therefore, in order to secure strength with a small number of beams 102, the height of the cross section of the beams 102 is increased, and it is difficult to reduce the thickness of the entire apparatus. Further, the beam portion 102 is strong because it has a structure in which the beam portion 102 receives a compressive and tensile force with respect to the force Fx in the x direction in FIG. 14, but the beam 102 receives a bending force with respect to the force Fy in the y direction. So weak. Therefore, the strength of the device depends on the direction of the force received,
In addition, an adverse effect on the measurement accuracy due to the force Fy in the y direction may be considered. Further, when the load point moves in the x direction (x 1 in FIG. 14) and when it moves in the y direction (y 1 in FIG. 14), the force acting on each part (100, 101, 102) is The distribution has lost symmetry, and as a result, the eccentricity error has a directivity, and the eccentricity error has increased.

【0004】そこで、この発明は、装置全体を薄くする
ことができ、測定精度を高めた重量測定装置を提供する
ことを目的とする。
[0004] Therefore, an object of the present invention is to provide a weight measuring device in which the entire device can be made thinner and measurement accuracy is improved.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
め、この発明は、荷重受け部を平面正方形の六面体に形
成し、荷重受け部の4つの外側面と基部の4つの内側面
との夫々の対向する側面間に少なくとも2つの梁部を設
け、対向する各側面間の梁部を基部の内側面が形成する
各辺の中心線に対して対称となるように設けたものであ
る。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a load receiving portion formed in a hexagonal shape of a square plane, and having four outer side surfaces of the load receiving portion and four inner side surfaces of the base portion. At least two beam portions are provided between the opposing side surfaces, and the beam portions between the opposing side surfaces are provided symmetrically with respect to the center line of each side formed by the inner side surface of the base.

【0006】[0006]

【作用】この発明では、梁部の本数増加により梁部の断
面の高さを低くし、全体を薄くすることが可能となる。
また、互いに対向する荷重受け部の外側面と基部の内側
面との間の各梁部が基部の内側面が形成する各辺の中心
線に対して対称であるため、図14の力Fx,Fyに対
しても強固となり、受ける力の方向性によって装置の強
度が異なることもなくなり、これによる精度の低下もな
くなる。また、正方形であるため、中心点に対して梁部
は90°回転対称となり、荷重点が中心点から移動した
場合、すなわち偏心荷重となっても各構成部材に働く力
の分布に対称性が保たれ、偏心誤差発生の方向性がなく
なるとともに、偏心誤差の低下を図れる。さらに基部内
側面の各辺の中央部に内側に窪んだ切欠部を形成するこ
とによって、装置を設置場所に置いたときに設置場所に
凹凸があっても、この切欠部の存在により梁部の歪みに
悪影響を及ぼすことがなくなる。
According to the present invention, the height of the cross section of the beam portion can be reduced by increasing the number of the beam portions, thereby making it possible to reduce the overall thickness.
Further, since each beam between the outer surface of the load receiving portion and the inner surface of the base facing each other is symmetric with respect to the center line of each side formed by the inner surface of the base, the forces Fx, It is also strong against Fy, so that the strength of the device does not vary depending on the direction of the force to be received, and the accuracy does not decrease due to this. In addition, because of the square shape, the beam portion has a 90 ° rotational symmetry with respect to the center point, and when the load point moves from the center point, that is, even when an eccentric load is applied, the distribution of the force acting on each component is symmetric. It is possible to maintain the directionality of the generation of the eccentric error and to reduce the eccentric error. Further in the base
Form a notch recessed inward in the center of each side of the side.
Depending on the location of the device when it is placed
Even if there are irregularities, the presence of these cutouts can reduce beam distortion.
No adverse effects.

【0007】[0007]

【実施例】以下に、この発明の好適な実施例を図面を参
照にして説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に示す第1実施例では、被測定物の荷
重が加わる荷重受け部1と、この荷重受け部1の全周を
所定間隔をあけて取囲みかつ下面が測定場所へ置かれる
枠状の基部2と、この基部2と荷重受け部1とを連結し
基部2の下面を設置場所へ置いたときに荷重受け部1を
宙に浮かせる梁部3とを有していて、各梁部3の水平方
向両側面に歪みゲージ4を取付けてある。この実施例で
は、梁部3は荷重受け部1の4辺から夫々2本ずつ基部
2の4辺に連結するように設けてある。また、荷重受け
部1の平面形状は正方形とし、基部2も正方形とした。
荷重受け部1の4つの外側面1A〜1Dと基部2の4つ
の内側面2A〜2Dとの夫々の対向する側面間に前記梁
部3が設けられている。対向する各側面(1Aと2A,
1Bと2B,1Cと2C,1Dと2D)の梁部3を基部
2の内側面2A〜2Dが形成する各辺の中心線5,5に
対して対称となるように設けてある。また、図2に示す
ように荷重受け部1の上面は基部2の上面よりも上方に
位置している。
In the first embodiment shown in FIG. 1, a load receiving portion 1 to which a load of an object to be measured is applied, the entire periphery of the load receiving portion 1 is surrounded at a predetermined interval, and the lower surface is placed at a measuring place. A frame-shaped base portion 2 and a beam portion 3 connecting the base portion 2 and the load receiving portion 1 to float the load receiving portion 1 in the air when the lower surface of the base portion 2 is placed at an installation place; Strain gauges 4 are attached to both lateral sides of the beam 3. In this embodiment, the beam portions 3 are provided so as to be connected to the four sides of the base 2 two by two from the four sides of the load receiving portion 1. The planar shape of the load receiving portion 1 was square, and the base 2 was also square.
The beam portion 3 is provided between opposing side surfaces of the four outer side surfaces 1A to 1D of the load receiving portion 1 and the four inner side surfaces 2A to 2D of the base portion 2. Opposite sides (1A and 2A,
1B and 2B, 1C and 2C, and 1D and 2D) are provided so as to be symmetric with respect to the center lines 5 and 5 of the sides formed by the inner side surfaces 2A to 2D of the base 2. Further, as shown in FIG. 2, the upper surface of the load receiving portion 1 is located higher than the upper surface of the base 2.

【0009】このように構成された第1実施例では、図
3に示すように荷重点がx2 やy2の個所に移動した場
合であっても、梁部3は中心点Oに対して90°回転対
称であるから、各構成部材に働く力の分布に対称性が保
たれ、偏心誤差発生の方向性がなくなり、偏心誤差の低
下が図れる。
In the first embodiment constructed as described above, even when the load point moves to the position of x 2 or y 2 as shown in FIG. Since it is 90 ° rotationally symmetric, the distribution of the force acting on each component is kept symmetric, the directionality of the occurrence of the eccentric error is eliminated, and the eccentric error can be reduced.

【0010】図4に示す第2実施例では、基部2の内側
面2A〜2Dの各辺の中央部に内側に窪んだ切欠部6を
形成してある。このような切欠部6を形成することによ
り、周囲部分の変形をこの切欠部6に集中させることが
できる。これにより、基部2の周囲部分を測定場所に置
いたとき、測定場所の面に凹凸等があり、荷重負荷に伴
いこの凹凸の影響で周囲部分が変形してしまうような場
合であっても、その変形を切欠部6の部分に集中させ
て、梁部3が連結されている切欠部6がない部分の変形
を少なくすることができる。そのため、梁部3は基部2
の変形の影響を受けずに、荷重負荷による変形だけをす
るようになる。したがって、重量測定装置の荷重負荷に
対する出力特性の設置面凹凸による影響を低減させるこ
とが可能となる。
In the second embodiment shown in FIG. 4, a notch 6 depressed inward is formed at the center of each side of the inner side surfaces 2A to 2D of the base 2. By forming such a notch 6, deformation of the surrounding portion can be concentrated on the notch 6. Thus, when the peripheral portion of the base 2 is placed at the measurement location, even if the surface of the measurement location has irregularities and the like, and the peripheral portion is deformed by the influence of the irregularities due to the load, The deformation can be concentrated on the notch 6 so that the deformation of the portion without the notch 6 to which the beam 3 is connected can be reduced. Therefore, the beam 3 is the base 2
Only the deformation due to the load without being affected by the deformation. Accordingly, it is possible to reduce the influence of the output characteristics on the load of the weighing device due to the unevenness of the installation surface.

【0011】図5に示す第3実施例では、梁部3の側面
に内側に窪んだ円弧状部7を形成したものを示す。梁部
3の水平方向における円弧状部7の形成は、加工工具8
を用いて形成することができる。このとき、荷重受け部
1の外側面1A〜1Dと基部2の内側面2A〜2D間の
間隔をl(エル)としたとき、円弧状部7の半径をRと
すると、R=1/2・l(エル)となり、梁部3間の隙
間を加工すると同時に円弧状部7も加工することができ
る。しかも、1回の片方向送りで梁部3間の隙間と円弧
状部7との加工が同時に行え、加工時間の短縮およびコ
ストの低減を図ることが可能となる。
In a third embodiment shown in FIG. 5, an arc-shaped portion 7 which is depressed inward is formed on the side surface of the beam portion 3. The formation of the arc-shaped portion 7 in the horizontal direction of the beam portion 3 is performed by using a machining tool 8
Can be formed. At this time, assuming that the distance between the outer surfaces 1A to 1D of the load receiving portion 1 and the inner surfaces 2A to 2D of the base 2 is 1 (ell), if the radius of the arc-shaped portion 7 is R, R = 1/2. 1 (L), and it is possible to process the gap between the beam portions 3 and simultaneously process the arc-shaped portion 7. Moreover, the gap between the beam portions 3 and the arc-shaped portion 7 can be simultaneously processed by one-time unidirectional feed, so that the processing time and cost can be reduced.

【0012】図6および図7に示すように、荷重受け部
1の中央部分に荷重が負荷されたときの梁部3の上下面
に働く曲げ応力は梁部3の1本の負担荷重がFであると
すると、x点においては、
As shown in FIGS. 6 and 7, when a load is applied to the central portion of the load receiving portion 1, the bending stress acting on the upper and lower surfaces of the beam portion 3 is such that one load of the beam portion 3 is F. Then, at the point x,

【0013】[0013]

【数1】 (Equation 1)

【0014】と表わせる。つまり、曲げ応力は梁部3の
中心からの距離xに比例して増加していくので、最大応
力は梁部3の両端部31にて発生する。そこで、符号
7′で示すような半円側面形状にしておくと、梁部3の
幅wは両端部31に近づく程大きくなり、強度的に有利
となる。当然、梁部3の上下面に符号7″のようにRを
つけても有効であるが、大きなRをつけると梁部3の高
さが大きくなり、重量測定装置全体の厚さ増大につなが
るので、その大きさは全体の厚さとの関係により設計す
る。
## EQU1 ## That is, since the bending stress increases in proportion to the distance x from the center of the beam 3, the maximum stress occurs at both ends 31 of the beam 3. Therefore, if a semicircular side surface shape as indicated by reference numeral 7 'is formed, the width w of the beam portion 3 becomes larger as approaching both end portions 31, which is advantageous in strength. Naturally, it is effective to add an R to the upper and lower surfaces of the beam portion 3 as indicated by reference numeral 7 ", but if a large R is added, the height of the beam portion 3 increases, leading to an increase in the thickness of the entire weighing device. Therefore, the size is designed in relation to the overall thickness.

【0015】図8および図9は図6および図7に示すよ
うな半円側面形状を形成したものを示し、梁部3の水平
方向両側面に歪みゲージ4を取付けてある。歪みゲージ
4は中心線に対して両側に45°の方向の抵抗線を有す
る。歪みゲージ4は、梁部3に発生する剪断応力に比例
する剪断歪みを検出し、電気的に変換して重量測定を行
う。
FIGS. 8 and 9 show a semi-circular side surface as shown in FIGS. 6 and 7, in which strain gauges 4 are attached to both lateral sides of the beam 3 in the horizontal direction. The strain gauge 4 has resistance lines in the direction of 45 ° on both sides with respect to the center line. The strain gauge 4 detects a shear strain that is proportional to the shear stress generated in the beam 3 and converts it electrically to measure the weight.

【0016】歪みゲージ4の歪み検出精度を上げるに
は、許される限り大きな歪みを発生することが1つの方
法であり、この歪みは応力に比例する。剪断応力τは次
の数式で表わせる。
One way to increase the strain detection accuracy of the strain gauge 4 is to generate as large a strain as possible, and this strain is proportional to the stress. The shear stress τ can be expressed by the following equation.

【0017】[0017]

【数2】 (Equation 2)

【0018】剪断応力は断面の最小部である梁部3の中
央部で最大となる。したがって、梁部3の中央部に歪み
ゲージ4を取付けることにより、より大きな歪みを検出
することができ、検出力は高まる。なお、曲げモーメン
トは梁部3の中心から離れる程大きくなるが、図8およ
び図9に示す実施例では、中心から離れるにつれて断面
も大きくなり強度を保つことができる。
The shear stress becomes maximum at the center of the beam 3 which is the minimum section. Therefore, by attaching the strain gauge 4 to the center of the beam 3, a larger strain can be detected, and the detection power increases. Although the bending moment increases as the distance from the center of the beam 3 increases, in the embodiments shown in FIGS. 8 and 9, the cross section increases as the distance from the center increases, and the strength can be maintained.

【0019】図10に示す第4実施例では、第2実施例
の切欠部6と第3実施例の円弧状部7とをともに形成し
た例を示し、この実施例では、大型航空機等の車輪重量
を測定するのに適し、荷重受け部1の4辺は夫々外方に
延出し、オーバーハング部11を形成している。このオ
ーバーハング部11は基部2の上面を覆う構造となり、
このオーバーハング部11があることにより荷重受け部
1の面積は大きくなり、重量測定時特に車両の車輪を載
せるような場合に車輪を載せ易くすることができる。ま
た、梁部3の保護用カバー等を取付ける必要もなくな
る。
The fourth embodiment shown in FIG. 10 shows an example in which both the cutout 6 of the second embodiment and the arc-shaped portion 7 of the third embodiment are formed. It is suitable for measuring the weight, and four sides of the load receiving portion 1 extend outward to form an overhang portion 11. The overhang portion 11 has a structure that covers the upper surface of the base 2,
Due to the presence of the overhang portion 11, the area of the load receiving portion 1 is increased, and the weight of the wheel can be easily mounted especially when the wheel of the vehicle is mounted at the time of weight measurement. Also, there is no need to attach a protective cover or the like for the beam portion 3.

【0020】図12は歪みゲージを示し、この歪みゲー
ジ4は中心線に対して両側に45°の角度をもつ2つの
抵抗線41,42を有している。すべての歪みゲージ4
の抵抗線41,42を荷重が負荷されたときにその抵抗
線41,42の抵抗値変化によりブリッジが不平行にな
るような配線、例えば図12のように配線する。このよ
うに配線されたものに低電圧発生装置9にて電圧を印加
し、荷重負荷に伴う歪みゲージ4の抵抗線41,42の
抵抗値変化に伴うブリッジ不平行による電位差を増幅器
10,アナログ/デジタル変換器12,コンピューター
13を通じて荷重値に変換し、表示部等に出力させる
(図13参照)。ここで基部2の断面積が小さくなる部
分、すなわち切欠部6の個所は、その幅w1 を1/2w
2 にすることにより断面積を1/2にしている。また各
側面に配置されている2本の梁部3は、中央部分側面長
さSに対して3/4S2 の間隔をあけて中心線に対して
対称になっている。また、荷重受け部1の材質としては
アルミニウム合金を採用して軽量化を図ることが好まし
い。図10に示す実施例において、大型航空機の車輪重
量を測定するには、大型航空機の車輪1つが十分に載る
大きさすなわち図10におけるLを650mmとし、最大
測定荷重30トンを実現できた。このような装置の厚さ
すなわち図11におけるhは90mmと薄くすることがで
きた。
FIG. 12 shows a strain gauge. The strain gauge 4 has two resistance wires 41 and 42 at 45 ° on both sides with respect to the center line. All strain gauges 4
The resistance wires 41 and 42 are arranged such that the bridge becomes non-parallel due to a change in the resistance value of the resistance wires 41 and 42 when a load is applied, for example, as shown in FIG. A voltage is applied to the wires wired in this manner by the low voltage generator 9, and the potential difference due to the bridge non-parallelism caused by the change in the resistance value of the resistance wires 41 and 42 of the strain gauge 4 due to the load is amplified by the amplifier 10. It is converted into a load value through the digital converter 12 and the computer 13 and output to a display unit or the like (see FIG. 13). Here, the portion where the cross-sectional area of the base portion 2 becomes small, that is, the location of the notch portion 6 is set such that its width w 1 is w w
By setting it to 2 , the cross-sectional area is halved. Further, the two beam portions 3 arranged on each side surface are symmetrical with respect to the center line at an interval of 3 / 4S 2 with respect to the length S of the central portion side surface. It is preferable that the load receiving portion 1 is made of an aluminum alloy to reduce the weight. In the embodiment shown in FIG. 10, in order to measure the wheel weight of a large aircraft, the size of one wheel of the large aircraft, ie, L in FIG. 10, was set to 650 mm, and a maximum measured load of 30 tons was realized. The thickness of such an apparatus, that is, h in FIG. 11, could be reduced to 90 mm.

【0021】図10ないし図13に示す実施例の重量測
定装置の荷重負荷試験の結果を次表に示す。
The results of the load test of the weight measuring apparatus of the embodiment shown in FIGS. 10 to 13 are shown in the following table.

【0022】[0022]

【表1】 [Table 1]

【0023】表中〜は夫々図10の〜の位置に
荷重を負荷したときの値である。表中「行き」とは荷重
を増加していく場合、「帰り」とは荷重を減少していく
場合をいい、その誤差がヒステリシスである。この装置
は薄型可搬式であるにもかかわらず、非直線性0.02
%F.S.、ヒステリシス0.05%F.S.を達成し、かつ偏
心誤差においても0.15%という高精度を達成した。
「F.S.」とはフルスケールに対する割合である。
〜 In the table are values when a load is applied to the positions 〜 in FIG. 10 respectively. In the table, “go” means increasing the load, and “return” means decreasing the load. The error is hysteresis. Although this device is thin and portable, it has a non-linearity of 0.02
% FS and hysteresis of 0.05% FS, and high accuracy of 0.15% in eccentricity error.
“FS” is the ratio to full scale.

【0024】[0024]

【発明の効果】以上説明したように、この発明によれ
ば、荷重受け部を平面正方形の六面体に形成し、荷重受
け部の4つの外側面と基部の4つの内側面との夫々の対
向する側面間に少なくとも2つの梁部を設けたので、梁
部の本数が多くなり、梁部の断面の高さを低くし、全体
を薄くすることが可能となる。また、互いに対向する荷
重受け部の外側面と基部の内側面との間の各梁部が基部
の内側面が形成する各辺の中心線に対して対称であるこ
とにより、横方向の力に対しても強固となり、受ける力
の方向性によって装置の強度が異なることもなくなり、
測定装置としての精度も向上する。また、荷重受け部の
中心点に対して梁部は90°回転対称となり、荷重点が
中心点から移動した場合であっても各構成部材に働く力
の分布に対称性が保たれ、偏心誤差発生の方向性がなく
なるとともに、偏心誤差の低下を図ることができる。総
じて、装置全体を薄くすることができ、測定精度を大幅
に向上させることができる。
As described above, according to the present invention, the load receiving portion is formed in a hexagonal shape of a plane square, and the four outer surfaces of the load receiving portion and the four inner surfaces of the base oppose each other. Since at least two beam portions are provided between the side surfaces, the number of the beam portions is increased, and the height of the cross section of the beam portion can be reduced, and the whole can be thinned. In addition, since each beam between the outer surface of the load receiving portion and the inner surface of the base facing each other is symmetrical with respect to the center line of each side formed by the inner surface of the base, the lateral force is reduced. The strength of the device no longer varies depending on the direction of the force received,
The accuracy as a measuring device is also improved. In addition, the beam portion is 90 ° rotationally symmetric with respect to the center point of the load receiving portion, and even when the load point moves from the center point, symmetry is maintained in the distribution of the force acting on each component, and the eccentric error The directionality of occurrence is eliminated, and the eccentricity error can be reduced. In general, the entire device can be made thinner, and the measurement accuracy can be greatly improved.

【0025】また、基部内側面の各辺の中央部に内側に
窪んだ切欠部を形成したものにあっては、装置を設置場
所に置いたときに設置場所に凹凸があっても、この切欠
部の存在により梁部の歪みに悪影響を及ぼすことがなく
なる。また、梁部の側面に内側に窪んだ円弧状部を形成
したものにあっては、曲げモーメントに対して梁部が強
度を保つことができる。
Further, in the case of forming a cutout recessed inward at the center of each side of the inner surface of the base, even if the installation place has irregularities when the apparatus is set up, the cutout The presence of the portion does not adversely affect the distortion of the beam portion. Further, in the case where the arc-shaped portion which is depressed inward is formed on the side surface of the beam portion, the beam portion can maintain strength against a bending moment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す平面図。FIG. 1 is a plan view showing a first embodiment.

【図2】図1の正面図。FIG. 2 is a front view of FIG. 1;

【図3】第1実施例の偏荷重を説明する平面図。FIG. 3 is a plan view illustrating an unbalanced load according to the first embodiment.

【図4】第2実施例を示す平面図。FIG. 4 is a plan view showing a second embodiment.

【図5】第3実施例を示す平面図。FIG. 5 is a plan view showing a third embodiment.

【図6】梁部の平面図。FIG. 6 is a plan view of a beam.

【図7】梁部の正面図。FIG. 7 is a front view of a beam.

【図8】梁部の水平方向両側面に円弧状部を形成した例
を示す平面図。
FIG. 8 is a plan view showing an example in which arcuate portions are formed on both side surfaces in the horizontal direction of a beam portion.

【図9】図8に示す梁部の正面図。FIG. 9 is a front view of the beam shown in FIG. 8;

【図10】第4実施例を示す平面図。FIG. 10 is a plan view showing a fourth embodiment.

【図11】図10の半断面の正面図。FIG. 11 is a front view of a half section of FIG. 10;

【図12】歪みゲージの抵抗線配線図。FIG. 12 is a resistance wiring diagram of a strain gauge.

【図13】この装置の信号変換ブロック図。FIG. 13 is a signal conversion block diagram of the device.

【図14】従来例を示す平面図。FIG. 14 is a plan view showing a conventional example.

【図15】図14の正面図。FIG. 15 is a front view of FIG. 14;

【符号の説明】[Explanation of symbols]

1 荷重受け部 2 基部 3 梁部 4 歪みゲージ 1A〜1D 外側面 2A〜2D 内側面 DESCRIPTION OF SYMBOLS 1 Load receiving part 2 Base 3 Beam part 4 Strain gauge 1A-1D Outer side 2A-2D Inner side

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−315056(JP,A) 特開 平1−21333(JP,A) 実開 平2−52134(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01G 21/23,21/28 G01G 3/12,3/14 G01G 1/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-315056 (JP, A) JP-A-1-21333 (JP, A) JP-A-2-52134 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01G 21 / 23,21 / 28 G01G 3 / 12,3 / 14 G01G 1/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定物の荷重が加わる荷重受け部と、
この荷重受け部の全周を所定間隔をあけて取囲みかつ下
面が測定場所へ置かれる枠状の基部と、この基部と荷重
受け部とを連結し基部下面を設置場所へ置いたときに荷
重受け部を宙に浮かせる梁部と、この梁部に取付けられ
た歪みゲージとを有し、荷重受け部に荷重が加わるとき
に梁部に発生する歪みを歪みゲージで検出する重量測定
装置において、 荷重受け部を平面正方形の六面体に形成し、 荷重受け部の4つの外側面と基部の4つの内側面との夫
々の対向する側面間に少なくとも2つの梁部を設け、 対向する各側面間の梁部を基部の内側面が形成する各辺
の中心線に対して対称となるように設け さらに基部内側面の各辺の中央部に内側に窪んだ切欠部
を形成した ことを特徴とする重量測定装置。
A load receiving portion to which a load of an object to be measured is applied;
Surround the entire circumference of this load receiver at a predetermined interval and
A frame-shaped base on which the surface is placed at the measurement location, and the base and load
When the bottom of the base is connected to the
The beam part that makes the heavy receiving part float in the air, and the beam part
When a load is applied to the load receiving part
Measurement using a strain gauge to detect the strain generated in the beam part
In the device, the load receiving portion is formed in a flat square hexahedron, and the four external surfaces of the load receiving portion and the four internal surfaces of the base portion are connected to each other.
At least two beam portions are provided between the opposing side surfaces, and each side of the base portion forming the beam portion between the opposing side surfaces.
Provided symmetrically with respect to the center line of, In addition, a notch recessed inward at the center of each side of the base inside surface
Formed A weight measuring device characterized by the above-mentioned.
【請求項2】 梁部の側面に内側に窪んだ円弧状部を形
成したことを特徴とする請求項1に記載の重量測定装
置。
2. The weight measuring device according to claim 1, wherein an arc-shaped portion depressed inward is formed on a side surface of the beam portion.
JP04751093A 1993-02-12 1993-02-12 Weight measuring device Expired - Fee Related JP3208404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04751093A JP3208404B2 (en) 1993-02-12 1993-02-12 Weight measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04751093A JP3208404B2 (en) 1993-02-12 1993-02-12 Weight measuring device

Publications (2)

Publication Number Publication Date
JPH06241877A JPH06241877A (en) 1994-09-02
JP3208404B2 true JP3208404B2 (en) 2001-09-10

Family

ID=12777114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04751093A Expired - Fee Related JP3208404B2 (en) 1993-02-12 1993-02-12 Weight measuring device

Country Status (1)

Country Link
JP (1) JP3208404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19960604A1 (en) * 1999-12-16 2001-06-21 Bosch Gmbh Robert Micromechanical spring structure, in particular for a rotation rate sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714791B2 (en) * 1987-07-16 1998-02-16 株式会社ブリヂストン Center of gravity measurement device
JPH0635150Y2 (en) * 1988-10-06 1994-09-14 工業技術院長 Radial beam type load cell
JPH04315056A (en) * 1991-04-12 1992-11-06 Tokai Rika Co Ltd Acceleration sensor

Also Published As

Publication number Publication date
JPH06241877A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
US6185814B1 (en) Method of manufacturing a sensor detecting a physical action as an applied force
CA1095095A (en) Load cell
US3439761A (en) Strain-gage transducer structures
US20050199434A1 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing the apparatus
US5925832A (en) Torsional sensing load cell
US2995034A (en) Load-cell devices
US3698248A (en) Pressure responsive transducer
CA1301784C (en) Weighing cell
CN110220621A (en) A kind of rail head of rail formula strain gauge for the detection of rail truck Super leaning load
US4278139A (en) Weighing apparatus with overload protection for off-center loading
JPH0579930A (en) Load cell
US4420054A (en) Weighing apparatus with overload protection for off-center loading
JP3208404B2 (en) Weight measuring device
JPH07117470B2 (en) Force detector
CN109374160A (en) A kind of rail stress sensor for the detection of rail truck Super leaning load
US4726436A (en) Measuring equipment
JPS6315131A (en) Multicomponent force detector and multicomponent force detection apparatus using the same
JP3348941B2 (en) Component force measuring device
CN209069464U (en) A kind of rail stress sensor for the detection of rail truck Super leaning load
JPH0821721B2 (en) Force detection device
JPH10227681A (en) Bearing with load cell
RU2179306C1 (en) Automobile weighing device
JPH0450970B2 (en)
CN215984976U (en) Cross beam elastic piece, six-dimensional force sensor and industrial robot
JP7437702B2 (en) wall soil pressure gauge

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees