JP3205998U - Metal heat sink structure - Google Patents

Metal heat sink structure Download PDF

Info

Publication number
JP3205998U
JP3205998U JP2016002766U JP2016002766U JP3205998U JP 3205998 U JP3205998 U JP 3205998U JP 2016002766 U JP2016002766 U JP 2016002766U JP 2016002766 U JP2016002766 U JP 2016002766U JP 3205998 U JP3205998 U JP 3205998U
Authority
JP
Japan
Prior art keywords
metal
heat sink
lower surfaces
metal substrate
natural graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016002766U
Other languages
Japanese (ja)
Inventor
林鉦絖
Original Assignee
林鉦絖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林鉦絖 filed Critical 林鉦絖
Priority to JP2016002766U priority Critical patent/JP3205998U/en
Application granted granted Critical
Publication of JP3205998U publication Critical patent/JP3205998U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】金属放熱板の熱伝導率が高く、各種電子製品に応用して高い放熱効果を得る金属放熱板構造を提供する。【解決手段】金属放熱板構造は、上下表面11を有する金属基材1と、金属基材1の上下表面11にそれぞれ形成された2つの金属被覆層2と、高純度天然黒鉛層3からなるとともに、金属被覆層2の上下表面11にそれぞれ形成された2つの天然黒鉛層3とを含む。金属基材1は、銅、アルミニウム、ステンレス又は冷延鋼からなり、10μm〜1.6mmの厚さを有する。金属被覆層2は、ニッケル、カドミウム、ニッケルカドミウム合金、銀又はチタンからなる。【選択図】図1Provided is a metal heat sink structure in which a metal heat sink has a high thermal conductivity and is applied to various electronic products to obtain a high heat dissipation effect. A metal heat dissipation plate structure includes a metal substrate 1 having upper and lower surfaces 11, two metal coating layers 2 respectively formed on the upper and lower surfaces 11 of the metal substrate 1, and a high-purity natural graphite layer 3. In addition, two natural graphite layers 3 respectively formed on the upper and lower surfaces 11 of the metal coating layer 2 are included. The metal substrate 1 is made of copper, aluminum, stainless steel or cold rolled steel and has a thickness of 10 μm to 1.6 mm. The metal coating layer 2 is made of nickel, cadmium, a nickel cadmium alloy, silver, or titanium. [Selection] Figure 1

Description

本考案は、金属放熱板構造に関し、特に、金属放熱板の熱伝導率が高く、各種電子製品に応用して高い放熱効果を得ることができる金属放熱板構造に関する。   The present invention relates to a metal heat radiating plate structure, and more particularly, to a metal heat radiating plate structure that has a high thermal conductivity and can be applied to various electronic products to obtain a high heat radiating effect.

電子産業の急速な発展に伴い、例えば、パーソナルコンピューター、携帯電話、OA機器、グローバルポジショニングシステムなどの電子製品が徐々に普及している。現代の電子部品及び電子機器は、薄型軽量に向かって発展している上、多機能かつ高性能となっている。   With the rapid development of the electronic industry, for example, electronic products such as personal computers, mobile phones, office automation equipment, and global positioning systems are gradually spreading. Modern electronic components and electronic devices are developing toward thin and light weight, and are multifunctional and high performance.

電子製品の集積度が高まるに従い、単位面積当たりの電子部品の数も幾何級数的に増え、放熱は重要な課題となっている。もし放熱が迅速に行われない場合、部品の動作温度が上昇してしまい、最悪の場合には電子部品が故障し、各種精密機器の寿命及び信頼性に直接、悪影響を与えてしまうことがあった。そのため、電子製品の小型化、集積化には放熱問題がネックとなっていた。   As the degree of integration of electronic products increases, the number of electronic components per unit area also increases geometrically, and heat dissipation is an important issue. If the heat is not released quickly, the operating temperature of the components will rise, and in the worst case, the electronic components may fail, directly affecting the life and reliability of various precision instruments. It was. For this reason, the problem of heat dissipation has become a bottleneck in the miniaturization and integration of electronic products.

従来の放熱技術には熱伝導性シリコーンが採用されている。熱伝導性シリコーンの長所は、圧縮可能な点であり、銅などの金属と比べて熱伝導が遅い上、ファンを組み合わさなければならず、迅速に温度を低下させたり空間が制限されていたりする場合、その性能を十分発揮することはできなかった。そのため、一部のメーカーは、銅底部に炭素含有層を結合させて放熱性を高めていた(例えば、特許文献1の「銅炭素複合放熱片及びその製造方法」)。
該銅炭素複合放熱片は、銅箔両面に炭素熱伝導層が塗布されて成形される。前述の銅箔の厚さは0.02〜0.25mmであり、前述の炭素熱伝導層の厚さは0.015〜0.03mmであり、前述の銅炭素複合放熱片の厚さは0.08〜0.3mmである。前述の炭素熱伝導層は、グラフェン又は単層カーボンナノチューブが100部であり、接着剤が1〜50部であり、前述のグラフェンの比表面積が500〜1000m/gであり、前述の単層カーボンナノチューブの比表面積が500〜1000m/gであり、単層カーボンナノチューブの粒径が5nmである。前述の接着剤は、ポリビニリデンフルオライド、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールからなる群から選ばれる一種以上を含む。
該製造方法は、接着剤を有機溶剤に溶かし、接着剤の有機溶剤を得るステップ(1)と、グラフェン又はカーボンナノチューブと、接着剤の有機溶剤とを混合して混合物を得るステップ(2)と、混合物を0.5〜1時間超音波分散し、1500〜3000RPMの回転速度で1〜5時間撹拌分散し、均一に混合して混合物を得るステップ(3)と、均一に混合した混合物を銅箔の両面に塗布し、不活性ガスで保護して固化し、上述した銅炭素複合銅箔放熱片を得て、固化温度を50〜200℃に設定し、固化時間を10〜100分間に設定するステップ(4)と、を含む。
Thermally conductive silicone is employed in conventional heat dissipation technology. The advantage of thermally conductive silicone is that it is compressible, it has a slower thermal conductivity than metals such as copper, and it must be combined with a fan, which quickly lowers the temperature and limits the space. In that case, the performance could not be fully exhibited. For this reason, some manufacturers have increased the heat dissipation by bonding a carbon-containing layer to the copper bottom (for example, “Copper-carbon composite heat dissipation piece and manufacturing method thereof” in Patent Document 1).
The copper-carbon composite heat dissipation piece is formed by applying a carbon heat conductive layer on both sides of a copper foil. The thickness of the copper foil is 0.02 to 0.25 mm, the thickness of the carbon heat conduction layer is 0.015 to 0.03 mm, and the thickness of the copper carbon composite heat dissipation piece is 0. 0.08 to 0.3 mm. The carbon thermal conductive layer described above is composed of 100 parts of graphene or single-walled carbon nanotubes, 1 to 50 parts of adhesive, and a specific surface area of the graphene of 500 to 1000 m 2 / g. The specific surface area of the carbon nanotube is 500 to 1000 m 2 / g, and the particle size of the single-walled carbon nanotube is 5 nm. The aforementioned adhesive contains one or more selected from the group consisting of polyvinylidene fluoride, polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol.
The production method comprises dissolving an adhesive in an organic solvent to obtain an organic solvent for the adhesive (1), mixing a graphene or carbon nanotube and an organic solvent for the adhesive to obtain a mixture (2), The mixture is ultrasonically dispersed for 0.5 to 1 hour, stirred and dispersed at a rotational speed of 1500 to 3000 RPM for 1 to 5 hours, and uniformly mixed to obtain a mixture (3), and the uniformly mixed mixture is copper Apply to both sides of the foil, protect and solidify with inert gas, obtain the above-mentioned copper-carbon composite copper foil heat dissipation piece, set the solidification temperature to 50-200 ° C, set the solidification time to 10-100 minutes Step (4).

上述の特許文献1「銅炭素複合放熱片及びその製造方法」では、炭素含有物質を銅箔底面に付着させる付着方式は、炭素含有物質が接着剤、溶剤を利用して有機溶液を生成してから塗布し、不活性ガスで保護して固化し、銅炭素複合銅箔放熱片を形成するものであり、接着剤又は溶剤を接着するだけの方式である。このため、炭素層を構成する炭素含有物質自身が外れやすく、異質な銅箔との結合が不安定となり、銅箔表面から炭素層が剥がれ落ちやすい上、炭素含有物質間が接着剤又は溶剤により接着され、この方式により炭素含有物質間の伝導性が下がり、熱伝導効果が大幅に下がってしまう虞があった。   In the above-mentioned Patent Document 1 “Copper / Carbon Composite Heat Dissipating Piece and Method for Producing the Same”, the attachment method of attaching the carbon-containing material to the bottom surface of the copper foil is that the carbon-containing material generates an organic solution using an adhesive and a solvent. It is applied by coating with an inert gas and solidified to form a copper-carbon composite copper foil heat dissipating piece, which is simply a method of adhering an adhesive or a solvent. For this reason, the carbon-containing material itself constituting the carbon layer is likely to come off, the bond with the foreign copper foil becomes unstable, the carbon layer is easily peeled off from the copper foil surface, and the carbon-containing material is separated by an adhesive or a solvent. There is a possibility that the conductivity between the carbon-containing materials is lowered by this method, and the heat conduction effect is greatly lowered.

従来の上述した銅箔上には、炭素層の構造が結合され、成形方式が依然として炭素層及びアルミ材との結合性が好ましくないため、熱伝導効果が下がり、コストが高すぎて、経済性が低いなどの欠点があったため、従来技術の問題点を改善する金属放熱板構造が求められていた。   Since the structure of the carbon layer is bonded onto the conventional copper foil described above and the bonding method with the carbon layer and the aluminum material is still not preferable, the heat conduction effect is lowered, the cost is too high, and the economic efficiency Therefore, there has been a demand for a metal heat sink structure that improves the problems of the prior art.

中国特許第103476227A号公報Chinese Patent No. 10476227A

本考案の目的は、金属放熱板の熱伝導率が高く、各種電子製品に応用して高い放熱効果を得る金属放熱板構造を提供することにある。   An object of the present invention is to provide a metal heat radiating plate structure that has a high heat conductivity of a metal heat radiating plate and obtains a high heat radiating effect when applied to various electronic products.

上記課題を解決するために、本考案の第1の形態によれば、上下表面を有する金属基材と、前記金属基材の上下表面にそれぞれ形成された2つの金属被覆層と、高純度天然黒鉛層からなるとともに、前記金属被覆層の上下表面にそれぞれ形成された2つの天然黒鉛層と、を含むことを特徴とする金属放熱板構造が提供される。   In order to solve the above problems, according to the first aspect of the present invention, a metal substrate having upper and lower surfaces, two metal coating layers respectively formed on the upper and lower surfaces of the metal substrate, and high-purity natural There is provided a metal heat dissipating plate structure comprising a graphite layer and two natural graphite layers respectively formed on upper and lower surfaces of the metal coating layer.

前記金属基材は、銅、アルミニウム、ステンレス又は冷延鋼からなり、10μm〜1.6mmの厚さを有することが好ましい。   The metal substrate is made of copper, aluminum, stainless steel, or cold rolled steel, and preferably has a thickness of 10 μm to 1.6 mm.

前記金属被覆層は、ニッケル、カドミウム、ニッケルカドミウム合金、銀又はチタンからなることが好ましい。   The metal coating layer is preferably made of nickel, cadmium, a nickel cadmium alloy, silver or titanium.

本考案の金属放熱板構造は、真空マグネトロンスパッタ空間の条件下で未加工の金属基材に金属被覆層及び天然黒鉛層を形成することができる。   The metal heat sink structure of the present invention can form a metal coating layer and a natural graphite layer on an unprocessed metal substrate under the condition of a vacuum magnetron sputtering space.

本考案の一実施形態に係る金属放熱板構造を示す断面図である。It is sectional drawing which shows the metal heat sink structure which concerns on one Embodiment of this invention.

以下、本考案の実施形態について図に基づいて説明する。なお、これによって本考案が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited thereby.

図1を参照する。図1は、本考案の一実施形態に係る金属放熱板構造を示す断面図である。図1に示すように、本考案の一実施形態に係る金属放熱板構造は、少なくとも金属基材1と、2つの金属被覆層2と、2つの天然黒鉛層3と、から構成されてなる。   Please refer to FIG. FIG. 1 is a cross-sectional view showing a metal heat sink structure according to an embodiment of the present invention. As shown in FIG. 1, the metal heat sink structure according to an embodiment of the present invention includes at least a metal substrate 1, two metal coating layers 2, and two natural graphite layers 3.

金属基材1は、上下表面11を有する。   The metal substrate 1 has upper and lower surfaces 11.

2つの金属被覆層2は、金属基材1の上下表面11にそれぞれ形成される。   The two metal coating layers 2 are respectively formed on the upper and lower surfaces 11 of the metal substrate 1.

2つの天然黒鉛層3は、高純度の天然黒鉛からなり、金属被覆層2の表面にそれぞれ形成される。   The two natural graphite layers 3 are made of high-purity natural graphite and are respectively formed on the surface of the metal coating layer 2.

実際に金属放熱板を製作する際、以下の方式で製作する。   When actually manufacturing a metal heat sink, the following method is used.

まず、金属基材1を準備する。金属基材1は、銅、アルミニウム、ステンレス、冷延鋼などの金属材料からなり、10μm〜1.6mmの厚さを有する。金属基材1の上下表面11は、選択した金属材料に依り、表面が平滑面又は粗面に形成される。例えば、銅材が未加工の場合、表面11は平滑面に形成され、ステンレス、冷延鋼などが未加工の場合、凹凸を有する粗面に形成される。続いて、金属基材1を真空チャンバ内に設置し、真空チャンバは、真空マグネトロンスパッタ空間の条件下で、金属基材1へスパッタリングを行って金属被覆層2を形成する。   First, the metal substrate 1 is prepared. The metal substrate 1 is made of a metal material such as copper, aluminum, stainless steel, cold rolled steel, and has a thickness of 10 μm to 1.6 mm. The upper and lower surfaces 11 of the metal substrate 1 have a smooth or rough surface depending on the selected metal material. For example, when the copper material is not processed, the surface 11 is formed as a smooth surface, and when stainless steel, cold-rolled steel or the like is not processed, the surface 11 is formed as a rough surface having irregularities. Subsequently, the metal substrate 1 is placed in a vacuum chamber, and the vacuum chamber performs sputtering on the metal substrate 1 under the conditions of the vacuum magnetron sputtering space to form the metal coating layer 2.

ここで、金属被覆層2は、スパッタリングする際、ニッケル、カドミウム、ニッケルカドミウム合金、銀又はチタンからなってもよい。その後、真空チャンバを介して金属被覆層2を金属基材1の上下表面11に形成する。次に、同様に真空マグネトロンスパッタ空間の条件下で、高純度の天然黒鉛を金属被覆層2の表面にそれぞれ形成し、金属放熱板の製作を完成させる。   Here, the metal coating layer 2 may be made of nickel, cadmium, a nickel cadmium alloy, silver, or titanium when sputtering. Thereafter, the metal coating layer 2 is formed on the upper and lower surfaces 11 of the metal substrate 1 through a vacuum chamber. Next, similarly, high-purity natural graphite is formed on the surface of the metal coating layer 2 under the conditions of the vacuum magnetron sputtering space, thereby completing the manufacture of the metal heat sink.

このように、金属放熱板の成形方式は、天然黒鉛層3と金属基材1とを強固に結合させ、天然黒鉛が炭素原子の結合により成形されるため、黒鉛自身が有する密着性が高くて外れにくい上、高純度の黒鉛からなる天然黒鉛層3は伝導率及び導電性が高い。
このように、本実施形態の金属放熱板は、放熱板の機械強度を大幅に高めることができる上、熱伝導率が高い特性を有するため、組み合わせる電気製品、電子部品の放熱効果を高めて使用寿命を延ばすことができる。
As described above, the metal heat radiation plate is formed by firmly bonding the natural graphite layer 3 and the metal substrate 1 and forming the natural graphite by the bonding of carbon atoms, so that the graphite itself has high adhesion. Further, the natural graphite layer 3 made of high-purity graphite has high conductivity and conductivity.
As described above, the metal heat sink of the present embodiment can greatly increase the mechanical strength of the heat sink and has a high thermal conductivity. Life can be extended.

上述したことから分かるように、本考案の金属放熱板構造は、以下(1)〜(4)の長所を有する。
(1)金属基材からなり、表面が平滑面又は粗面に形成され、金属被覆層を介して天然黒鉛が基材表面に結合され、金属基材及び金属被覆層の表面内に高純度の天然黒鉛が嵌入され、基材と強固に結合されているため、表面が剥がれ落ちることを防ぎ、放熱板の機械強度を高める。
(2)金属放熱板構造は、高純度の天然黒鉛を使用し、黒鉛の良好な密着性及び導電性により金属基材の機械強度を大幅に高めることができる上、熱伝導率が高いため組み合わせる電気製品又は電子部品の放熱効果を高めて使用寿命を延ばすことができる。
(3)金属基材の両側表面に、付着可能な金属被覆層と天然黒鉛との層状構造を形成して放熱板の使用効率を倍増させ、金属放熱板のスループット及び産業競争力を高めることができる。
(4)金属基材は選択した金属材料に依り表面を平滑面又は粗面に形成することができるため応用範囲が広く、構造の付着性を高めることもできる。
As can be seen from the above, the metal heat sink structure of the present invention has the following advantages (1) to (4).
(1) Consisting of a metal substrate, the surface is formed into a smooth or rough surface, natural graphite is bonded to the substrate surface via the metal coating layer, and high purity is formed in the surfaces of the metal substrate and the metal coating layer. Since natural graphite is inserted and firmly bonded to the base material, the surface is prevented from peeling off and the mechanical strength of the heat sink is increased.
(2) The metal heat sink structure uses high-purity natural graphite, which can greatly increase the mechanical strength of the metal substrate due to the good adhesion and conductivity of graphite, and is combined because of its high thermal conductivity. It is possible to extend the service life by enhancing the heat dissipation effect of electrical products or electronic components.
(3) To form a layered structure of an adherent metal coating layer and natural graphite on both surfaces of the metal substrate to double the efficiency of use of the heat sink and increase the throughput and industrial competitiveness of the metal heat sink it can.
(4) Since the surface of the metal substrate can be formed into a smooth surface or a rough surface depending on the selected metal material, the application range is wide and the adhesion of the structure can be enhanced.

1 金属基材
2 金属被覆層
3 天然黒鉛層
11 表面
DESCRIPTION OF SYMBOLS 1 Metal base material 2 Metal coating layer 3 Natural graphite layer 11 Surface

Claims (3)

上下表面を有する金属基材と、
前記金属基材の上下表面にそれぞれ形成された2つの金属被覆層と、
高純度天然黒鉛層からなるとともに、前記金属被覆層の上下表面にそれぞれ形成された2つの天然黒鉛層と、を含むことを特徴とする、
金属放熱板構造。
A metal substrate having upper and lower surfaces;
Two metal coating layers respectively formed on the upper and lower surfaces of the metal substrate;
It is composed of a high-purity natural graphite layer, and includes two natural graphite layers respectively formed on the upper and lower surfaces of the metal coating layer,
Metal heat sink structure.
前記金属基材は、銅、アルミニウム、ステンレス又は冷延鋼からなり、10μm〜1.6mmの厚さを有することを特徴とする請求項1に記載の金属放熱板構造。   The metal heat sink structure according to claim 1, wherein the metal substrate is made of copper, aluminum, stainless steel, or cold rolled steel and has a thickness of 10 μm to 1.6 mm. 前記金属被覆層は、ニッケル、カドミウム、ニッケルカドミウム合金、銀又はチタンからなることを特徴とする請求項2に記載の金属放熱板構造。   The metal heat sink structure according to claim 2, wherein the metal coating layer is made of nickel, cadmium, nickel cadmium alloy, silver, or titanium.
JP2016002766U 2016-06-14 2016-06-14 Metal heat sink structure Expired - Fee Related JP3205998U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002766U JP3205998U (en) 2016-06-14 2016-06-14 Metal heat sink structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002766U JP3205998U (en) 2016-06-14 2016-06-14 Metal heat sink structure

Publications (1)

Publication Number Publication Date
JP3205998U true JP3205998U (en) 2016-08-25

Family

ID=56741363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002766U Expired - Fee Related JP3205998U (en) 2016-06-14 2016-06-14 Metal heat sink structure

Country Status (1)

Country Link
JP (1) JP3205998U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082331A (en) * 2015-10-27 2017-05-18 長春石油化學股▲分▼有限公司 Heat-dissipating copper foil and graphene composite
CN107969091A (en) * 2016-10-20 2018-04-27 上海光线新材料科技有限公司 Graphite based on addition process covers copper heat dissipation film and preparation method thereof
EP3388870A1 (en) * 2017-04-12 2018-10-17 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Composite structure and method for producing the same and electronic device
IT201800009499A1 (en) * 2018-10-16 2020-04-16 Meccal Srl A Socio Unico COMPOSED FIN ELEMENT AND THERMAL SINK EQUIPPED WITH A PLURALITY OF THESE ELEMENTS
JP2022191175A (en) * 2021-06-15 2022-12-27 薩摩亞商隆揚國際股▲分▼有限公司台灣分公司 Graphite composite lamination heat discharge structure and manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082331A (en) * 2015-10-27 2017-05-18 長春石油化學股▲分▼有限公司 Heat-dissipating copper foil and graphene composite
CN107969091A (en) * 2016-10-20 2018-04-27 上海光线新材料科技有限公司 Graphite based on addition process covers copper heat dissipation film and preparation method thereof
EP3388870A1 (en) * 2017-04-12 2018-10-17 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Composite structure and method for producing the same and electronic device
IT201800009499A1 (en) * 2018-10-16 2020-04-16 Meccal Srl A Socio Unico COMPOSED FIN ELEMENT AND THERMAL SINK EQUIPPED WITH A PLURALITY OF THESE ELEMENTS
JP2022191175A (en) * 2021-06-15 2022-12-27 薩摩亞商隆揚國際股▲分▼有限公司台灣分公司 Graphite composite lamination heat discharge structure and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP3205998U (en) Metal heat sink structure
JP6393784B2 (en) Electromagnetic wave absorption extinguishing and shielding sheet and electronic device high heat dissipation fusion sheet, and manufacturing method thereof
JP6440715B2 (en) Metal encapsulant with excellent heat dissipation, manufacturing method thereof, and flexible electronic element encapsulated with metal encapsulant
JP5255025B2 (en) Heat dissipation structure and heat dissipation system
JP6127417B2 (en) Manufacturing method of heat dissipation material
US20150313041A1 (en) Graphene dissipation structure
JP6008117B2 (en) Graphite structure and electronic device using the same
JP3173569U (en) Thin metal substrate with high thermal conductivity
JP5384522B2 (en) Heat sink and heat sink forming method using wedge locking system
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
JP2016523734A (en) Heat dissipation sheet
JPWO2013046291A1 (en) Heat dissipation material and method for manufacturing the same, electronic device and method for manufacturing the same
JP2017020101A (en) Metal particle, paste, molded body and laminate
JP2010171200A (en) Heat radiator of semiconductor package
US20090250248A1 (en) Support substrate structure for supporting electronic component thereon and method for fabricating the same
JP5695780B1 (en) High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
US20150136303A1 (en) Method for manufacturing compound heat sink
TW201415683A (en) Mrthod for bonding heat-conducting substraye and metal layer
US20180017343A1 (en) Metal heat dissipating plate
US20170202104A1 (en) Carbon-coated copper foil for heat dissipation
TWM528253U (en) Metal heat dissipation plate structure
KR20180000354U (en) Metal heat dissipating plate
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JP3203341U (en) Composite aluminum foil structure consisting of copper and carbon for heat dissipation
JP2004247514A (en) Semiconductor element housing package, and semiconductor device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3205998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees