JP3204503B2 - Steam cleaning method and apparatus - Google Patents

Steam cleaning method and apparatus

Info

Publication number
JP3204503B2
JP3204503B2 JP24117890A JP24117890A JP3204503B2 JP 3204503 B2 JP3204503 B2 JP 3204503B2 JP 24117890 A JP24117890 A JP 24117890A JP 24117890 A JP24117890 A JP 24117890A JP 3204503 B2 JP3204503 B2 JP 3204503B2
Authority
JP
Japan
Prior art keywords
cleaning
steam
cleaned
vapor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24117890A
Other languages
Japanese (ja)
Other versions
JPH04122024A (en
Inventor
秀昭 黒川
俊雄 沢
晴美 松崎
燦吉 高橋
貢 野村
俊樹 古江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24117890A priority Critical patent/JP3204503B2/en
Publication of JPH04122024A publication Critical patent/JPH04122024A/en
Application granted granted Critical
Publication of JP3204503B2 publication Critical patent/JP3204503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体ウェハや磁気ディスク等の電気材料
や、光学部品,電子部品,これらを搭載したプリント基
板、電子機器,光学機器等の被洗浄物を蒸気で洗浄する
蒸気洗浄方法及びその装置に係り、特に、被洗浄物が疎
水性を有する場合でも高い洗浄効果を得るのに好適な蒸
気洗浄方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to electrical materials such as semiconductor wafers and magnetic disks, optical components, electronic components, printed boards on which these are mounted, electronic devices, optical devices, and the like. The present invention relates to a steam cleaning method and apparatus for cleaning a cleaning object with steam, and more particularly to a steam cleaning method and apparatus suitable for obtaining a high cleaning effect even when an object to be cleaned has hydrophobicity.

[従来の技術] 近年、LSI等の半導体装置の集積度は著しく向上して
おり、4メガビットD−RAMの量産化が開始され、更に1
6メガビット,64メガビットへと進歩している。このよう
に、微細加工技術が進歩しサブミクロン時代に突入する
と、半導体ウェハの表面に微細な不純物が残っているだ
けでそのウェハを用いたLSIは不良品となってしまう。
そこで、LSI製造工程における洗浄技術の役割はかなり
増大してくる。
[Prior Art] In recent years, the degree of integration of semiconductor devices such as LSIs has been remarkably improved, and mass production of 4-megabit DRAMs has started.
It has progressed to 6 megabits and 64 megabits. As described above, when the microfabrication technology advances and enters the submicron era, only the fine impurities remaining on the surface of the semiconductor wafer will result in defective LSIs using the wafer.
Therefore, the role of the cleaning technology in the LSI manufacturing process will increase considerably.

一般に、半導体ウェハ等の基板表面に付着した汚染物
質を除去する場合、先ず溶剤(トリクレン、アセトン、
H2O2−NH4OH混合液など)を用いて汚染物質の油脂分を
除去し、次に、酸・アルカリ(HF、H2O2−NH4OH、HCl−
H2O2混合液など)を用いて汚染物質の金属分を除去す
る。このような薬液を用いて汚染物質が除去された基板
は、次に、超純水を用いて洗浄され、この洗浄後に表面
に残留した超純水の水滴が除去(乾燥)されてから、次
の工程に送られる。
Generally, when removing contaminants adhering to the surface of a substrate such as a semiconductor wafer, a solvent (trichlene, acetone,
H 2 O 2 -NH 4 OH mixed solution, etc.) to remove grease contaminants using, then acid-alkali (HF, H 2 O 2 -NH 4 OH, HCl-
H 2 O 2 mixture) to remove the contaminant metal. The substrate from which the contaminants have been removed by using such a chemical solution is then washed with ultrapure water, and after the water droplets of the ultrapure water remaining on the surface after this cleaning are removed (dried), Sent to the process.

ここで用いる超純水の純度は極めて高く、比抵抗18M
Ω−cm、TOC10ppb以下、0.1μm以上の微粒子10個/ml以
下の水質を保持している。しかしながら、斯かる超純水
を用いて基板を洗浄しても、洗浄後にその表面に残留し
た水滴をうまく除去しないかぎり、この基板を用いたLS
Iは不良品となる率が高くなってしまう。従って、水滴
除去(乾燥)方法にも工夫が必要となる。
The purity of the ultrapure water used here is extremely high, and the specific resistance is 18M
Ω-cm, TOC 10 ppb or less, water quality of 10 particles / ml or less of 0.1 μm or more is maintained. However, even if the substrate is cleaned using such ultrapure water, the LS using this substrate is used unless the water droplets remaining on the surface after cleaning are removed properly.
I has a high rate of defective products. Therefore, it is necessary to devise a method for removing (drying) water droplets.

従来の水滴除去(乾燥)技術として、熱風によって乾
燥させるもの(熱風乾燥法)、洗浄後に基板を回転させ
その遠心力で水滴を飛散させるもの(スピンドライ
法)、有機溶剤(例えばイソプロピルアルコール、以
下、IPAと略記する。)の蒸気を用い残留水滴をこの有
機溶剤と置換してから該有機溶剤を乾燥させるもの(IP
A蒸気乾燥法)があり、実際のウェハ洗浄工程で用いら
れている。また、現状における超純水による洗浄では、
超純水をオーバーフローさせた容器に基板を浸漬させ、
基板に付着している薬液を超純水に置換する方法が採用
されている。
Conventional techniques for removing (drying) water droplets include drying by hot air (hot air drying method), rotating the substrate after washing and scattering water droplets by the centrifugal force (spin drying method), and organic solvents (for example, isopropyl alcohol, hereinafter). , IPA) by replacing residual water droplets with this organic solvent using steam and drying the organic solvent (IP
A steam drying method), which is used in the actual wafer cleaning process. In the current cleaning with ultrapure water,
Immerse the substrate in a container with overflowed ultrapure water,
A method of replacing a chemical solution attached to a substrate with ultrapure water has been adopted.

尚、従来技術に関連するものとして、特開昭61−1749
82号、特開昭61−138582号、特開昭61−138583号、特開
昭61−200885号、超LSIウルトラクリーンテクノロジー
シンポジウムNo.2,超純水・高純度薬品供給系プロシー
ディング,pp399がある。
Incidentally, Japanese Patent Application Laid-Open No. 61-1749
No. 82, JP-A-61-138582, JP-A-61-138583, JP-A-61-200885, Ultra LSI Ultra Clean Technology Symposium No. 2, Proceeding of ultrapure water / high purity chemical supply system, pp399 There is.

[発明が解決しようとする課題] 半導体ウェハ等の洗浄では、最終的にこの被洗浄物表
面に不純物(例えば、洗浄に用いた溶液中に含まれる微
粒子や溶解している物質の析出物)が残留しないことが
必要である。また、洗浄は迅速且つ低コストで実行でき
ることが望ましい。しかし、従来技術においては、これ
らの点が不十分であり、被洗浄物表面に不純物が残留す
る虞がある。
[Problems to be Solved by the Invention] In the cleaning of a semiconductor wafer or the like, impurities (for example, fine particles contained in the solution used for cleaning or precipitates of dissolved substances) are finally present on the surface of the object to be cleaned. It is necessary not to remain. It is also desirable that the cleaning can be performed quickly and at low cost. However, in the prior art, these points are insufficient, and there is a possibility that impurities may remain on the surface of the object to be cleaned.

熱風乾燥法では、基板表面に付着した水滴を熱風によ
り蒸発させるので、水滴中に含まれる微粒子が残留した
り、水滴中に溶解している物質が基板表面に析出したり
する虞がある。スピンドライ法では、基板表面に付着し
た水滴の全てを除去できる訳ではなく、特に細かい溝中
に残留した水滴の除去は難しく、微粒子や析出物が残留
する虞がある。IPA蒸気乾燥法は、残留水滴をIPAで置換
してから乾燥させるので、残留水滴中の微粒子や溶解物
質の影響はないが、置換したIPA中の微粒子や溶解物質
析出物が残留する虞がある。また、IPAは安価である
が、大量に使用するとコストが嵩むという問題もある。
In the hot-air drying method, water droplets adhering to the substrate surface are evaporated by hot air, so that fine particles contained in the water droplets may remain or substances dissolved in the water droplets may precipitate on the substrate surface. In the spin dry method, not all of the water droplets adhered to the substrate surface cannot be removed. In particular, it is difficult to remove water droplets remaining in fine grooves, and fine particles and precipitates may remain. In the IPA vapor drying method, the residual water droplets are replaced with IPA and then dried, so there is no effect of the fine particles and dissolved substances in the residual water droplets, but the fine particles and dissolved substance precipitates in the replaced IPA may remain. . In addition, although IPA is inexpensive, there is a problem that the cost increases when used in large quantities.

更に、従来の洗浄方法では、製造コストの嵩む超純水
を大量に使用するので、洗浄コストが嵩み、また、大量
の超純水を製造する装置やその容器それらの設置場所も
必要になるという問題もある。これに加え、半導体ウェ
ハの様に被洗浄物が疎水性を有する場合には、水をはじ
く性質があるため超純水による洗浄効果はそれほど上が
らないという問題もある。
Furthermore, in the conventional cleaning method, a large amount of ultrapure water, which is expensive to manufacture, is used in large quantities. Therefore, the cleaning cost is high, and an apparatus for producing a large amount of ultrapure water and its container are also required to be installed. There is also a problem. In addition, when the object to be cleaned has a hydrophobic property like a semiconductor wafer, there is a problem that the cleaning effect by ultrapure water is not so improved because of the property of repelling water.

上述した問題は、半導体ウェハを例にとって説明した
が、光学部品としてのレンズや他の電子機器等の被洗浄
物についても同様にいえることである。
Although the above-described problem has been described by taking a semiconductor wafer as an example, the same can be said for an object to be cleaned such as a lens as an optical component or another electronic device.

本発明の目的は、被洗浄物を安価且つ迅速に、少しの
不純物も残留させることなく洗浄することのできる蒸気
洗浄方法及びその装置を提供することにある。
An object of the present invention is to provide a steam cleaning method and apparatus capable of cleaning an object to be cleaned inexpensively and quickly without leaving any impurities.

[課題を解決するための手段] 上記の目的は、被洗浄物表面を水蒸気で洗浄する場合
に、疎水性多孔質膜を通過した水蒸気により洗浄するこ
とで達成される。
[Means for Solving the Problems] The above object is achieved by cleaning the surface of an object to be cleaned with water vapor that has passed through a hydrophobic porous membrane.

[作用] 疎水性多孔質膜を通過すると蒸気中のミストは疎水性
多孔質膜で除去されて高純度の蒸気となり、被洗浄物の
表面上の不純物を良好に洗浄することができる。
[Operation] When passing through the hydrophobic porous membrane, the mist in the vapor is removed by the hydrophobic porous membrane to become high-purity vapor, so that impurities on the surface of the object to be cleaned can be cleaned well.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例に係る蒸気洗浄装置の構
成図である。本実施例の蒸気洗浄装置は、蒸気発生装置
108と、洗浄槽101と、冷却媒体供給装置104とからな
る。水もしくはIPA水溶液109が蒸気発生装置108に供給
され、加熱器114にて加熱され、蒸気となる。この蒸気
発生装置108は、蒸気出口に、例えばポリエチレンなど
有機性の膜でなる疎水性多孔質膜110を備え、蒸気中の
ミストはこの疎水性多孔質膜110で除去され、高純度の
蒸気111となり、切替弁112を介して洗浄槽101に供給さ
れる。
FIG. 1 is a configuration diagram of a steam cleaning apparatus according to one embodiment of the present invention. The steam cleaning device of the present embodiment is a steam generator
108, a cleaning tank 101, and a cooling medium supply device 104. Water or an IPA aqueous solution 109 is supplied to a steam generator 108 and heated by a heater 114 to be turned into steam. The steam generator 108 is provided with a hydrophobic porous membrane 110 made of an organic film such as polyethylene at the steam outlet, and mist in the steam is removed by the hydrophobic porous membrane 110, and the high purity steam 111 is removed. And supplied to the cleaning tank 101 via the switching valve 112.

洗浄槽101には、被洗浄物が設置され、高純度蒸気111
にて洗浄される。本実施例では、被洗浄物として板状の
基板102を用い、この基板102の表と裏を蒸気洗浄する。
洗浄槽101は、この基板102を取り付ける支持台107を備
え、この支持台107と基板102とにより、気密な2室に分
離される。そして、一方の室に洗浄用蒸気が供給され基
板102の一方の面が洗浄され、他方の室に冷却媒体が供
給されて洗浄対象の基板102が直接冷却される。
An object to be cleaned is installed in the cleaning tank 101, and high-purity steam 111 is provided.
Washed in. In this embodiment, a plate-shaped substrate 102 is used as an object to be cleaned, and the front and back surfaces of the substrate 102 are subjected to steam cleaning.
The cleaning tank 101 includes a support 107 on which the substrate 102 is mounted. The support 107 and the substrate 102 separate the airtight two chambers. Then, cleaning steam is supplied to one chamber to clean one surface of the substrate 102, and a cooling medium is supplied to the other chamber to directly cool the substrate 102 to be cleaned.

冷却媒体供給装置104は、超純水あるいは窒素などの
不活性ガスを冷却媒体として洗浄槽101に切替弁113を介
して供給するようになっている。前記の切替弁112とこ
の切替弁113には高純度蒸気111と冷却媒体103とが接続
され、洗浄槽101の第一室に高純度蒸気111を供給すると
きは第二室に冷却媒体103を供給し、第二室に高純度蒸
気111を供給するときは第一室に冷却媒体103を供給する
ようになっている。そして、洗浄の際に出た混合蒸気の
凝縮液105(106)や冷却媒体の廃液106(105)は、各室
の排出口から排出される。
The cooling medium supply device 104 supplies ultrapure water or an inert gas such as nitrogen as a cooling medium to the cleaning tank 101 via a switching valve 113. The high-purity steam 111 and the cooling medium 103 are connected to the switching valve 112 and the switching valve 113, and when supplying the high-purity steam 111 to the first chamber of the cleaning tank 101, the cooling medium 103 is supplied to the second chamber. When the high-purity steam 111 is supplied to the second chamber, the cooling medium 103 is supplied to the first chamber. Then, the condensed liquid 105 (106) of the mixed vapor and the waste liquid 106 (105) of the cooling medium that are discharged at the time of cleaning are discharged from the discharge ports of the respective chambers.

洗浄槽101の両方の室(第一室,第二室)には過熱蒸
気あるいは高温の不活性ガス115が供給される構成にな
っており、基板洗浄後にこの過熱蒸気等115により基板1
02の両面の乾燥が行われる。
Superheated steam or a high-temperature inert gas 115 is supplied to both chambers (first and second chambers) of the cleaning tank 101. After the substrate is cleaned, the substrate 1
02 is dried on both sides.

斯かる構成の蒸気洗浄装置において、前工程で薬液を
用い汚染物質が除去された基板102が洗浄槽101に取り付
けられる。蒸気発生装置108で発生されたIPAと水との混
合蒸気は、疎水性多孔質膜110でミストが除去され、先
ず洗浄槽101の第一室(基板102の第一室側の面を表、第
二室側の面を裏とする。)に供給される。一方、第二室
には冷却媒体が供給され、基板102の裏面に直接接触す
る冷却媒体により基板102は冷却される。
In the steam cleaning apparatus having such a configuration, the substrate 102 from which contaminants have been removed using a chemical solution in the previous step is attached to the cleaning tank 101. The mixed steam of IPA and water generated by the steam generator 108 is subjected to mist removal by the hydrophobic porous membrane 110, and the first chamber (the surface of the substrate 102 on the first chamber side of the substrate 102 is first exposed, The surface on the second chamber side is the back.) On the other hand, a cooling medium is supplied to the second chamber, and the substrate 102 is cooled by the cooling medium that directly contacts the back surface of the substrate 102.

基板102の表面に吹き付けられた混合蒸気は、基板102
により熱が奪われて凝縮する。混合蒸気中のIPAは親水
基であるOH基をもつので、混合蒸気の凝縮液は、半導体
ウェハの様に疎水性を持つ基板でもその表面に凝縮液が
付着し、この凝縮液が基板表面の不純物を洗い流すこと
になる。本実施例では、基板102を冷却媒体で直接冷却
しているので、基板表面に凝縮する凝縮液の液量は増大
し、良好な洗浄が可能となる。
The mixed vapor sprayed on the surface of the substrate 102
Heat is taken away and condensed. Since IPA in the mixed vapor has an OH group, which is a hydrophilic group, the condensate of the mixed vapor adheres to the surface of even a hydrophobic substrate such as a semiconductor wafer, and the condensed liquid forms on the surface of the substrate. The impurities will be washed away. In this embodiment, since the substrate 102 is directly cooled by the cooling medium, the amount of condensate condensed on the substrate surface increases, and good cleaning becomes possible.

その後、切替弁112,113を切り替えて、混合蒸気で基
板裏面側を同様に洗浄する。このときは、基板表側に直
接冷却媒体を接することで基板102を冷却する。最後
に、過熱蒸気等115を両室に流すことで、基板の両面を
乾燥させる。尚、冷却媒体として超純水を用いると、表
側の蒸気洗浄と並行して、裏側の超純水による洗浄が同
時にでき、効率的である。
Thereafter, the switching valves 112 and 113 are switched, and the back surface of the substrate is similarly cleaned with the mixed vapor. At this time, the substrate 102 is cooled by bringing a cooling medium into direct contact with the front side of the substrate. Finally, both surfaces of the substrate are dried by flowing superheated steam 115 or the like into both chambers. If ultrapure water is used as the cooling medium, cleaning with ultrapure water on the back side can be performed at the same time as the steam cleaning on the front side, which is efficient.

次に、良好な洗浄を可能にするIPA水溶液の最適濃度
範囲を説明する。第2図は、IPA水溶液の気−液平衡線
図である。また、第3図は、IPA水溶液の濃度と表面張
力との関係を示すグラフである。疎水性を有する被洗浄
物、例えばベアのSiウェハ(表面のSiO2をフッ素で除去
したウェハ)等は、表面張力が30dyne/cm以下の液体で
ないと親和性が弱い。従って、Siウェハ上で凝縮した凝
縮液の表面張力が、高々この値となるようにする必要が
ある。第3図によれば、表面張力の値が30dyne/cmとな
るIPA濃度は、少なくとも約30%にしなければならな
い。つまり、混合蒸気中のIPA濃度が30%になるように
する。一方、第2図によれば、気相状態つまり蒸気状態
におけるIPAの濃度を30%にするには、液相で3%あれ
ば良いことがわかる。即ち、3%のIPA水溶液を加熱器
で加熱することでIPAの濃度が30%の混合蒸気が生成さ
れる。また、IPA水溶液を蒸発させる場合、蒸発の際に
同伴するミストを疎水性多孔質膜で除去するが、原液の
IPA濃度が高すぎると、そのミストを除去することが難
しくなる。この限界を示す実験値は、原液の表面張力値
で40dyne/cmである。つまり、第3図によれば、20%の
濃度が限界値となる。即ち、IPA水溶液の最適濃度は、
3〜20%である。
Next, the optimum concentration range of the IPA aqueous solution that enables good cleaning will be described. FIG. 2 is a vapor-liquid equilibrium diagram of the IPA aqueous solution. FIG. 3 is a graph showing the relationship between the concentration of the IPA aqueous solution and the surface tension. An object to be cleaned having hydrophobicity, for example, a bare Si wafer (a wafer whose surface SiO 2 has been removed with fluorine) or the like has a low affinity unless the liquid has a surface tension of 30 dyne / cm or less. Therefore, the surface tension of the condensed liquid condensed on the Si wafer must be at most this value. According to FIG. 3, the IPA concentration at which the surface tension value is 30 dyne / cm must be at least about 30%. That is, the IPA concentration in the mixed vapor is adjusted to 30%. On the other hand, according to FIG. 2, it can be seen that in order to make the concentration of IPA in the gas phase state, that is, the vapor state to 30%, it is sufficient to use 3% in the liquid phase. That is, by heating a 3% IPA aqueous solution with a heater, a mixed vapor having an IPA concentration of 30% is generated. When evaporating the IPA aqueous solution, the mist accompanying the evaporation is removed by a hydrophobic porous membrane.
If the IPA concentration is too high, it becomes difficult to remove the mist. The experimental value indicating this limit is 40 dyne / cm in the surface tension value of the stock solution. That is, according to FIG. 3, the limit value is 20% density. That is, the optimal concentration of the IPA aqueous solution is
3-20%.

第4図は、洗浄用蒸気をノズルを用いてウェハに吹き
付けたときの効果を示す図である。蒸気雰囲気中にウェ
ハを置き、このウェハの裏面を冷却すると、同図(a)
に示すように、ウェハ全面に凝縮液の水滴が付着する。
このとき、同図(c)に示すようなノズルを用いて洗浄
用蒸気をウェハに吹き付けると、同図(b)に示すよう
に、吹き付けられた箇所はきれいな液膜ができるととも
に、凝縮液を吹き飛ばす効果もあり、洗浄効果が向上す
る。ウェハ全面を均一に洗浄するには、同図(c)の矢
印に示す様にノズルを移動させればよい。尚、混合蒸気
で洗浄すれば一層効果があるが、ノズルを用いること
で、水蒸気のみによる洗浄でもある程度の効果はある。
FIG. 4 is a view showing an effect when the cleaning steam is sprayed on the wafer by using a nozzle. When the wafer is placed in a steam atmosphere and the back surface of the wafer is cooled, FIG.
As shown in (1), water droplets of the condensate adhere to the entire surface of the wafer.
At this time, when the cleaning steam is sprayed on the wafer by using a nozzle as shown in FIG. 3C, a clean liquid film is formed at the sprayed portion as shown in FIG. There is also an effect of blowing off, and the cleaning effect is improved. To uniformly clean the entire surface of the wafer, the nozzle may be moved as shown by the arrow in FIG. It should be noted that cleaning with mixed steam is more effective. However, by using a nozzle, a certain effect can be obtained even with cleaning using only steam.

第5図は、連続洗浄装置の構成図である。蒸気洗浄装
置501には、被洗浄物504が自動的に右から左に流れてい
く。蒸気洗浄装置501に入った被洗浄物504は、先ず、薬
液506にて洗浄される。そして次の部屋にて、冷却媒体5
02により冷却された被洗浄物は、混合蒸気503にて片面
が洗浄される。更に次の部屋にて同様にもう一方の片面
が洗浄され、最後に、高純度の不活性ガス505にて乾燥
される。
FIG. 5 is a configuration diagram of a continuous cleaning device. The object to be cleaned 504 automatically flows from right to left in the steam cleaning device 501. The object to be cleaned 504 that has entered the steam cleaning device 501 is first cleaned with a chemical solution 506. And in the next room, cooling medium 5
The object to be cleaned cooled in 02 is cleaned on one side by the mixed vapor 503. In the next room, the other side is similarly cleaned, and finally dried with a high-purity inert gas 505.

以上述べた実施例では、IPA使用液を蒸発させること
で、洗浄用の混合蒸気を生成したが、水蒸気とは別にIP
Aの蒸気を生成し、蒸気同士を混合して洗浄用蒸気とす
る構成でもよいことはいうまでもない。この場合、水蒸
気は水蒸気中のミストを除去する疎水性多孔質膜を用意
し、IPA蒸気中のミストはそれ専用に除去する疎水性多
孔質膜を別に用意してもよく、また、蒸気を混合した後
で疎水性多孔質膜を通す構成でもよい。
In the above-described embodiment, the mixed vapor for cleaning was generated by evaporating the IPA use liquid.
It goes without saying that a configuration in which the vapor of A is generated and the vapors are mixed with each other to form a cleaning vapor may be used. In this case, for the water vapor, a hydrophobic porous membrane for removing the mist in the water vapor may be prepared, and for the mist in the IPA vapor, a separate hydrophobic porous membrane for removing the mist may be separately prepared. After that, a configuration in which a hydrophobic porous membrane is passed through may be used.

また、水蒸気に混合する物質としてIPAを採用した
が、本発明はこれに限定されるものではなく、他の有機
物質でもよく、特に、親和性を持つ親水基を有し、表面
張力の値を小さくする物質であればよい。
In addition, although IPA was adopted as a substance to be mixed with water vapor, the present invention is not limited to this, and other organic substances may be used. Any substance can be used as long as the substance can be reduced.

[発明の効果] 本発明によれば、洗浄により生じる凝縮液の表面張力
の値が小さいので、親和性が高く凝縮液による洗浄効果
が高まる。また、蒸気洗浄時に被洗浄物を冷却すること
で、大量の凝縮液を生成させ凝縮液による洗浄効果を高
めることができる。
[Effects of the Invention] According to the present invention, since the value of the surface tension of the condensate generated by cleaning is small, the affinity is high and the cleaning effect by the condensate is enhanced. Further, by cooling the object to be cleaned at the time of the steam cleaning, a large amount of condensed liquid can be generated, and the cleaning effect by the condensed liquid can be enhanced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る蒸気洗浄装置の構成
図、第2図はIPA水溶液の気−液平衡図、第3図はIPA水
溶液の濃度と表面張力との関係を示すグラフ、第4図
(a),(b)はノズルによる洗浄効果の説明図、第4
図(c)はノズルの一例を示す図、第5図は連続洗浄装
置の構成図である。 101……洗浄槽、102……基板(被洗浄物)、103……冷
却媒体、104……冷却媒体供給装置、108……蒸気発生装
置、109……IPA水溶液、110……疎水性多孔質膜、111…
…高純度混合蒸気、114……加熱器。
FIG. 1 is a configuration diagram of a steam cleaning apparatus according to an embodiment of the present invention, FIG. 2 is a vapor-liquid equilibrium diagram of an IPA aqueous solution, FIG. 3 is a graph showing a relationship between the concentration of the IPA aqueous solution and surface tension, 4 (a) and 4 (b) are explanatory views of the cleaning effect by the nozzle, FIG.
FIG. (C) shows an example of the nozzle, and FIG. 5 is a configuration diagram of the continuous cleaning device. 101 cleaning tank, 102 substrate (object to be cleaned), 103 cooling medium, 104 cooling medium supply device, 108 steam generator, 109 IPA aqueous solution, 110 hydrophobic porous Membrane, 111 ...
... high-purity mixed steam, 114 ... heater.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 晴美 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 高橋 燦吉 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 野村 貢 東京都千代田区大手町2丁目6番2号 バブコック日立株式会社内 (72)発明者 古江 俊樹 東京都千代田区大手町2丁目6番2号 バブコック日立株式会社内 (56)参考文献 特開 平2−215127(JP,A) 特開 昭64−76726(JP,A) 特開 平3−127673(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B08B 3/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Harumi Matsuzaki 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Inside the laboratory (72) Inventor Mitsugu Nomura 2-6-2 Otemachi, Chiyoda-ku, Tokyo Inside Babcock Hitachi Co., Ltd. (72) Inventor Toshiki Furue 2-6-2 Otemachi, Chiyoda-ku, Tokyo Inside Babcock Hitachi, Ltd. (56) reference Patent flat 2-215127 (JP, a) JP Akira 64-76726 (JP, a) JP flat 3-127673 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) H01L 21/304 B08B 3/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被洗浄物を蒸気で洗浄する蒸気洗浄方法に
おいて、有機物の水溶液から混合蒸気を生成し、該混合
蒸気を、疎水性多孔質膜を通し、この混合蒸気を用いて
被洗浄物を洗浄することを特徴とする蒸気洗浄方法。
In a vapor cleaning method for cleaning an object to be cleaned with steam, a mixed vapor is generated from an aqueous solution of an organic substance, the mixed vapor is passed through a hydrophobic porous membrane, and the object to be cleaned is used by using the mixed vapor. A steam cleaning method characterized by washing a steam.
【請求項2】請求項1において、混合蒸気の凝縮液の表
面張力を30dyne/cm以下にする物質を混合した水溶液の
蒸気にて洗浄することを特徴とする蒸気洗浄方法。
2. The steam cleaning method according to claim 1, wherein the cleaning is carried out with the vapor of an aqueous solution mixed with a substance that reduces the surface tension of the condensate of the mixed vapor to 30 dyne / cm or less.
【請求項3】請求項1乃至請求項2のいずれかにおい
て、洗浄時に被洗浄物を冷却媒体で冷却することを特徴
とする蒸気洗浄方法。
3. A steam cleaning method according to claim 1, wherein the object to be cleaned is cooled with a cooling medium at the time of cleaning.
【請求項4】請求項1において、被洗浄物が板状であ
り、一方の面を混合蒸気にて洗浄した後に他方の面も混
合蒸気にて洗浄することを特徴とする蒸気洗浄方法。
4. The steam cleaning method according to claim 1, wherein the object to be cleaned is plate-shaped, and one surface is cleaned with mixed steam and then the other surface is also cleaned with mixed steam.
【請求項5】被洗浄物表面を水蒸気で洗浄する蒸気洗浄
装置において、前記蒸気を疎水性多孔質膜を通してから
洗浄する洗浄手段と、洗浄時に被洗浄物を冷却媒体で冷
却する冷却手段とを備えることを特徴とする蒸気洗浄装
置。
5. A steam cleaning apparatus for cleaning the surface of an object to be cleaned with water vapor, comprising: cleaning means for cleaning the vapor after passing through the hydrophobic porous membrane; and cooling means for cooling the object to be cleaned with a cooling medium during cleaning. A steam cleaning device, comprising:
JP24117890A 1990-09-13 1990-09-13 Steam cleaning method and apparatus Expired - Fee Related JP3204503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24117890A JP3204503B2 (en) 1990-09-13 1990-09-13 Steam cleaning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24117890A JP3204503B2 (en) 1990-09-13 1990-09-13 Steam cleaning method and apparatus

Publications (2)

Publication Number Publication Date
JPH04122024A JPH04122024A (en) 1992-04-22
JP3204503B2 true JP3204503B2 (en) 2001-09-04

Family

ID=17070400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24117890A Expired - Fee Related JP3204503B2 (en) 1990-09-13 1990-09-13 Steam cleaning method and apparatus

Country Status (1)

Country Link
JP (1) JP3204503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124049B1 (en) * 2005-06-22 2012-03-26 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584783B2 (en) * 2005-06-22 2010-11-24 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and computer-readable storage medium
JP4498986B2 (en) * 2005-06-22 2010-07-07 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and computer-readable storage medium
JP2009038047A (en) * 2006-04-26 2009-02-19 Entegris Inc Liquid vaporization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124049B1 (en) * 2005-06-22 2012-03-26 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JPH04122024A (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US5105556A (en) Vapor washing process and apparatus
KR100397455B1 (en) Semiconductor ultra-fine particle cleaner
US5714203A (en) Procedure for the drying of silicon
US7056391B2 (en) Liquid-assisted cryogenic cleaning
US5685086A (en) Method and apparatus for drying objects using aerosols
JPH03145130A (en) Device for removing contaminated grains from body surface and method
KR20020046140A (en) Substrate processing unit
JP2002110611A (en) Method and apparatus for cleaning semiconductor wafer
JP3204503B2 (en) Steam cleaning method and apparatus
AU697397B2 (en) Procedure for the drying of silicon
JP5265669B2 (en) How to prevent premature drying
KR20070055553A (en) Hot source cleaning system
US6495215B1 (en) Method and apparatus for processing substrate
JPH1157304A (en) Method for refining chemicals for production of semiconductor element and regeneration system therefor
US6790783B1 (en) Semiconductor fabrication apparatus
JP2004281620A (en) Washing method of wafer
JPH0789547B2 (en) Drying method
JP3324824B2 (en) Cleaning equipment
JP3009006B2 (en) Equipment for drying semiconductor substrates
JPH0279044A (en) Surface treatment method for substrate
JP2555086B2 (en) Surface treatment equipment
KR20010068648A (en) A wafer cleaner
JP2002231688A (en) Substrate-drying method
JP2834795B2 (en) Method of cleaning and drying articles using water
JPH08152267A (en) Vapor dryer and operating method for the dryer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees