JPH0789547B2 - Drying method - Google Patents

Drying method

Info

Publication number
JPH0789547B2
JPH0789547B2 JP15535986A JP15535986A JPH0789547B2 JP H0789547 B2 JPH0789547 B2 JP H0789547B2 JP 15535986 A JP15535986 A JP 15535986A JP 15535986 A JP15535986 A JP 15535986A JP H0789547 B2 JPH0789547 B2 JP H0789547B2
Authority
JP
Japan
Prior art keywords
wafer
vapor
container
water
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15535986A
Other languages
Japanese (ja)
Other versions
JPS6310528A (en
Inventor
順久 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15535986A priority Critical patent/JPH0789547B2/en
Publication of JPS6310528A publication Critical patent/JPS6310528A/en
Publication of JPH0789547B2 publication Critical patent/JPH0789547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液体によって表面がぬれている物体を乾燥させ
る方法に関するものであり、特に表面の汚染が問題とな
るIC製造用基板,情報記録用基板,液晶表示用基板等を
各種液体状薬品を用いて表面処理を施し、水洗した後、
液滴跡(以下、シミと記す)や微細な汚染物が付着せ
ず、かつ爆発等の危険性が少ない有機物の蒸気を用いた
乾燥方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for drying an object whose surface is wet by a liquid, and in particular, an IC manufacturing substrate, an information recording substrate, in which surface contamination is a problem, After subjecting the liquid crystal display substrate to surface treatment using various liquid chemicals and washing with water,
The present invention relates to a drying method using vapor of an organic substance, which does not cause droplet traces (hereinafter referred to as "spots") and fine contaminants to adhere, and has a low risk of explosion and the like.

従来の技術 洗浄やウェットエッチング等のウェット処理後のSiウエ
ハ等の被乾燥物の乾燥方法として従来から用いられてい
る方法として、 Siウエハ数枚をキャリヤ収納したり(バッチ式)、
あるいは1枚づつ吸引保持しながら(枚葉式)、Siウエ
ハを1000〜3000rpmで回転し、水滴を除去する方法(以
下、スピン乾燥法と記す)。
Conventional technology As a method that has been conventionally used for drying dried objects such as Si wafers after wet processing such as cleaning and wet etching, several Si wafers can be stored in a carrier (batch type),
Alternatively, a method of removing water droplets by rotating the Si wafer at 1000 to 3000 rpm while suction-holding one by one (single-wafer type) (hereinafter, referred to as spin drying method).

水滴がついたSiウエハに空気やN2等のガスを吹きつ
けて水滴を除去する方法(以下、ブロー乾燥法と記
す)。
A method of blowing water or a gas such as N 2 onto a Si wafer having water droplets to remove the water droplets (hereinafter referred to as blow drying method).

有機溶剤の液中に水滴がついたSiウエハ等の被乾燥
物を浸漬し、有機溶剤と水との比重差を利用してSiウエ
ハ表面の液滴を除去する方法(以下溶剤浸漬法と記
す)。
A method of immersing an object to be dried such as a Si wafer with water droplets in the liquid of an organic solvent and removing the droplets on the surface of the Si wafer by utilizing the difference in specific gravity between the organic solvent and water (hereinafter referred to as the solvent immersion method. ).

有機溶剤をヒータで加熱して蒸気化し、この蒸気中
に水滴がついたSiウエハを投入して水滴を除去する方法
(以下、蒸気乾燥法と記す)。
A method in which an organic solvent is heated by a heater to be vaporized, and a Si wafer having water droplets is put into the vapor to remove the water droplets (hereinafter referred to as vapor drying method).

等々が用いられている。Etc. are used.

発明が解決しようとする問題点 上記の乾燥方法において従来の技術では下記の様な問題
点があった。
Problems to be Solved by the Invention The above-mentioned drying method has the following problems in the conventional technique.

スピン乾燥法では、Siウエハを高速で回転させるこ
とが必要であるため、乾燥室壁と回転軸との摺動部や回
転駆動体等々から発生するダストが乾燥室内に入りやす
くSiウエハを汚染しやすい。また、Siウエハ表面から飛
散した水滴は乾燥室内壁に衝突して汚染されて乾燥室内
にミスト状で浮遊し、Siウエハが再汚染する危険性が大
きい。
In the spin drying method, since it is necessary to rotate the Si wafer at a high speed, dust generated from the sliding part between the wall of the drying chamber and the rotating shaft, the rotary drive, etc. easily enters the drying chamber and contaminates the Si wafer. Cheap. Further, the water droplets scattered from the surface of the Si wafer collide with the inner wall of the drying chamber to be contaminated and float in the drying chamber in the form of mist, and there is a great risk of recontamination of the Si wafer.

ブロー乾燥法では、乾燥室内に摺動部等は無く、Si
ウエハが汚染される危険性は少ないが、多量の清浄なガ
スが必要でランニングコストが高くなる。
In the blow drying method, there are no sliding parts in the drying chamber and Si
The risk of wafer contamination is low, but a large amount of clean gas is required, which increases running costs.

溶剤浸漬法は、有機溶剤中にはクリーンルーム内の
空気中に比べて多数の微細粒子や不純物が含まれている
が、液体の場合は微細粒子の過が困難で清浄な溶剤は
得難い。この様な溶剤にSiウエハを浸漬するとSiウエハ
は汚染されてしまう。
In the solvent dipping method, a large number of fine particles and impurities are contained in the organic solvent as compared with the air in the clean room. However, in the case of a liquid, it is difficult to pass the fine particles and it is difficult to obtain a clean solvent. If the Si wafer is immersed in such a solvent, the Si wafer will be contaminated.

の欠点を改良したのが蒸気乾燥法であるが、有機
溶剤はガス化(蒸気化)すると液体の場合に比べて火
災,爆発の危険性が飛躍的に高くなるという新たな問題
点が発生する。また、蒸気化するには溶剤をヒータで加
熱して行なうため有機溶剤の溶剤の蒸気は必要以上に多
量に発生し、火災,爆発の危険性が一層大きくなるとと
もに、人体に対する悪影響も大きくなる。これらを予防
するために、市販の蒸気乾燥装置は蒸気が装置外へ漏れ
ないように有機溶剤液面と蒸気乾燥装置上面の距離を大
きくとったり、蒸気乾燥装置の電気部品を防爆型の部品
を用いたり、さらにSiウエハ投入口付近の大きな面積の
排気が必要で、乾燥装置が大きく、高価になっている。
The vapor drying method is an improvement over the drawbacks of 1. However, when gasifying (vaporizing) an organic solvent, a new problem arises in that the risk of fire and explosion becomes dramatically higher than when it is a liquid. . Further, since vaporization is performed by heating the solvent with a heater, a large amount of vapor of the solvent of the organic solvent is generated, which further increases the risk of fire and explosion, and also has a great adverse effect on the human body. To prevent these, commercially available steam dryers use a large distance between the liquid surface of the organic solvent and the top surface of the steam dryer to prevent steam from leaking out of the equipment, and use explosion-proof electrical parts for the steam dryer. In addition, a large area near the Si wafer input port needs to be exhausted, and the drying device is large and expensive.

本発明は上記問題点に鑑み、Siウエハ等の被乾燥物が乾
燥時に微細粒子等で汚染されることがなく、乾燥が容易
で速く、火災,爆発の危険性が少なく、大量かつ均一に
乾燥ができる乾燥方法を提供するものである。
In view of the above problems, the present invention does not contaminate the material to be dried such as Si wafers with fine particles and the like during drying, is easy and quick to dry, has a low risk of fire and explosion, and can be dried in large quantities and uniformly. The present invention provides a drying method capable of

問題点を解決するための手段 上記問題点を解決するために本発明は、内部を減圧する
手段を備えた容器の内部に、有機物の蒸気を存在させ、
前記容器内で有機物の蒸気と被乾燥物を接触させた後、
大気圧以下の圧力の下で被乾燥物表面の液体に物理的な
力を作用させて乾燥する方法であって、前記有機物の蒸
気として、有機物が常温で沸とうしない減圧下で蒸気化
したものを用いることを特徴とする乾燥方法を提供する
ものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a vapor of an organic substance inside a container equipped with a means for decompressing the interior,
After contacting the organic substance vapor and the material to be dried in the container,
A method of drying by applying a physical force to a liquid on the surface of an object to be dried under a pressure of atmospheric pressure or less, wherein the vapor of the organic substance is vaporized under a reduced pressure at which the organic substance does not boil at room temperature. The present invention provides a drying method characterized by using.

作用 本発明において、Siウエハ表面の水滴の水切り、乾燥を
行なうために、Siウエハを有機物の蒸気と接触させる。
有機物の中で蒸気を発生しやすいものとして有機溶剤が
適している、有機溶剤蒸気を発生させる手段として、減
圧する手段を備えた容器(以下、減圧容器と記す)の内
部に有機溶剤を入れ、減圧容器を密封した後減圧容器内
の圧力を減じると有機溶剤の蒸気化が促進され減圧容器
内に充満する。この様にして作成した蒸気は有機溶剤分
子のみが蒸気になったもので有機溶剤中の微粒子を含ま
ない清浄な蒸気であり、有機溶剤の蒸気によってSiウエ
ハが汚染されることはない。また、本発明方法によって
作った有機物の蒸気は、減圧容器内が減圧状態である限
り、減圧容器やチューブのすき間から大気中に漏れて火
災が起きたり、人体に悪影響を与えることはない。
Action In the present invention, the Si wafer is brought into contact with the vapor of an organic substance in order to remove water droplets from the surface of the Si wafer and dry the same.
Organic solvents are suitable as those that easily generate vapor in organic matter, as a means for generating organic solvent vapor, put the organic solvent inside a container equipped with a means for decompressing (hereinafter referred to as a decompression container), When the pressure inside the decompression container is reduced after sealing the decompression container, vaporization of the organic solvent is promoted and the decompression container is filled. The vapor thus created is a vapor in which only organic solvent molecules are vaporized and is a clean vapor containing no fine particles in the organic solvent, and the Si wafer is not contaminated by the vapor of the organic solvent. Further, as long as the inside of the decompression container is in a decompressed state, the organic substance vapor produced by the method of the present invention does not leak into the atmosphere through the gap between the decompression container and the tube to cause a fire or adversely affect the human body.

とこが、圧力を下げすぎると有機溶剤が沸とうして、有
機溶剤は微細粒子を含んだままミストとなって飛散する
為にSiウエハが汚染される危険が大きいため、減圧は有
機溶剤が沸とうする以上の圧力でなければならない。
However, if the pressure is lowered too much, the organic solvent will boil, and the organic solvent will be scattered as fine particles containing mist and will be contaminated on the Si wafer. It should be more than pressure.

有機溶剤の蒸気がSiウエハの乾燥に及ぼす効果として
は、有機溶剤蒸気がSiウエハと接触すると、Siウエハ表
面に有機物の膜を形成しSiウエハは疎水性となり水滴と
の接触角が大きくなることによって水滴が除去しやすく
なる。
The effect of the vapor of the organic solvent on the drying of the Si wafer is that when the vapor of the organic solvent comes into contact with the Si wafer, an organic film is formed on the surface of the Si wafer and the Si wafer becomes hydrophobic and the contact angle with water droplets increases. This makes it easier to remove water drops.

この状態でSiウエハが垂直に立っていると水滴に重力が
作用して水滴はSiウエハ表面を落下してSiウエハから水
滴は除去できるし、Siウエハに空気やN2ガス等を吹きつ
けたり、200〜500rpmのダストが発生し難い低速で回転
する等の方法で水滴に機械的な力を加えると容易に水滴
は除去できる。
When the Si wafer is standing vertically in this state, gravity acts on the water droplets and the water droplets drop on the surface of the Si wafer to remove the water droplets from the Si wafer, or by blowing air or N 2 gas onto the Si wafer, Water drops can be easily removed by applying mechanical force to the water drops by a method such as rotating at a low speed at which dust of 200 to 500 rpm is unlikely to occur.

この様なSiウエハ表面に形成する有機物の膜(以下、有
機膜と記す)としては、親水性の水滴と、加工状態によ
り親水性と疎水性のどちらの性質ともありうるSiウエハ
表面との間に有機膜を形成するためには分子内に親水基
と疎水基を有する有機物が適している。これらの物質は
Siウエハの表面性状に応じて吸着,配向方向が変わり疎
水化する。
Such an organic film formed on the surface of the Si wafer (hereinafter referred to as an organic film) includes a hydrophilic water droplet and a Si wafer surface which may be either hydrophilic or hydrophobic depending on the processing state. In order to form an organic film, an organic substance having a hydrophilic group and a hydrophobic group in the molecule is suitable. These substances are
Depending on the surface properties of the Si wafer, the adsorption and orientation directions change and become hydrophobic.

このような物質としては、メタノール,エタノール,n−
プロパノール,イソプロパノール,グリコール等のアル
コール類、アセトン等のケトン類、酢酸等のカルボン
酸、酢酸メチル,酢酸エチル等のエステル類、エチルア
ミン等のアミン類さらには、スルホン酸や界面活性剤等
があるが本発明ではこれらの中のいづれの物質の単体あ
るいは混合物を用いても支障ないが、Siウエハへの吸着
能が小さく処理液と置換しやすいメタノール,エタノー
ル,エチルアミン,酢酸,酢酸メチル,酢酸エチル,ア
セトン,イソプロパノール,n−プロパノール,n−ブタノ
ール等が適している。
Such substances include methanol, ethanol, n-
There are alcohols such as propanol, isopropanol and glycol, ketones such as acetone, carboxylic acids such as acetic acid, esters such as methyl acetate and ethyl acetate, amines such as ethylamine, sulfonic acid and surfactants. In the present invention, it is possible to use a single substance or a mixture of any of these substances, but methanol, ethanol, ethylamine, acetic acid, methyl acetate, ethyl acetate, which has a small adsorbing ability to the Si wafer and can be easily replaced with the treatment liquid, Acetone, isopropanol, n-propanol, n-butanol, etc. are suitable.

さらに、水に完全に溶解するのではなく、ある一定の溶
解度を有し水滴表面に吸着しやすいイソプロパノール,n
−ブタノール,n−プロパノールがより適している。
Furthermore, isopropanol, n, which has a certain solubility and is easily adsorbed on the surface of water droplets, is not completely dissolved in water.
-Butanol and n-propanol are more suitable.

一方、エタノール,n−プロパノール,イソプロパノー
ル,n−ブタノール,2−ブタノール,tert−ブチルアルコ
ール等のアルコール類の酢酸エチル,酢酸プロピル,酢
酸ブチル,酢酸イソプロピル,酢酸ブチル,酢酸ブチ
ル,酢酸イソブチル,ギ酸プロピル,ギ酸イソプロピ
ル,酪酸メチル,等のエステル類,イソプロピルエーテ
ルエチルエーテル,メチルプロピルエーテル等のエーテ
ル類,メチルエチルケトン等々は水と二成分や三成分の
最低共沸混合物を作り、定温で減圧すると水だけの場合
よりも早く乾燥する効果を有している。この時の圧力は
低ければ低いほど乾燥時間は短かくなるが、普通50Torr
以下、好ましくは20Torr以下である。
On the other hand, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, tert-butyl alcohol and other alcohols such as ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, butyl acetate, butyl acetate, isobutyl acetate, propyl formate. , Isopropyl formate, methyl butyrate, etc., ethers such as isopropyl ether ethyl ether, methyl propyl ether, etc., methyl ethyl ketone etc. form a minimum azeotropic mixture of water and two or three components, and decompress at constant temperature to obtain only water. It has the effect of drying faster than in the case. The lower the pressure at this time, the shorter the drying time, but usually 50 Torr
It is preferably 20 Torr or less.

これらの有機溶剤は単独で使用してもよいし、複数の溶
剤を混合して使用して最低共沸混合物を作る組合せにお
いては支障はない。
These organic solvents may be used alone or in combination in which a plurality of solvents are mixed and used to form a minimum azeotropic mixture.

有機溶剤のこれらの作用が有効に働いてSiウエハは迅速
に乾燥してダストは付着しない。
These effects of the organic solvent work effectively to dry the Si wafer quickly and prevent dust from adhering.

減圧容器内を減圧する手段としては、有機溶剤が沸とう
することなく蒸気化させるに必要な真空度は200〜20Tor
rであることから、通常真空ポンプとして用いられてい
るロータリポンプ,油拡散ポンプ,メカニカルブースタ
ーポンプ等々、20Torr程度にまで減圧容器を減圧できる
能力があればどの様な手段を用いても支障ない。また、
長期間にわたって有機溶剤が排気空気とともに減圧容器
から排出され真空ポンプのオイルにトラップされ混合さ
れると真空ポンプの排気能力を落ちるため、排気パイプ
の途中に有機溶剤の除去装置があることが望ましい。
As a means for reducing the pressure inside the pressure reducing container, the degree of vacuum required to vaporize the organic solvent without boiling is 200 to 20 Tor.
Since it is r, any means such as a rotary pump, an oil diffusion pump, and a mechanical booster pump, which are usually used as a vacuum pump, can be used as long as it has the ability to reduce the pressure of the pressure reducing container to about 20 Torr. Also,
If the organic solvent is discharged from the pressure reducing container together with the exhaust air for a long period of time and is trapped and mixed in the oil of the vacuum pump, the exhaust capability of the vacuum pump is deteriorated. Therefore, it is desirable to have a device for removing the organic solvent in the middle of the exhaust pipe.

ところで、上記手段で発生する有機溶剤蒸気は大気圧で
あまり発生せず減圧容器内が減圧状態の時のみ発生する
ことから、従来の蒸気乾燥法のヒータ加熱の場合のよう
に多量の有機溶剤蒸気が発生するのと異なり、必要な時
に必要な量の有機溶剤蒸気を迅速に発生させることがで
きる火災爆発の危険性は極端に小さくなる。また、発生
した有機溶剤蒸気は減圧容器内及び排気チューブ内のみ
に滞在することから火災爆発の危険性はさらに小さくな
る。
By the way, since the organic solvent vapor generated by the above means does not generate much at atmospheric pressure and is generated only when the inside of the decompression container is in a decompressed state, a large amount of organic solvent vapor as in the case of heater heating in the conventional vapor drying method is used. The risk of fire explosion, which can quickly generate the required amount of organic solvent vapor when and when needed, is extremely reduced. Further, since the generated organic solvent vapor stays only in the decompression container and the exhaust tube, the risk of fire explosion is further reduced.

実 施 例 以下図面を参照しながら第1の実施例について説明す
る。
Example A first example will be described below with reference to the drawings.

図は本発明の第1の実施例における減圧容器11の内部を
減圧にする手段としてロータリポンプ12を備えた乾燥装
置の断面を示すものである。図において、11は減圧容
器、12は減圧手段としてのロータリ真空ポンプ,13はSi
ウエハ,14は有機物としてのイソプロピルアルコール
(以下、IPAと記す)、15はIPAの容器、16はSiウエハの
支持治具(以下、ハンガーと記す)、17はバルブ、18及
び19はベント用バルブ、20はフィルター、21は真空計を
示す。
The figure shows a cross section of a drying device equipped with a rotary pump 12 as means for reducing the pressure inside the decompression container 11 in the first embodiment of the present invention. In the figure, 11 is a decompression container, 12 is a rotary vacuum pump as decompression means, and 13 is Si.
Wafer, 14 is isopropyl alcohol (hereinafter referred to as IPA) as an organic substance, 15 is an IPA container, 16 is a Si wafer supporting jig (hereinafter referred to as hanger), 17 is a valve, and 18 and 19 are vent valves. , 20 is a filter, and 21 is a vacuum gauge.

以下、本実施例の具体的内容を記す。Hereinafter, the specific content of this example will be described.

直径5インチのSiウエハ13面上にパイロジェニック法で
SiO2膜を3000Åの厚さで形成した。SiO2膜上にフォトレ
ジスト(厚さ1.2μm)を塗布した後、露光・現象を行
ないパターンを形成した。上記Siウエハ13をCHF3とC2F6
の混合ガス(圧力700mTorr)でRFを印加してSiO2膜の15
00Åの深さにドライエッチングした後、Siウエハ13上の
フォトレジストをO2プラズマレジストアッシャで十分に
除去した。この様にして得たSiウエハ13を石英製槽に入
れた洗浄液(NH4OH:H2O2:H2O=1:1:5,60℃;以下RCA洗
浄液と記す)に10分間浸漬した後、別の石英製槽で槽の
底部から超純水(比抵抗値18MΩ・cm)を供給し槽上部
からオーバーフローしている水洗槽にす早く浸漬して水
洗水の比抵抗値が17MΩ・cm以上になるまで水洗した。
この時Siウエハ13表面は親水性で全面が水に濡れてい
た。
Pyrogenic method on 13 inch Si wafer with 5 inch diameter
A SiO 2 film was formed with a thickness of 3000Å. After applying a photoresist (thickness 1.2 μm) on the SiO 2 film, exposure and phenomenon were performed to form a pattern. CHF 3 and C 2 F 6
Of the SiO 2 film by applying RF with a mixed gas of
After dry etching to a depth of 00Å, the photoresist on the Si wafer 13 was sufficiently removed by an O 2 plasma resist asher. The Si wafer 13 thus obtained is immersed in a cleaning solution (NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5,60 ° C; hereinafter referred to as RCA cleaning solution) in a quartz bath for 10 minutes. Then, in another quartz tank, supply ultrapure water (specific resistance value 18 MΩ · cm) from the bottom of the tank, and quickly immerse it in the overflowing washing tank from the top of the tank to quickly wash the washing water with a specific resistance value of 17 MΩ. -Washed with water until it became cm or more.
At this time, the surface of the Si wafer 13 was hydrophilic and the entire surface was wet with water.

Siウエハ13に形成したパターンは、テスト用のパターン
で一辺が1.0μmから3.0μmまで0.2μmとびの正方形
である。
The pattern formed on the Si wafer 13 is a test pattern, and is a square with a side of 0.2 μm from 1.0 μm to 3.0 μm.

一方、図に示す減圧容器(内容積10)11の中にイソプ
ロパノール(500ml,20℃)14をガラス容器15に入れて置
き、バルブ17,18及び19を閉めた。次に、前記水洗を完
了したSiウエハ13をハンガー16に垂直に立てて置いた。
Siウエハ13とハンガー16は接点で水溜りを防止するため
に接触面積をできる限り少なくなるように工夫してあ
る。
On the other hand, isopropanol (500 ml, 20 ° C.) 14 was put in a glass container 15 and placed in a vacuum container (internal volume 10) 11 shown in the figure, and valves 17, 18 and 19 were closed. Next, the Si wafer 13 that had been washed with water was placed upright on the hanger 16.
The contact area between the Si wafer 13 and the hanger 16 is designed to be as small as possible in order to prevent water accumulation at the contact points.

その後減圧容器11を密封しロータリー真空ポンプ12を作
動させて減圧容器11内の圧力を約10秒間で60Torrまで減
圧し、さらに減圧をつづけかつイソプロパノール14の沸
とつを防ぐために圧力が40Torrになるようにバルブ19を
少し開けて空気をフィルター(最小除去粒子径0.002μ
m)20を通して減圧容器に導入しながら、5分間この状
態を保って、Siウエハ13をイソプロパノール蒸気と接触
させた。そして、バルブ17を閉じかつ、バルブ19を全開
にして減圧容器11の内圧を大気圧に戻した後、扉(図示
せず)を開けてSiウエハ13を取り出した。この時のSiウ
エハ13表面を観察すると、当初水で濡れていたSiウエハ
13は、減圧容器11をロータリ真空ポンプ12で減圧を開始
後、数秒経過すると急激にSiウエハ13表面が疎水化して
水膜が下方に落下し、Siウエハ13を取り出した時は完全
に乾燥していた。
After that, the decompression container 11 is sealed and the rotary vacuum pump 12 is operated to reduce the pressure in the decompression container 11 to 60 Torr in about 10 seconds, and the pressure is reduced to 40 Torr to further reduce the pressure and prevent boiling of isopropanol 14. Open the valve 19 a little to filter the air (minimum particle size removal 0.002μ
While maintaining this state for 5 minutes while introducing it into the decompression container through m) 20, the Si wafer 13 was brought into contact with isopropanol vapor. Then, after closing the valve 17 and fully opening the valve 19 to return the internal pressure of the decompression container 11 to the atmospheric pressure, a door (not shown) was opened and the Si wafer 13 was taken out. Observing the surface of the Si wafer 13 at this time, the Si wafer that was initially wet with water
After decompressing the decompression container 11 with the rotary vacuum pump 12, the surface of the Si wafer 13 suddenly becomes hydrophobic and the water film drops downward after a few seconds, and when the Si wafer 13 is taken out, it is completely dried. Was there.

さらに、SiウエハにSiO2膜形成及びパターン形成を行な
わず表面に自然酸化膜のみを有するSiウエハを用いてRC
A洗浄液で洗浄する工程以後は上記工程と同様にして洗
浄,水洗及び乾燥したSiウエハをレーザ表面検査装置
(東京光学機械(株)製WM−2)を用いてSiウエハ13表
面に付着している微粒子(直径0.3μm以上)の数を計
測した。その結果を第1表に示す。
In addition, an SiO 2 film and a pattern were not formed on the Si wafer, and a Si wafer having only a natural oxide film on the surface was used to perform RC
After the step of cleaning with the cleaning solution A, the Si wafer that had been cleaned, washed with water and dried in the same manner as the above step was attached to the surface of the Si wafer 13 using a laser surface inspection device (WM-2 manufactured by Tokyo Optical Machine Co., Ltd.). The number of fine particles (diameter 0.3 μm or more) present was measured. The results are shown in Table 1.

以下本発明の第2の実施例について説明する。 The second embodiment of the present invention will be described below.

第1の実施例で用いた図の乾燥装置において、減圧容器
11内部にガラス容器15に入ったイソプロパノール14を置
き、第1の実施例と同様にして減圧し、40Torrに保持し
イソプロパノール14を沸とうさせることなく蒸気化し、
減圧容器11に充満させた後、バルブ17を閉にして減圧容
器11の内圧を大気圧に戻した。
In the drying device shown in the drawing used in the first embodiment, a vacuum container
11 Isopropanol 14 contained in a glass container 15 was placed inside, depressurized in the same manner as in the first embodiment, and held at 40 Torr to vaporize isopropanol 14 without boiling,
After filling the decompression container 11, the valve 17 was closed to return the internal pressure of the decompression container 11 to the atmospheric pressure.

また、第1の実施例と同様にして作成したパターンを形
成したSiウエハ13を上記減圧容器11内に1分間水平に置
いて、イソプロパノールの蒸気と接触させた。
A patterned Si wafer 13 formed in the same manner as in the first embodiment was placed horizontally in the decompression container 11 for 1 minute and brought into contact with vapor of isopropanol.

このSiウエハ13を減圧容器11から取り出した後、フッ素
樹脂製Siウエハキャリヤに収納してからスピン乾燥機
(フジアドバンス社製)に入れ300rpmで1分間乾燥する
と、Siウエハ上に水滴はなく、乾燥していた。
After taking out the Si wafer 13 from the decompression container 11, the Si wafer was stored in a fluororesin Si wafer carrier and put in a spin dryer (manufactured by Fuji Advance Co., Ltd.) and dried for 1 minute at 300 rpm. It was dry.

この乾燥方法でのSiウエハに付着するダスト数を測定す
るために、パターンを形成していないSiウエハを用いて
上記と同様にRCA洗浄,水洗,減圧容器11中への静置及
びスピン乾燥後、レーザ表面検査装置でダスト数を計測
した。
In order to measure the number of dust adhering to the Si wafer by this drying method, after the RCA cleaning, the water washing, the standing in the decompression container 11 and the spin drying in the same manner as above using the Si wafer without the pattern formed. The number of dusts was measured with a laser surface inspection device.

この結果を第1表に併記する。The results are also shown in Table 1.

一方、イソプロパノールの蒸気と接触させた後のSiウエ
ハを減圧容器11から取り出し、裏面を真空ピンセットで
吸着保持しながら、Siウエハの表面にN2ガスを吹きつけ
る(N2ガス量200/分)と水滴は容易に飛び散り乾燥
した。この乾燥方法でのSiウエハに付着するダスト数
を、パターンを形成していないSiウエハを用いて上記と
同様にして測定し、その結果も第1表に併記する。
On the other hand, the Si wafer after being brought into contact with the vapor of isopropanol is taken out from the decompression container 11, and N 2 gas is blown onto the front surface of the Si wafer while adsorbing and holding the back surface with vacuum tweezers (N 2 gas amount 200 / min). And the water drops splattered easily and dried. The number of dusts attached to the Si wafer by this drying method was measured in the same manner as above using a Si wafer having no pattern, and the results are also shown in Table 1.

以下、比較のための実験を下記に示す。Hereinafter, an experiment for comparison is shown below.

第1の比較例として、第1の実施例において、減圧容器
11内にイソプロパノール14を入れることなく、その他は
第1の実施例と全く同一にSiウエハ13の乾燥を行なった
ところ、Siウエハ13を減圧下に10分以上放置しても表面
の水膜は完全には無くならず、乾燥速度は非常に遅い。
As a first comparative example, in the first embodiment, a decompression container
When the Si wafer 13 was dried in exactly the same manner as in the first embodiment, except that isopropanol 14 was not put in 11, the water film on the surface remained even if the Si wafer 13 was left under reduced pressure for 10 minutes or more. It does not disappear completely and the drying speed is very slow.

第2の比較例として、第2の実施例において、減圧容器
11内にイソプロパノール14を入れることなく、その他は
第2の実施例と同様に300rpmで1分間回転してもSiウエ
ハ表面には水滴が残り乾燥していなかった。
As a second comparative example, in the second embodiment, a decompression container
Water droplets remained on the surface of the Si wafer and were not dried even when isopropanol 14 was not put in 11 and the others were rotated for 1 minute at 300 rpm as in the second embodiment.

第3の比較例として、第2の実施例で記した方法で、パ
ターンを形成していないSiウエハをRCA洗浄液で洗浄
し、水洗した後、スピン乾燥機を用いて1200rpmで5分
間スピン乾燥し、さらにレーザ表面検査装置でSiウエハ
表面のダスト数を計測した。結果は第1表に併記する。
As a third comparative example, according to the method described in the second example, a Si wafer having no pattern formed thereon is washed with an RCA cleaning solution, rinsed with water, and then spin dried at 1200 rpm for 5 minutes using a spin dryer. Moreover, the number of dusts on the surface of the Si wafer was measured by a laser surface inspection device. The results are also shown in Table 1.

発明の効果 以上のように発明によれば、減圧下でのみ有機物を蒸気
化することにより、減圧容器や配管のすき間から有機物
蒸気が外に漏れず、かつ必要な時に必要な量だけ蒸気化
できるため、火災・爆発や人体に悪影響を及ぼすことが
非常に少ない。また、乾燥部付近は激しく運動する機器
や機構の必要性がなく被乾燥物を汚染する危険性が少な
い。さらに、被乾燥物を有機物蒸気と接触させることに
よって被乾燥物表面は疎水化し、水滴に小さな外力が働
くだけで水切れが良くなり乾燥しやすくなるとともに、
水中の不純物も被乾燥物表面から無くなり、シミやダス
トとして残ることがない等々の効果を有する。
Effects of the Invention According to the invention as described above, by vaporizing the organic matter only under reduced pressure, the organic matter vapor does not leak outside from the gap of the decompression container or the pipe, and can be vaporized in a necessary amount when needed. Therefore, it is extremely unlikely to have a fire / explosion or adversely affect the human body. In addition, there is no need for a violently moving device or mechanism in the vicinity of the dry part, and there is little risk of contaminating the material to be dried. Furthermore, by contacting the material to be dried with organic vapor, the surface of the material to be dried becomes hydrophobic, and a small external force acts on the water droplets to facilitate draining and facilitate drying.
Impurities in water are also removed from the surface of the material to be dried, and there are effects such as not remaining as stains or dust.

【図面の簡単な説明】[Brief description of drawings]

図は、第1の実施例における減圧にできる装置の断面図
である。 11……減圧容器、12……減圧手段としてのロータリ真空
ポンプ、13……Siウエハ、14……有機物としてのイソプ
ロパノール、15……イソプロパノールの容器、16……Si
ウエハの支持治具、17……バルブ、18,19……ベント用
バルブ、20……フィルター、21……真空計。
The figure is a cross-sectional view of an apparatus capable of reducing pressure in the first embodiment. 11 ... Decompression container, 12 ... Rotary vacuum pump as decompression means, 13 ... Si wafer, 14 ... Isopropanol as organic matter, 15 ... Isopropanol container, 16 ... Si
Wafer support jig, 17 …… valve, 18, 19 …… vent valve, 20 …… filter, 21 …… vacuum gauge.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内部を減圧する手段を備えた容器の内部
に、有機物の蒸気を存在させ、前記容器内で前記有機物
の蒸気と被乾燥物を接触させた後、大気圧以下の圧力の
下で前記被乾燥物表面の液体に物理的な力を作用せしめ
て乾燥する方法であって、前記有機物の蒸気として、前
記有機物が常温で沸とうしない減圧下で蒸気化したもの
を用いることを特徴とする乾燥方法。
1. An organic substance vapor is present inside a container equipped with a means for reducing the pressure inside the container, and the organic substance vapor is brought into contact with the substance to be dried in the container, and then the pressure is lower than atmospheric pressure. In the method of drying by applying a physical force to the liquid on the surface of the object to be dried, as the vapor of the organic substance, the organic substance vaporized under reduced pressure that does not boil at room temperature is used. And the drying method.
【請求項2】有機物は、分子内に親水基と疎水基を有し
水に可溶な有機溶剤を少くとも1種類含むことを特徴と
する特許請求の範囲第1項に記載の乾燥方法。
2. The drying method according to claim 1, wherein the organic substance contains at least one organic solvent having a hydrophilic group and a hydrophobic group in the molecule and soluble in water.
JP15535986A 1986-07-02 1986-07-02 Drying method Expired - Fee Related JPH0789547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15535986A JPH0789547B2 (en) 1986-07-02 1986-07-02 Drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15535986A JPH0789547B2 (en) 1986-07-02 1986-07-02 Drying method

Publications (2)

Publication Number Publication Date
JPS6310528A JPS6310528A (en) 1988-01-18
JPH0789547B2 true JPH0789547B2 (en) 1995-09-27

Family

ID=15604182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15535986A Expired - Fee Related JPH0789547B2 (en) 1986-07-02 1986-07-02 Drying method

Country Status (1)

Country Link
JP (1) JPH0789547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101024A (en) * 1999-08-25 2011-05-19 Applied Materials Inc Method and apparatus for cleaning/drying hydrophobic wafer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8900480A (en) * 1989-02-27 1990-09-17 Philips Nv METHOD AND APPARATUS FOR DRYING SUBSTRATES AFTER TREATMENT IN A LIQUID
JP3347814B2 (en) * 1993-05-17 2002-11-20 大日本スクリーン製造株式会社 Substrate cleaning / drying processing method and processing apparatus
TW428216B (en) * 1998-07-29 2001-04-01 Tokyo Electron Ltd Substrate process method and substrate process apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101024A (en) * 1999-08-25 2011-05-19 Applied Materials Inc Method and apparatus for cleaning/drying hydrophobic wafer

Also Published As

Publication number Publication date
JPS6310528A (en) 1988-01-18

Similar Documents

Publication Publication Date Title
US6012472A (en) Method and arrangement for drying substrates after treatment in a liquid
TWI698906B (en) Substrate processing method and substrate processing apparatus
US6374837B2 (en) Single semiconductor wafer processor
US5105556A (en) Vapor washing process and apparatus
US5368649A (en) Washing and drying method
US5964958A (en) Methods for drying and cleaning objects using aerosols
US5685086A (en) Method and apparatus for drying objects using aerosols
TWI505351B (en) Substrate processing method and substrate processing apparatus
JP2020004948A (en) Substrate processing method, substrate processing device and drying pretreatment liquid
JPH0817165B2 (en) How to clean and dry a work piece
KR100231952B1 (en) Method for removing liquid on substrate surface
US20040226186A1 (en) Apparatus for drying semiconductor substrates using azeotrope effect and drying method using the apparatus
JPH0789547B2 (en) Drying method
JPH04251930A (en) Method and apparatus for drying washed wafer
KR930010054B1 (en) Cleaning material for semiconductor and method using thereof
JP2541237B2 (en) Semiconductor substrate cleaning method
JP3955924B2 (en) Method and apparatus for drying and cleaning articles using aerosols
JP3204503B2 (en) Steam cleaning method and apparatus
US5864966A (en) Two solvent vapor drying technique
TWI808006B (en) Substrate drying device, substrate processing device, and substrate drying method
JP3980210B2 (en) Wafer drying apparatus and wafer drying method
JPH05160095A (en) Cleaning and drying method of semiconductor wafer
JP3838709B2 (en) Method and apparatus for cleaning semiconductor substrates contaminated with organic contaminants
KR0155305B1 (en) Wafer drying method
JP2024047257A (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING LIQUID

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees