JP3199969B2 - Multi-point distance measuring device - Google Patents

Multi-point distance measuring device

Info

Publication number
JP3199969B2
JP3199969B2 JP33217494A JP33217494A JP3199969B2 JP 3199969 B2 JP3199969 B2 JP 3199969B2 JP 33217494 A JP33217494 A JP 33217494A JP 33217494 A JP33217494 A JP 33217494A JP 3199969 B2 JP3199969 B2 JP 3199969B2
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
receiving means
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33217494A
Other languages
Japanese (ja)
Other versions
JPH08166235A (en
Inventor
修 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33217494A priority Critical patent/JP3199969B2/en
Publication of JPH08166235A publication Critical patent/JPH08166235A/en
Application granted granted Critical
Publication of JP3199969B2 publication Critical patent/JP3199969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、測距対象物へ光を投射
し、その反射光を受光することにより測距対象物までの
距離を算出する、カメラ等の光学機器に搭載される多点
測距装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-purpose apparatus mounted on an optical device such as a camera for projecting light to a distance measuring object and calculating the distance to the distance measuring object by receiving the reflected light. The present invention relates to an improvement in a point ranging device.

【0002】[0002]

【従来の技術】従来、赤外光を被写体に向けて投光し、
該被写体からの反射光を受光して、三角測量の原理から
前記被写体までの距離を算出するいわゆるアクティブ方
式の測距装置は広く知られている。
2. Description of the Related Art Conventionally, infrared light is projected toward a subject,
A so-called active type distance measuring device that receives reflected light from the subject and calculates the distance to the subject based on the principle of triangulation is widely known.

【0003】 この種の多点測距装置の至近距離の判別
方法は、カメラの撮影可能な距離を測定する為の投受光
素子の組合せによる出力、例えば、図8の様な構成の測
距装置において、投光素子1002にて投光し受光素子
1005で受光した時の出力から判別するもの、また、
前者と比べてより至近距離まで測距可能にする為に、カ
メラの撮影可能な距離を測定する為の投受光素子の組合
せとは異なる組合せによる投受光素子の出力、例えば、
の様な構成の測距装置において、投光素子1002
にて投光し受光素子1006で受光した時の出力から判
別するものがある。
[0003] A method of determining the close distance of this type of multipoint distance measuring apparatus is based on an output by a combination of light emitting and receiving elements for measuring a photographable distance of a camera, for example, a distance measuring apparatus having a configuration as shown in FIG. , Which is determined from the output when the light is emitted by the light emitting element 1002 and received by the light receiving element 1005;
In order to be able to measure the distance to a closer distance compared to the former, the output of the light emitting and receiving element by a combination different from the combination of the light emitting and receiving element for measuring the photographable distance of the camera, for example,
In the distance measuring apparatus of such structure of FIG. 8, the light emitting element 1002
In some cases, the light is detected by the light receiving element 1006 and the output is determined based on the output.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最近で
は出来るだけ沢山の測距点を確保し、且つ、投光素子の
小型化を図る目的から、投光レンズの焦点が複数存在す
る分割投光レンズを採用した分割投光による多点測距装
置(図2の204で示す分割投光レンズ参照)が出現し
ている。
However, recently, in order to secure as many distance measuring points as possible and to reduce the size of the light projecting element, a divided light projecting lens having a plurality of focal points of the light projecting lens exists. A multi-point distance measuring device employing divided light projection (see the divided light projection lens indicated by 204 in FIG. 2) has appeared.

【0005】該分割投光レンズを用いて投光する多点測
距方式において、従来例における至近距離の判別方法に
よれば、カメラの撮影可能な距離を測定する為の投受光
素子の組合せによる出力から判別する方法では、製品の
小型化に伴い受光素子も小型化され、素子長(受光面の
基線長方向の長さ)が短くなってきていることから、至
近距離においては図9(a)の様に受光スポット像80
4がカメラの撮影可能な距離を測定する為の投受光素子
の組合せに対応した受光素子802からはみ出し、測距
能力が低下する。
In the multi-point distance measuring method of projecting light by using the divided light projecting lens, according to the conventional method of determining the closest distance, a combination of light emitting and receiving elements for measuring a photographable distance of a camera is used. In the method of discriminating from the output, the light receiving element is downsized along with the downsizing of the product, and the element length (the length of the light receiving surface in the base line length direction) is becoming shorter. The light receiving spot image 80 as shown in FIG.
4 protrudes from the light receiving element 802 corresponding to the combination of the light emitting and receiving elements for measuring the distance that the camera can photograph, and the distance measuring ability is reduced.

【0006】 また、現在のアクティブ方式の測距装
置では、カメラの撮影常用距離が3m以遠であり、該距
離での測距能力を充分確保する為に測距装置の投光手段
及び受光手段のピントを3m或は3m以遠に設定してい
る。この為、受光スポット像804は、被写体距離が近
くなる程ピントがボケて像が大きくなり、該像の重心が
遠側に移動する。この結果、受光素子802の積分出力
〔例えば両端出力をA,Bとした場合、A/(A+
B)〕は、本来被写体距離が近くなる程小さくなるもの
が、至近距離のある位置に達すると、図(b)の様に
該出力が大きくなり、ある至近距離点Pでの受光素子8
02の出力がある距離点Qでの出力と等しくなる為に誤
測距してしまっていた。
Further, in the current active type distance measuring device, the photographing working distance of the camera is 3 m or more, and the light projecting means and the light receiving means of the distance measuring device are required to sufficiently secure the distance measuring ability at the distance. The focus is set at 3 m or more than 3 m. For this reason, the light receiving spot image 804 is out of focus and larger as the subject distance is shorter, and the center of gravity of the image moves to the far side. As a result, assuming that the integrated output of the light receiving element 802 [for example, when both ends of the output are A and B, A / (A +
B)] is, is made smaller extent the original object distance is close, reaching the a close distance position, the output is increased as in FIG. 9 (b), the light receiving element 8 at a certain close distance point P
Since the output of 02 is equal to the output at a certain distance point Q, erroneous distance measurement has been performed.

【0007】また、カメラの撮影可能な距離を測定する
為の投受光素子の組合せとは異なる組合せの投受光素子
により判別する方法では、図10(a)において、被写
体が至近距離にある時の受光スポット像905に対する
受光素子903の出力は、前述の図9(b)と同様であ
るが、更に分割投光を行う多点測距の場合は、一つの赤
外発光素子が点灯されると受光手段には複数の赤外信号
が同時に入射する。この結果、被写体距離が至近距離の
ある位置に達すると、受光素子903は受光スポット像
904,905を同時に受光することから、該受光素子
903の出力が図10(b)の様になり、ある至近距離
点Pでの受光素子903の出力がある至近距離点Qでの
出力と等しくなる為に誤測距してしまっていた。
Further, in the method of discriminating using a combination of light emitting and receiving elements different from the combination of light emitting and receiving elements for measuring a distance at which a camera can photograph, in FIG. The output of the light receiving element 903 with respect to the light receiving spot image 905 is the same as that in FIG. 9B described above. However, in the case of multi-point distance measurement in which divided light projection is performed, if one infrared light emitting element is turned on. A plurality of infrared signals are simultaneously incident on the light receiving means. As a result, when the subject distance reaches a position at a short distance, the light receiving element 903 receives the light receiving spot images 904 and 905 at the same time, so that the output of the light receiving element 903 becomes as shown in FIG. Since the output of the light receiving element 903 at the close distance point P becomes equal to the output at the close distance point Q, erroneous distance measurement is performed.

【0008】なお、図8〜図10において、1001,
1003は投光素子、1007は投光レンズ、1008
は受光レンズ、1004,801,803,901、9
02は受光素子である。
In FIGS. 8 to 10, reference numerals 1001,
1003 is a light emitting element, 1007 is a light emitting lens, 1008
Denotes light receiving lenses, 1004, 801, 803, 901, 9
02 is a light receiving element.

【0009】(発明の目的)本発明の目的は、至近距離
側での誤測距を防止することのできる多点測距装置を提
供することである。
(Object of the Invention) It is an object of the present invention to provide a multipoint distance measuring apparatus capable of preventing erroneous distance measurement on a close distance side.

【0010】[0010]

【課題を解決するための手段】 上記の目的を達成する
ために、請求項1〜5記載の本発明は、測距対象物へ向
けて光を投射する投光手段と、該投光手段より投射され
た光を複数に分割する分割投光レンズと、前記投光手段
と基線長方向に離れて配置され、前記分割投光レンズに
より分割された各投射光の前記測距対象物による反射光
それぞれ受光し、それぞれ受光スポット像が形成され
る複数の第1の受光手段と、該第1の受光手段の側面の
上部又は下部に配置され、前記測距対象が至近距離に位
置する場合にのみ、前記受光スポット像のうちの一つの
受光スポット像であって像がボケて大きくなり、前記第
1の受光手段からはみ出した像を受光する第2の受光手
段とを備えた多点測距装置とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention according to claims 1 to 5, according to the present invention, comprises a light projecting means for projecting light toward an object to be measured, and a light projecting means. A divided light projecting lens that divides the projected light into a plurality of light beams, and a reflected light of the projection light divided by the divided light projecting lens and separated by the divided light projecting lens, the light being reflected by the distance measuring object. Respectively , and a plurality of first light receiving means on which light receiving spot images are respectively formed, and a plurality of first light receiving means on a side surface of the first light receiving means.
It is arranged at the upper part or the lower part, and only when the distance measurement target is located at a close distance, it is one of the light receiving spot images of the light receiving spot images , and the image is blurred and large, and the
The present invention is a multi-point distance measuring device provided with a second light receiving means for receiving an image protruding from the first light receiving means .

【0011】[0011]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0012】図2は本発明の一実施例における測距装置
の概略を示した構成図であり、該図において、201は
後述する駆動回路にタイミングパルスを出力し、後述の
測距回路208の出力により測距演算を行う制御回路、
202は前記制御回路201から出力されるタイミング
パルスを入力し、後述の投光手段を駆動する駆動回路、
203は赤外発光ダイオードなどの投光手段、204は
前記投光手段203からの赤外光を2分割する分割投光
レンズ、205は被写体、206は前記赤外信号の被写
体205での反射光を集光する為の受光レンズ、10
1,104は前記赤外信号を各々受光する為の受光素子
であり、208は受光素子の出力により信号の増幅及び
積分を行う測距回路である。
FIG. 2 is a block diagram schematically showing a distance measuring apparatus according to one embodiment of the present invention. In the figure, reference numeral 201 denotes a timing pulse which is output to a driving circuit to be described later, and A control circuit that performs distance measurement by output,
202 is a driving circuit that receives a timing pulse output from the control circuit 201 and drives a light emitting unit described below;
203 is a light projecting means such as an infrared light emitting diode, 204 is a divided light projecting lens for dividing the infrared light from the light projecting means 203 into two, 205 is a subject, and 206 is reflected light of the infrared signal from the subject 205 Light-receiving lens for condensing light, 10
Reference numerals 1 and 104 denote light receiving elements for receiving the infrared signals, respectively, and reference numeral 208 denotes a distance measuring circuit that amplifies and integrates a signal based on an output of the light receiving element.

【0013】前記受光素子101,104は半導体位置
検出素子(PSD;Position Sensitive Device )や、
シリコンフォトダイオード(SPD;Silicon Photo Di
ode)であり(本実施例では、PSDの場合を説明す
る)、該出力を基に不図示の演算回路にて被写体までの
距離情報が算出される。
The light receiving elements 101 and 104 include a semiconductor position detecting element (PSD: Position Sensitive Device),
Silicon Photo Diode (SPD)
ode) (in the present embodiment, the case of PSD will be described), and based on the output, information on the distance to the subject is calculated by an arithmetic circuit (not shown).

【0014】次に、上記の各受光素子の配置と至近距離
でのこれら受光素子と受光スポット像との位置関係を説
明する為の図である。
Next, the arrangement of the respective light receiving elements and the positional relationship between the light receiving elements and the light receiving spot image at a short distance will be described.

【0015】図1において、101,104は、カメラ
の撮影可能な距離に位置する被写体にて反射された2つ
の赤外信号を各々受光する為の受光素子であり、107
はカメラの撮影不可能な至近距離付近にある被写体にて
反射された赤外信号だけを受光することのできる受光素
子である。110,111は被写体に当って受光レンズ
で受光素子101,104上の各々集光された受光スポ
ット像である。また、102,103,105,10
6,108,109は各々の受光素子101,104,
107の出力端子であり、これら各端子よりの各出力は
受光スポット像が当る位置によって変化し、該各出力を
基に被写体までの距離情報が得られる。
In FIG. 1, reference numerals 101 and 104 denote light receiving elements for receiving two infrared signals reflected by a subject located at a distance which can be photographed by a camera, respectively.
Reference numeral denotes a light receiving element which can receive only an infrared signal reflected by an object near a close distance where a camera cannot capture an image. Reference numerals 110 and 111 denote light-receiving spot images which are focused on the light-receiving elements 101 and 104 by light-receiving lenses, respectively. 102, 103, 105, 10
6, 108 and 109 are light receiving elements 101, 104,
Reference numeral 107 denotes output terminals. Each output from these terminals changes depending on the position where the light-receiving spot image hits, and distance information to the subject can be obtained based on each output.

【0016】図1によれば、受光スポット像110(1
11)を受光素子101(104)の左寄りの位置で受
光すればする程、被写体距離は遠く、右寄りの位置で受
光すればする程近いことになる。
According to FIG. 1, the light receiving spot image 110 (1
The more the light receiving element 11) is received at the position closer to the left of the light receiving element 101 (104), the farther the object distance is, and the more the light receiving element 11 (104) is received at the position closer to the right, the closer it is.

【0017】ところで、現在のアクティブ方式の測距装
置では、カメラの撮影常用距離が3m以遠であり、該距
離での測距能力を充分確保するために、測距装置の投光
手段及び受光手段のピントを3m付近、又は、それ以遠
に設定している。また、遠距離における受光スポット像
のはみ出しによる測距能力の低下を回避する為に、測距
装置の投光手段と受光手段の合致距離(受光スポット像
が受光素子の中央に有る時の被写体までの距離)を3m
付近に設定している。この時の受光スポット像110,
111は、図3の様に各々の受光素子101,104の
中に収まるような大きさであるが、被写体までの距離が
近くなるにしたがって受光スポット像の焦点がボケて大
きくなる。該状態を図4に示す。
In the current active type distance measuring device, the photographing working distance of the camera is 3 m or more, and the light projecting means and the light receiving means of the distance measuring device are required to secure sufficient distance measuring ability at the distance. Is set to around 3 m or more. In addition, in order to avoid a decrease in the distance measuring ability due to the protrusion of the light receiving spot image at a long distance, the matching distance between the light projecting means and the light receiving means of the distance measuring device (up to the subject when the light receiving spot image is at the center of the light receiving element) 3m)
It is set near. At this time, the light receiving spot image 110,
Reference numeral 111 denotes a size that can be accommodated in each of the light receiving elements 101 and 104 as shown in FIG. 3, but the focus of the received light spot image becomes larger as the distance to the subject becomes shorter. FIG. 4 shows this state.

【0018】図4は各距離における受光スポット像を示
したもので、501は受光素子、502は被写体が遠距
離、503は中距離、504は近距離、505は至近距
離に位置するときの受光スポット像であり、図4から、
被写体までの距離が近くなるにしたがって受光スポット
像がボケることで大きくなり、至近距離においては受光
素子501からはみ出してしまうことが判る。
FIG. 4 shows a light receiving spot image at each distance, where 501 is a light receiving element, 502 is a long distance object, 503 is a medium distance, 504 is a short distance, and 505 is a light receiving spot when the object is located at a close distance. It is a spot image, and from FIG.
It can be seen that the light-receiving spot image becomes larger as the distance to the subject becomes shorter, and the light-receiving spot image protrudes from the light-receiving element 501 at a close distance.

【0019】そこで、図1の該ボケて大きくなった受光
スポット像110が受光素子101からはみ出す至近距
離付近の時だけ、該受光スポット像110を受光するこ
とのできる位置に設けた第2の受光素子107で受光す
ることにより、至近距離の判別を行うのが本実施例であ
る。
Therefore, the second light-receiving spot provided at a position where the light-receiving spot image 110 can be received only when the light-receiving spot image 110 which has become blurred and large in FIG. In this embodiment, the closest distance is determined by receiving light with the element 107.

【0020】図5のフローチャートを使って説明する
と、まず受光素子107で測距(ステップ301)した
結果が所定置を越えた時は、図1のスポット像110と
受光素子107のような位置関係となるので、測距結果
が至近となり、ユーザーに撮影不可能であることを警告
する(ステップ302→307→308)。
Referring to the flow chart of FIG. 5, first, when the distance measured by the light receiving element 107 (step 301) exceeds a predetermined position, the positional relationship between the spot image 110 and the light receiving element 107 in FIG. Therefore, the distance measurement result becomes close, and the user is warned that photographing is impossible (steps 302 → 307 → 308).

【0021】一方、受光素子107は測距結果が所定置
以下のときはスポット像110が受光素子107上に無
いので通常測距を行い(各受光素子の両端出力を公知の
二重積分を行う等により)、測距結果Dを得る(ステッ
プ302→303→304→305→306)。
On the other hand, when the distance measurement result is equal to or less than the predetermined position, the light receiving element 107 performs the normal distance measurement because the spot image 110 does not exist on the light receiving element 107 (performs a well-known double integration of the output at both ends of each light receiving element). The distance measurement result D is obtained (steps 302 → 303 → 304 → 305 → 306).

【0022】この様に、受光素子107を受光スポット
像111は常に受光されない位置で且つ、受光スポット
像110は被写体が至近距離付近にある時だけ受光でき
るような位置に配置し、該受光スポット像110を受光
したときの受光素子107の出力のレベルによって被写
体までの距離が至近距離であるか否かを判別している。
As described above, the light receiving element 107 is arranged at a position where the light receiving spot image 111 is not always received and at a position where the light receiving spot image 110 can receive light only when the subject is in the vicinity of a close distance. It is determined whether or not the distance to the subject is a close distance based on the output level of the light receiving element 107 when receiving the light 110.

【0023】尚、本実施例では、図1の様に至近距離を
判別する為のの第2の受光素子107が、カメラの撮影
可能な距離を測定する為の第1の受光素子101,10
4の下部に配置した例で説明してきたが、該第2の受光
素子の位置についてはこれに限らず、一対の受光スポッ
ト像のうち一方は常に受光されず、もう一方の受光スポ
ット像は被写体が至近距離付近のある時のみ受光するこ
とのできる位置であれば、図6の601、及び、図7の
701の様に、第1の受光素子101,104の上部や
近側の側面に配置してもよい。
In this embodiment, as shown in FIG. 1, the second light receiving element 107 for determining the closest distance is replaced with the first light receiving elements 101 and 10 for measuring the distance that can be photographed by the camera.
4, the position of the second light receiving element is not limited to this. One of the pair of light receiving spot images is not always received, and the other light receiving spot image is If it is a position where light can be received only when there is a close distance, it is arranged on the upper side of the first light receiving elements 101 and 104 or on the side surface on the near side as shown in 601 in FIG. 6 and 701 in FIG. May be.

【0024】本実施例によれば、分割投光レンズを用い
た多点測距装置の至近距離判別においては、カメラの撮
影可能な距離に位置する被写体により反射した赤外信号
を受光する第1の受光素子101,104は用いず、投
光手段に対して基線長方向で、複数の赤外信号のうち一
つの赤外信号だけが被写体が撮影不可能な距離付近に位
置する時のみ受光することのできる第2の受光素子10
7(601,701)を用いる様にしている為、至近距
離判別による誤測距を防ぐことができる。
According to the present embodiment, when determining the close distance of a multi-point distance measuring apparatus using a divided light projecting lens, the first signal for receiving an infrared signal reflected by a subject located at a distance that can be photographed by a camera is used. The light receiving elements 101 and 104 are not used, and only one infrared signal out of a plurality of infrared signals is received in the base line length direction with respect to the light projecting means only when the subject is located near a distance at which a subject cannot be photographed. Second light receiving element 10 capable of
7 (601, 701), it is possible to prevent erroneous distance measurement due to close distance determination.

【0025】(変形例)本発明は、一眼レフカメラ,レ
ンズシャッタカメラ,ビデオカメラ等のカメラやその他
の光学機器に搭載される測距装置にも適用可能である。
(Modification) The present invention is also applicable to a distance measuring device mounted on a camera such as a single-lens reflex camera, a lens shutter camera, a video camera, and other optical devices.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
常用距離測定時に用いられる第1の受光手段とは別に設
けられた、つまり至近距離に位置する測距対象にて反射
され形成される複数の受光スポット像のうちの一つを受
光可能な位置に配置された第2の受光手段の出力に基づ
いて、至近判別を行うようにしている。
As described above, according to the present invention,
At a position provided separately from the first light receiving means used at the time of measuring the working distance, that is, at a position capable of receiving one of a plurality of light receiving spot images reflected and formed by the distance measuring object located at the closest distance. The closeness determination is performed based on the output of the second light receiving means arranged.

【0027】よって、至近距離側での誤測距を防止する
ことが可能となる。
Therefore, it is possible to prevent erroneous distance measurement on the close distance side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図2に示す各受光素子の配置と至近距離でのこ
れら受光素子と受光スポット像との位置関係を説明する
為の図である。
FIG. 1 is a diagram for explaining an arrangement of each light receiving element shown in FIG. 2 and a positional relationship between these light receiving elements and a light receiving spot image at a short distance.

【図2】本発明の一実施例における測距装置の概略を示
した構成図である。
FIG. 2 is a configuration diagram schematically showing a distance measuring apparatus according to an embodiment of the present invention.

【図3】図2に示す投光手段と受光手段のピントが合っ
た時の受光スポット像の大きさと受光素子との位置関係
を示す図である。
FIG. 3 is a diagram showing a positional relationship between a size of a light receiving spot image and a light receiving element when the light projecting means and the light receiving means shown in FIG. 2 are in focus.

【図4】各被写体距離における受光スポット像の大きさ
と図2の受光素子との位置関係を示す図である。
FIG. 4 is a diagram showing a positional relationship between the size of a light receiving spot image at each subject distance and the light receiving element of FIG. 2;

【図5】本発明の一実施例における測距装置の動作を示
すフローチャートである。
FIG. 5 is a flowchart showing an operation of the distance measuring apparatus in one embodiment of the present invention.

【図6】至近距離判別を行う図2の第2の受光素子が、
第1の受光素子の上部に配置された受光手段を説明する
為の図である。
FIG. 6 shows a second light-receiving element of FIG.
FIG. 3 is a diagram for explaining a light receiving unit disposed above a first light receiving element.

【図7】至近距離判別を行う図2の第2の受光素子が、
第1の受光素子の近距離側に配置された受光手段を説明
する為の図である。
FIG. 7 shows a second light receiving element of FIG.
FIG. 3 is a diagram for explaining a light receiving unit arranged on a short distance side of a first light receiving element.

【図8】従来の測距装置の概略構成を示す図である。FIG. 8 is a diagram showing a schematic configuration of a conventional distance measuring device.

【図9】至近距離判別の従来例と受光素子802の各被
写体距離における出力について説明する為の図である。
FIG. 9 is a diagram for explaining a conventional example of close distance determination and an output of the light receiving element 802 at each subject distance.

【図10】至近距離判別の従来例と受光素子903の各
被写体距離における出力について説明する為の図であ
る。
FIG. 10 is a diagram for describing a conventional example of close distance determination and an output of the light receiving element 903 at each subject distance.

【符号の説明】[Explanation of symbols]

101,104 撮影可能距離の被写体を測定する受光
素子 107 至近距離判別を行う為の受光素子 203 投光手段 204 分割投光レンズ 601,701 至近距離判別を行う為の受光素子
101, 104 A light receiving element for measuring a subject at a photographable distance 107 A light receiving element for determining a close distance 203 Light emitting means 204 A divided light projecting lens 601 and 701 A light receiving element for determining a close distance

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01C 3/06 G02B 7/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01C 3/06 G02B 7/32

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測距対象物へ向けて光を投射する投光手
段と、該投光手段より投射された光を複数に分割する分
割投光レンズと、前記投光手段と基線長方向に離れて配
置され、前記分割投光レンズにより分割された各投射光
の前記測距対象物による反射光をそれぞれ受光し、それ
ぞれ受光スポット像が形成される複数の第1の受光手段
と、該第1の受光手段の側面の上部又は下部に配置さ
れ、前記測距対象が至近距離に位置する場合にのみ、前
記受光スポット像のうちの一つの受光スポット像であっ
て像がボケて大きくなり、前記第1の受光手段からはみ
出した像を受光する第2の受光手段とを備えた多点測距
装置。
1. A light projecting means for projecting light toward an object to be measured, a divided light projecting lens for dividing light projected from the light projecting means into a plurality of light, and a light emitting means which is arranged in a base line length direction. are spaced apart, the split by split light projecting lens was the light reflected by the measuring object of the projected light respectively received, a plurality of first light receiving means for respectively receiving spot image is formed, said Placed on the upper or lower side of the light receiving means
Is, only when the distance measuring object is located in close proximity, I met one of the light receiving spot image of the light spot image
The image becomes blurred and large, and the image is blurred from the first light receiving means.
And a second light receiving means for receiving the output image .
【請求項2】 前記第1及び第2の受光手段は、半導体
位置検出素子とシリコンフォトダイオードの何れかであ
ることを特徴とする請求項1記載の多点測距装置。
2. A multi-point distance measuring apparatus according to claim 1, wherein said first and second light receiving means are one of a semiconductor position detecting element and a silicon photodiode.
【請求項3】 前記第2の受光手段は、前記第1の受光
手段の近傍に配置されることを特徴とする請求項1記載
の多点測距装置。
3. The multi-point distance measuring apparatus according to claim 1, wherein said second light receiving means is disposed near said first light receiving means.
【請求項4】 前記分割投光レンズは、少なくとも投射
光を二分割にするものであることを特徴とする請求項1
記載の多点測距装置。
4. The split light projection lens according to claim 1, wherein the split light splits at least the projection light into two.
The multipoint distance measuring device as described.
【請求項5】 前記第1の受光手段は、撮影可能な距離
に位置する被写体よりの反射光を受光するものであり、
前記第2の受光手段は、被写体が撮影不可能な距離付近
に位置する時のみその反射光を受光するものであること
を特徴とする請求項1〜4の何れかに記載の多点測距装
置。
5. The first light receiving means receives reflected light from a subject located at a photographable distance,
5. The multi-point distance measuring device according to claim 1, wherein said second light receiving means receives the reflected light only when the subject is located near a distance where photographing is not possible. apparatus.
JP33217494A 1994-12-13 1994-12-13 Multi-point distance measuring device Expired - Fee Related JP3199969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33217494A JP3199969B2 (en) 1994-12-13 1994-12-13 Multi-point distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33217494A JP3199969B2 (en) 1994-12-13 1994-12-13 Multi-point distance measuring device

Publications (2)

Publication Number Publication Date
JPH08166235A JPH08166235A (en) 1996-06-25
JP3199969B2 true JP3199969B2 (en) 2001-08-20

Family

ID=18251993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33217494A Expired - Fee Related JP3199969B2 (en) 1994-12-13 1994-12-13 Multi-point distance measuring device

Country Status (1)

Country Link
JP (1) JP3199969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240036110A (en) 2019-06-27 2024-03-19 양쯔 메모리 테크놀로지스 씨오., 엘티디. Novel 3d nand memory device and method of forming the same

Also Published As

Publication number Publication date
JPH08166235A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
US7405762B2 (en) Camera having AF function
JP2772028B2 (en) Multi-point ranging autofocus camera
JPH0346507A (en) Distance measuring instrument
JP3199969B2 (en) Multi-point distance measuring device
JP4426670B2 (en) Camera focusing device
JPH04351074A (en) Range finder for electronic still camera
US7016604B2 (en) Autofocus using a holographic aperture element
US6219492B1 (en) Camera
JP3905696B2 (en) 3D image input device
JP3087072B2 (en) Camera ranging device
JP2620235B2 (en) Signal forming device
JPH1096851A (en) Range finder for camera
JPH0694988A (en) Still image recorder
JP2001013248A (en) Distance-measuring device and camera
JPH09265040A (en) Focus detector
JP2003222784A (en) Distance measuring device and photographing device equipped with distance measuring device
JP2001013404A (en) Semiconductor photo-detector, range finder, and camera
JPH0769513B2 (en) Focus control signal forming device
JPS60247631A (en) Single lens reflex camera with focus detector
JPH04340910A (en) Automatic focusing device
JPS63235907A (en) Focus detector
JP3045561B2 (en) Camera ranging device
JP3283058B2 (en) Camera ranging device
JPH09211314A (en) Multi-point range-finding device
JP2003344044A (en) Ranging apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees