JPS63235907A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS63235907A
JPS63235907A JP6993587A JP6993587A JPS63235907A JP S63235907 A JPS63235907 A JP S63235907A JP 6993587 A JP6993587 A JP 6993587A JP 6993587 A JP6993587 A JP 6993587A JP S63235907 A JPS63235907 A JP S63235907A
Authority
JP
Japan
Prior art keywords
focus
light
reflecting mirror
focus detection
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6993587A
Other languages
Japanese (ja)
Inventor
Sadahiko Tsuji
辻 定彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6993587A priority Critical patent/JPS63235907A/en
Publication of JPS63235907A publication Critical patent/JPS63235907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To enable high-accuracy focus detection by bending an optical path through a reflecting mirror, arranging one element of a detecting means on this optical path, and moving the reflecting mirror in the same moving direction with the focus adjusting lens of a photographic system for the focus detection of the photographic system. CONSTITUTION:The reflecting mirror 6 is introduced as part of a photodetecting means, the optical axis L2 of a photodetection lens 5 is bent, and the photodetection part 7 which is one element for focus detection is arranged on the bent optical path on a substrate 8. Thus, the focus group 1a of the photographic system 1 and the reflecting mirror 6 are both moved in the same direction. Consequently, a focus detector is obtained which is simplified in mechanism and capable of high-accuracy focus detection while maintaining the size of the whole camera with good balance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な焦点検
出装置に関し、特に被写体像の結像位置の相関を利用す
ることにより焦点検出を行う所謂受光型及び投光手段に
より光束を被写体側へ投光し、被写体からの反射光束を
受光手段により受光することにより撮影系の焦点検出を
行った所謂能動型の2つの検出方式に使用可能な焦点検
出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a focus detection device suitable for photographic cameras, video cameras, etc., and in particular detects focus by utilizing the correlation between the image formation positions of subject images. It can be used in two detection methods: the so-called light receiving type and the so-called active type, in which the focus of the photographing system is detected by projecting a light beam toward the subject using a light projecting means and receiving the reflected light beam from the subject using a light receiving means. The present invention relates to a focus detection device.

(従来の技術) 最近は能動型の焦点検出装置がレンズシャッターカメラ
に限らず一眼レフカメラやビデオカメラ等にも多く用い
られている。このうち3角測距の原理を利用した能動型
の焦点検出装置を有した光学系が例えば特開昭58−8
0608号公報や特開昭59−201007号公報等で
提案されている。
(Prior Art) Recently, active focus detection devices have been widely used not only in lens shutter cameras but also in single-lens reflex cameras, video cameras, and the like. Among these, an optical system having an active focus detection device using the principle of triangular distance measurement is disclosed in Japanese Patent Application Laid-Open No. 58-88, for example.
This method has been proposed in JP-A No. 0608, Japanese Unexamined Patent Publication No. 59-201007, and the like.

第4図、第5図は従来の3角測距の原理を利用した代表
的な能動型の焦点検出用の光学系の概略図である。第4
図は投光用レンズ41を介して光源42からの光束を被
写体43側へ投光し、被写体43からの反射光束を受光
レンズ44で複数個の受光素子より成る受光部45て受
光している。
FIGS. 4 and 5 are schematic diagrams of typical active focus detection optical systems that utilize the principle of conventional triangular distance measurement. Fourth
In the figure, a light beam from a light source 42 is projected to a subject 43 through a light projecting lens 41, and a light beam reflected from the subject 43 is received by a light receiving lens 44 and a light receiving section 45 consisting of a plurality of light receiving elements. .

そして受光部45上に結像した反射光束位置を検出する
ことにより被写体43までの測距を行っている。この焦
点検出方法は駆動機構が不要であるが、複数の受光素子
を用いている為に受光手段の信号処理及びこれに伴う電
気回路が複雑になる傾向があり、又、測距信号と不図示
の撮影系焦点調節用レンズの対応をとるためのエンコー
タを必要とする。
The distance to the subject 43 is measured by detecting the position of the reflected light beam formed on the light receiving section 45. This focus detection method does not require a drive mechanism, but since it uses multiple light receiving elements, the signal processing of the light receiving means and the accompanying electric circuit tend to become complicated. An encoder is required to accommodate the focusing lens of the photographing system.

第5図は撮影系51の一部を介して光源56からの光束
を被写体52側へ投光し、被写体52側からの反射光束
を2つの受光素Y〜より成る受光部54て受光している
。このとき受光部54を焦点調節用レンズ群55と連動
させて矢印の方向へ走査し2つの受光素子からの出力が
等しくなるようにし、若しくは出力差が一定値以下にな
るようにして撮影系の焦点検出を行っている。
In FIG. 5, a light beam from a light source 56 is projected onto a subject 52 through a part of a photographing system 51, and the reflected light beam from the subject 52 is received by a light receiving section 54 consisting of two light receiving elements Y. There is. At this time, the light receiving section 54 is linked with the focusing lens group 55 to scan in the direction of the arrow so that the outputs from the two light receiving elements are equal, or the output difference is below a certain value, so that the imaging system Focus detection is being performed.

又、受動型の焦点検出においては2つの受光手段を用い
一方の受光手段の受光素子を移動させて2つの受光手段
から41られる結像位置の相関を検出することにより焦
点検出を行う方法がある。これらの焦点検出方法は信号
処理及び電気回路が比較的簡単になるが焦点調節用レン
ズ群55の繰り出し量に応じて受光部54を所定の関係
で移動させねばならない。この為カム機構、駆動方法等
の連係構造が複雑となり高精度の焦点検出が難しくなる
傾向があった。
In addition, in passive focus detection, there is a method of detecting focus by using two light receiving means, moving the light receiving element of one of the light receiving means, and detecting the correlation between the imaging positions obtained from the two light receiving means. . These focus detection methods require relatively simple signal processing and electrical circuitry, but require the light receiving section 54 to be moved in a predetermined relationship according to the amount of extension of the focusing lens group 55. For this reason, the interlocking structure of the cam mechanism, drive method, etc. becomes complicated, which tends to make highly accurate focus detection difficult.

(発明か解決しようとする問題点) 本発明は焦点検出用の投光手段や受光手段等の駆動機構
の簡素化を図り、焦点検出用の一要素の移動量の変換手
段を用いずに高精度な焦点検出を可能とし、更に光学系
全体の大きさをバランス良く維持した3角測距を利用し
た焦点検出装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention aims to simplify the drive mechanism of the light emitting means, light receiving means, etc. for focus detection, and increases the It is an object of the present invention to provide a focus detection device using triangular distance measurement that enables accurate focus detection and maintains the size of the entire optical system in a well-balanced manner.

本発明の更なる目的は本出願人が先に出願した特願昭6
0−31033号に係る焦点検出装置を更に改善し、無
限遠物体から近距離物体に至るまで高粒度な焦点検出を
可能とした焦点検出装置の提供にある。
A further object of the present invention is to obtain a patent application filed in 1983 by the applicant.
The object of the present invention is to provide a focus detection device that further improves the focus detection device according to No. 0-31033 and enables high-grained focus detection from an object at infinity to an object at a short distance.

(問題点を解決するための手段) 所定の基線長を隔てて配置した焦点検出用の複数の検出
手段のうち少なくとも一方の手段の光路を反射鏡を介し
て折り曲げ、この折り[110ナた光路[−に前記複数
の検出手段のうちの一要素を配置し、前記反射鏡を撮影
系の焦点調節用レンズの移動力向と同一方向に移動させ
て前記撮影系の焦点検出を行ったことである。
(Means for Solving the Problem) The optical path of at least one of the plurality of detection means for focus detection arranged at a predetermined baseline length is bent via a reflecting mirror, and the optical path of the folded [110] one element of the plurality of detection means is placed at [-, and the reflector is moved in the same direction as the moving force direction of the focusing lens of the imaging system to detect the focus of the imaging system. be.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。同
図において1は撮影系、1aは撮影系1の焦点調節用レ
ンズ群(以下「フォーカス群」という。)、2は結像面
で例えば写真用フィルム面やビデオ用撮像面等である。
(Embodiment) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. In the figure, 1 is a photographing system, 1a is a focusing lens group (hereinafter referred to as "focus group") of the photographing system 1, and 2 is an imaging plane, such as a photographic film surface or a video imaging surface.

L3は撮影系1の光軸、0は被撮影用の物体である。3
は投光レンズ、4は投光光源で例えば不可視の近赤外光
を発する発光ダイオード等である。Llは投光光軸、5
は受光レンズて投光レンズ3とは基線長りたけ離れて設
けられている。6は反射鏡、L2は受光光軸であり反射
鏡6により略直角に折り曲げられている。7は受光部で
例えば受光光軸L2を境に上下方向に2つの受光領域を
有している。8は基板で受光部7を載置している。7a
は反射鏡6による受光部7の鏡像、8aは反射鏡6によ
る基板8の鏡像である。9は駆動手段で受光部7からの
出力信号に応して反射鏡6とフォーカス群1aを各々例
えば点線で示す位置より実線で示す位置へと同一方向に
移動させている。
L3 is the optical axis of the photographing system 1, and 0 is the object to be photographed. 3
4 is a light projecting lens, and 4 is a light projecting light source, such as a light emitting diode that emits invisible near-infrared light. Ll is the projection optical axis, 5
The light-receiving lens is provided as far away from the light-emitting lens 3 as the base line length. 6 is a reflecting mirror, and L2 is a receiving optical axis, which is bent by the reflecting mirror 6 at a substantially right angle. Reference numeral 7 denotes a light-receiving section, which has, for example, two light-receiving areas in the vertical direction with the light-receiving optical axis L2 as a boundary. Reference numeral 8 denotes a substrate on which the light receiving section 7 is mounted. 7a
8a is a mirror image of the light receiving section 7 by the reflecting mirror 6, and 8a is a mirror image of the substrate 8 by the reflecting mirror 6. Reference numeral 9 denotes a driving means that moves the reflecting mirror 6 and the focus group 1a in the same direction, for example, from the position shown by the dotted line to the position shown by the solid line in response to the output signal from the light receiving section 7.

本実施例では光源4からの赤外光束を投光レンズ3を介
して物体0へ投光させている。そして物体0からの反射
光束を受光レンズ5で集光し、反射鏡6を介して受光部
7で受光している。
In this embodiment, an infrared beam from a light source 4 is projected onto an object 0 via a projection lens 3. Then, the reflected light beam from the object 0 is condensed by a light receiving lens 5, and is received by a light receiving section 7 via a reflecting mirror 6.

このとき反射鏡6を駆動手段9によりフォーカス群1a
と共に矢印Y1で示す方向の光軸L2と平行方向に移動
させている。これにより受光光軸L2をL2aの如く傾
斜させ、物体0上で投光用レンズ3の光軸L1と交差す
るようにしている。
At this time, the reflecting mirror 6 is moved by the driving means 9 to the focus group 1a.
At the same time, it is moved in a direction parallel to the optical axis L2 in the direction indicated by the arrow Y1. Thereby, the light-receiving optical axis L2 is tilted as shown by L2a, so that it intersects with the optical axis L1 of the light projecting lens 3 on the object 0.

このときの反射鏡6は第2図に示すように点線で示す各
要素の位置を繰り出し前、実線で示す各要素の位置を縁
り出し後としたとき受光部7bと受光レンズ5の主点を
結んだ線L2aの延長が投光光軸L1と物体0上で交差
する程度に縁り出している。
At this time, the reflecting mirror 6 is located at the principal point of the light-receiving part 7b and the light-receiving lens 5, as shown in FIG. The line L2a that connects the lines L2a and L2a extends out to the extent that it intersects the projection optical axis L1 on the object 0.

このように投光光軸L1と受光@ll L 2 aとが
交差したとき撮影系1は合焦であると判断され、同時に
移動させていたフィーカス群1aを停車させている。
In this way, when the light emitting optical axis L1 and the receiving light @ll L2a intersect, it is determined that the photographing system 1 is in focus, and the focus group 1a, which was being moved at the same time, is stopped.

このように本実施例では受光手段の一部に反射鏡6を導
入し受光レンズ5の光軸L2を折り曲げ、折り曲げた光
路上に焦点検出用の一要素である受光部7を基板8上に
配置することにより、撮影系1のフォーカス群1aと反
射鏡6の双方を同一方向に移動させている。これにより
本実施例では従来の光源をフォーカス群の移動方向と直
角方向、例えば同図の矢印Yl’の方向に移動させてい
た移動機構に比べ極めて簡素化した移動機構で焦点検出
を行うのを可能としている。
In this embodiment, the reflecting mirror 6 is introduced as a part of the light receiving means, the optical axis L2 of the light receiving lens 5 is bent, and the light receiving part 7, which is an element for focus detection, is placed on the substrate 8 on the bent optical path. With this arrangement, both the focus group 1a of the photographing system 1 and the reflecting mirror 6 are moved in the same direction. As a result, in this embodiment, focus detection can be performed using a movement mechanism that is extremely simplified compared to the conventional movement mechanism that moves the light source in a direction perpendicular to the movement direction of the focus group, for example, in the direction of arrow Yl' in the figure. It is possible.

又本実施例では受光手段の光軸L2を反射鏡6で投光光
軸L1から離れる方向に折り曲げることによりフォーカ
ス群1aと反射鏡6を連動して移動させるときの移動機
構の簡素化を図っている。
Furthermore, in this embodiment, the optical axis L2 of the light receiving means is bent by the reflecting mirror 6 in a direction away from the light emitting optical axis L1, thereby simplifying the movement mechanism when moving the focus group 1a and the reflecting mirror 6 in conjunction with each other. ing.

そして本実施例ではフォーカス群と受光レンズの光学配
置を適切に設定することによりフォーカス群1aと反射
鏡6を一体的に移動させている。
In this embodiment, the focus group 1a and the reflecting mirror 6 are moved integrally by appropriately setting the optical arrangement of the focus group and the light receiving lens.

これにより両者の移動量の差の調整手段を不要とし、移
動機構の簡素化を図っている。次に本実施例の光学配置
関係について説明する。
This eliminates the need for a means for adjusting the difference in the amount of movement between the two, thereby simplifying the movement mechanism. Next, the optical arrangement relationship of this embodiment will be explained.

第3図は第1図の反射鏡6を省き受光部7を光軸R2上
に配置し展開したときの投光手段と受光手段の光学配置
の説明図である。受光レンズ5の前側主点位置から物体
0までの距離なR1受光レンズ5の焦点距離をf5.受
光部7の無限遠物体から有限距離物体の合焦の為の走査
届離をaとすると3角測距の原理より R/D=f5/a でこれより  a=D−f5/R・・・・・・・・ (
1)となる。
FIG. 3 is an explanatory diagram of the optical arrangement of the light projecting means and the light receiving means when the reflecting mirror 6 of FIG. 1 is omitted and the light receiving section 7 is arranged on the optical axis R2 and unfolded. The focal length of the R1 light receiving lens 5, which is the distance from the front principal point position of the light receiving lens 5 to the object 0, is f5. If the scanning distance of the light receiving unit 7 for focusing from an object at infinity to an object at a finite distance is a, then according to the principle of triangular distance measurement, R/D=f5/a, and from this, a=D-f5/R...・・・・・・ (
1).

次にフォーカス群1aの前側焦点F1から物体0までの
距離なX、フォーカス群1aの後側主点F2から結像点
までの距離をXo、フォーカス群1aの焦点距離をfl
aとすると X’ =−f、a’ /X−−−−−−−−(2)とな
る。
Next, the distance from the front focus F1 of the focus group 1a to the object 0 is X, the distance from the rear principal point F2 of the focus group 1a to the imaging point is Xo, and the focal length of the focus group 1a is fl.
If a, then X' = -f, a' /X (2).

フォーカス群を繰り出して焦点合わせなするときの縁り
出し量は−X°である。従って第3図の受光部7の移動
量aとフォーカス群1aの繰り出し量−Xoとを一致さ
せるように各要素を構成すれば、即ちa=−X’の如く
各要素を構成すればフォーカス群と反射鏡6を一体的に
移動させることが可能となる。このときの条件は (1
)式と (2)式より D −f5 /R=fla’ /X・・−・−(3)と
なる。ここでフォーカス群1aの前側焦点位置F1と受
光レンズ5の前側主点位置とを合致させるように構成す
ればR=Xとなり (3)式はD−f5=f、、’・・
・・・・・・ (4)となる。
The amount of edge extension when focusing is performed by extending the focus group is -X°. Therefore, if each element is configured so that the moving amount a of the light receiving section 7 shown in FIG. It becomes possible to move the reflecting mirror 6 integrally. The conditions at this time are (1
) and (2), D −f5 /R=fla' /X...-(3). If the front focal position F1 of the focus group 1a and the front principal point position of the light-receiving lens 5 are configured to match, then R=X and equation (3) becomes D-f5=f,,'...
...... (4).

そこで本実施例では無限遠物体に焦点合わせなしたとき
のフォーカス群の前側焦点位置と受光レンズの前側主点
位置を合致させて、X=Rを略満足するようにし、この
状態よりフォーカス群と反射鏡6を一体的に移動させる
ようにしている。この方法によれば物体距離が変化して
も充分粒度の良い焦点検出が可能となる。
Therefore, in this embodiment, when focusing on an object at infinity, the front focal position of the focus group and the front principal point position of the light receiving lens are made to match, so that X=R is approximately satisfied, and from this state, the focus group The reflecting mirror 6 is moved integrally. According to this method, focus detection with sufficient granularity is possible even if the object distance changes.

本実施例においてフォーカス群の前側焦点位置と受光レ
ンズの前側主点との一致程度は撮影系の焦点深度内で焦
点検出が可能となる範囲であれば厳密に一致させなくて
も本発明の目的を達成することができる。
In this embodiment, the degree of coincidence between the front focal position of the focus group and the front principal point of the light-receiving lens does not need to be exactly matched as long as focus detection is possible within the depth of focus of the imaging system. can be achieved.

第1図に示す実施例において投光手段と受光手段との配
置を交換して反射鏡6をフォーカス群1aと共に同一方
向に移動させるようにしても良い。又、投光手段若しく
は受光手段の一方を撮影系1の一部を介して投光し、若
しくは受光するようにしても良い。
In the embodiment shown in FIG. 1, the arrangement of the light projecting means and the light receiving means may be exchanged so that the reflecting mirror 6 and the focus group 1a are moved in the same direction. Further, either the light projecting means or the light receiving means may be configured to project light or receive light through a part of the photographing system 1.

更に本実施例においては投光手段を用いずに2つの被写
体像の結像位置の相関を検出することにより焦点検出を
行う、所謂受動型の焦点検出装置にも適用することがで
きる。この場合は複数の検出手段として2つの受光手段
を用い、一方の受光手段が配置されている光路を反射鏡
を介して折り曲げ、この折り曲げた光路上に受光素子を
配置し、反射鏡をフォーカス群と同一方向に移動させる
ようにしても良い。
Furthermore, this embodiment can also be applied to a so-called passive focus detection device that performs focus detection by detecting the correlation between the imaging positions of two subject images without using a light projection means. In this case, two light receiving means are used as the plurality of detection means, the optical path in which one of the light receiving means is arranged is bent through a reflecting mirror, the light receiving element is arranged on this bent optical path, and the reflecting mirror is placed in the focus group. It may be moved in the same direction.

(発明の効果) 本発明によれば撮影系のフォーカス群の屈折力配置を適
切に設定すると共に、投光手段若しくは受光手段の少な
くとも一方の光路中に反射鏡な配置し、フォーカス群と
焦点検出用の一要素を一体的に移動させて焦点検出を行
うことにより、カメラ全体の大きさをバランス良く維持
すると共に機構上の簡素化を図った高鯖度の焦点検出が
可能な焦点検出装置を達成することができる。
(Effects of the Invention) According to the present invention, the refractive power arrangement of the focus group of the photographing system is appropriately set, and a reflecting mirror is arranged in the optical path of at least one of the light projecting means or the light receiving means, and the focus group and focus detection By integrally moving one element of the camera to perform focus detection, we have created a focus detection device that maintains the overall size of the camera in a well-balanced manner and is capable of highly accurate focus detection with a simplified mechanism. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2.第
3図は第1図の一部分の説明図、第4゜第5図は従来の
能動型の焦点検出装置の光学系の概略図である。 図中1は撮影系、1aはフォーカス群、2は結像面、3
は投光レンズ、4は光源、5は受光レンズ、6は反射鏡
、7は受光部、8は基板、9は駆動手段、0は物体、L
l、L2.L3は各々光軸、Dは基線長である。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram of a part of FIG. 1, and FIGS. 4 and 5 are schematic diagrams of the optical system of a conventional active focus detection device. In the figure, 1 is the photographing system, 1a is the focus group, 2 is the imaging plane, and 3
is a light projecting lens, 4 is a light source, 5 is a light receiving lens, 6 is a reflecting mirror, 7 is a light receiving section, 8 is a substrate, 9 is a driving means, 0 is an object, L
l, L2. L3 is the optical axis, and D is the baseline length.

Claims (1)

【特許請求の範囲】[Claims] 所定の基線長を隔てて配置した焦点検出用の複数の検出
手段のうち少なくとも一方の手段の光路を反射鏡を介し
て折り曲げ、この折り曲げた光路上に前記複数の検出手
段のうちの一要素を配置し、前記反射鏡を撮影系の焦点
調節用レンズの移動方向と同一方向に移動させて前記撮
影系の焦点検出を行ったことを特徴とする焦点検出装置
The optical path of at least one of the plurality of detection means for focus detection arranged at a predetermined baseline length apart is bent via a reflecting mirror, and one element of the plurality of detection means is placed on this bent optical path. A focus detection device, characterized in that the reflector is moved in the same direction as a moving direction of a focusing lens of the imaging system to detect the focus of the imaging system.
JP6993587A 1987-03-24 1987-03-24 Focus detector Pending JPS63235907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6993587A JPS63235907A (en) 1987-03-24 1987-03-24 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6993587A JPS63235907A (en) 1987-03-24 1987-03-24 Focus detector

Publications (1)

Publication Number Publication Date
JPS63235907A true JPS63235907A (en) 1988-09-30

Family

ID=13417018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6993587A Pending JPS63235907A (en) 1987-03-24 1987-03-24 Focus detector

Country Status (1)

Country Link
JP (1) JPS63235907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044975A (en) * 2015-08-28 2017-03-02 オリンパス株式会社 Microscope system, microscope system control method and microscope system control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044975A (en) * 2015-08-28 2017-03-02 オリンパス株式会社 Microscope system, microscope system control method and microscope system control program

Similar Documents

Publication Publication Date Title
US4469939A (en) Distance measuring apparatus
US4417139A (en) Focus detecting apparatus
JPS6233564B2 (en)
US4549802A (en) Focus detection apparatus
US7016604B2 (en) Autofocus using a holographic aperture element
JPH0943682A (en) Finder device
JPS6120808A (en) Range measuring instrument
JPS63235907A (en) Focus detector
JPH04317017A (en) Automatic focusing device
JPS63235908A (en) Focus detector
US4723142A (en) Focus detecting device
JPS63235906A (en) Focus detector
JPH04117777A (en) Electronic still camera
JPS63259521A (en) Composite type focusing detection device
US4428653A (en) Mirror reflex camera with an electronic range finder
JP2632178B2 (en) Automatic focus detection device for camera
JP3199969B2 (en) Multi-point distance measuring device
JP3504698B2 (en) Distance measuring device
JPS6278512A (en) Optical system with focus detector
JPS59121011A (en) Focusing position detector
JPS60247631A (en) Single lens reflex camera with focus detector
JP3290361B2 (en) Camera ranging device
JP2903472B2 (en) Distance measuring device
JP3063240B2 (en) Converter device and camera system using the same
JPS6278513A (en) Optical system with focus detector