JP2003344044A - Ranging apparatus - Google Patents

Ranging apparatus

Info

Publication number
JP2003344044A
JP2003344044A JP2002159794A JP2002159794A JP2003344044A JP 2003344044 A JP2003344044 A JP 2003344044A JP 2002159794 A JP2002159794 A JP 2002159794A JP 2002159794 A JP2002159794 A JP 2002159794A JP 2003344044 A JP2003344044 A JP 2003344044A
Authority
JP
Japan
Prior art keywords
distance
light
light receiving
distance measuring
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002159794A
Other languages
Japanese (ja)
Inventor
Osamu Harada
修 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002159794A priority Critical patent/JP2003344044A/en
Publication of JP2003344044A publication Critical patent/JP2003344044A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve decision accuracy in a decision across glass. <P>SOLUTION: When a ranging value is smaller than specific distance and the light reception output of a ranging apparatus is smaller than a specific value in the active type ranging apparatus, the presence or absence of spot lack in the light reception output is detected. In the absence of the spot lack, it is decided that photographing across grass is made. In the presence of spot lack, it is decided that a normal photographing environment is present. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、測距対象までの距
離を光学的に測定するカメラ等に搭載される測距装置の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a distance measuring device mounted on a camera or the like for optically measuring a distance to a distance measuring object.

【0002】[0002]

【従来の技術】従来の測距装置には、測距対象にスポッ
ト光を投光し、投光されたスポット光の測距対象の反射
光を受光し、該受光出力から三角測量の原理に基づき測
距対象までの距離を測定するアクティブ測距装置は周知
である。
2. Description of the Related Art In a conventional distance measuring device, a spot light is projected onto an object to be measured, the reflected light of the projected spot light from the object to be measured is received, and the received light output serves as a principle of triangulation. An active distance measuring device for measuring a distance to an object to be measured based on the above is well known.

【0003】また、受光側のレンズ及び受光素子を基線
長方向に2つ配置し、それぞれから得られる受光像の相
関関係から測距対象までの距離を求める位相差検出方式
の測距装置も周知である。
Also known is a phase difference detection type distance measuring device in which two lenses on the light receiving side and two light receiving elements are arranged in the longitudinal direction of the base line, and the distance to the distance measuring object is obtained from the correlation of the received light images obtained from the two lenses. Is.

【0004】このような測距装置を搭載したカメラにお
いては、該測距装置が上記のように測距対象にスポット
光を照射するため、車窓や飛行機の機内からの景色の撮
影(以降ガラス越し撮影)を行うような時は、撮影した
い対象物ではなく窓ガラスを測距してしまいピンボケ写
真となってしまう事がある。
In a camera equipped with such a distance measuring device, since the distance measuring device irradiates a spotlight on a distance measuring object as described above, a scene from the window of a car or an airplane (hereinafter referred to as a glass) is photographed. When taking a picture, the window glass may be measured instead of the object to be photographed, resulting in a defocused photograph.

【0005】ガラス越し撮影時のピンボケ写真を無くす
ために、例えば特開平9−229671号公報が開示さ
れている。
In order to eliminate out-of-focus photographs when photographing through glass, Japanese Patent Laid-Open No. 9-229671 is disclosed, for example.

【0006】特開平9−229671号公報では、図3
にあるように投光素子1はCPU9の命令により投光駆
動部により測距対象に向けて投光用レンズ2を介してパ
ルス投光される。投光された光束の一部はガラス11を
反射し受光用レンズ3、4を介してそれぞれ受光素子
5、6で受光される。またガラス11を透過した残りの
光束も同様に受光用レンズ3、4を介してそれぞれ受光
素子5、6で受光される。ここで撮影対象が仮に遠距離
の風景である場合、このガラス11を透過した光束の受
光レベルはガラス11で反射した光束のそれに比べて非
常に小さいものとなる。
In Japanese Patent Laid-Open No. 9-229671, FIG.
As described in (1), the light projecting element 1 is pulse-projected through the light projecting lens 2 toward the object to be measured by the light projecting drive unit according to the command of the CPU 9. A part of the projected light flux is reflected by the glass 11 and is received by the light receiving elements 5 and 6 via the light receiving lenses 3 and 4, respectively. Further, the remaining light flux transmitted through the glass 11 is similarly received by the light receiving elements 5 and 6 via the light receiving lenses 3 and 4, respectively. If the object to be photographed is a long-distance landscape, the light receiving level of the light flux transmitted through the glass 11 is much smaller than that of the light flux reflected by the glass 11.

【0007】受光素子5、6で受光した信号はCPU9
の命令により受光信号7によって距離に応じた値に演算
処理される。
The signals received by the light receiving elements 5 and 6 are sent to the CPU 9
In response to the instruction, the received light signal 7 is processed into a value corresponding to the distance.

【0008】また該受光信号処理部7からの受光出力レ
ベルを信号量判定部8により所定の信号量と比較を行っ
ている。
The received light output level from the received light signal processing unit 7 is compared with a predetermined signal amount by the signal amount determination unit 8.

【0009】図3の測距装置の測距動作は図4のフロー
チャートにあるように、まずステップ701でアクティ
ブ測距を行う。次に受光信号処理部から得られた測距対
象までの距離Lと所定の距離と比較しLが所定の距離よ
り遠い場合は、ガラス11を測距した可能性が低いため
ステップ705にて距離情報を測距した結果であるLと
している。一方Lが所定の距離より近い場合、ステップ
703で信号量判定部8により受光信号処理部7より得
た受光素子の信号レベルと所定量を比較する。この結果
上記信号レベルが所定量より大きい時は測距対象がガラ
スのない近距離にある可能性が極めて高いので、ステッ
プ705で距離情報を測距した結果であるLとしてお
り、上記信号レベルが所定量より小さい時は、ガラス1
1を測距した可能性が高いので距離情報を無限距離とし
ている(ステップ704)。
As shown in the flowchart of FIG. 4, the distance measuring operation of the distance measuring device of FIG. 3 first performs active distance measuring in step 701. Next, the distance L to the object for distance measurement obtained from the received light signal processing unit is compared with a predetermined distance. If L is longer than the predetermined distance, it is unlikely that the glass 11 has been distance-measured, so the distance is determined in step 705. It is L, which is the result of distance measurement of information. On the other hand, when L is shorter than the predetermined distance, in step 703, the signal amount determination unit 8 compares the signal level of the light receiving element obtained from the light receiving signal processing unit 7 with the predetermined amount. As a result, when the signal level is higher than the predetermined amount, it is extremely likely that the distance measurement target is in a short distance without glass. Therefore, the distance information is measured as L in step 705, and the signal level is L. When the amount is less than the specified amount, glass 1
Since there is a high possibility that distance 1 has been measured, the distance information is set to infinity (step 704).

【0010】ここで上記受光素子の信号レベルの比較対
象である所定量は、ステップ702で測距値と比較して
いた所定の距離において低反射率の測距対象の通常測距
(ガラスのような障害物の無い条件)した時の受光素子
の出力よりも小さいものとする。
Here, the predetermined amount, which is the comparison target of the signal level of the light receiving element, is the normal distance measurement (such as glass) of the low reflection distance measurement target at the predetermined distance compared with the distance measurement value in step 702. It is smaller than the output of the light receiving element when there is no obstacle).

【0011】とのように特開平9−22967号公報で
は、測距値と受光素子の受光レベルから近距離であるに
もかかわらず信号量が非常に小さい場合にガラスを測距
していると判断している。これはガラス11を拡散反射
した投光光束が受光素子5、または6に受光された時に
有効であるとされていた。
As described above, in Japanese Unexamined Patent Publication No. 9-22967, the glass is distance-measured when the signal amount is very small even though the distance is short from the distance measurement value and the light receiving level of the light receiving element. Deciding. This is said to be effective when the projected light beam diffusely reflected by the glass 11 is received by the light receiving element 5 or 6.

【0012】[0012]

【発明が解決しようとする課題】いま測距装置と測距対
象の間にガラス窓が無い状態(通常の測距環境と記述す
る)で測距対象に投光素子からのスポット光全体が当た
っている時、つまり図5(a)のような場合、同図の下
に示す受光出力が得られる。この時特開平9−2296
7号公報の手法によれば、測距値が所定距離よりも近く
ても、受光出力が所定値であるガラス越し判定レベルよ
り大きいことから通常の測距環境となり、測距情報に測
距値が採用される。
DISCLOSURE OF THE INVENTION Now, with no glass window between the distance measuring device and the distance measuring object (described as a normal distance measuring environment), the entire distance of the spot light from the light projecting element hits the distance measuring object. In the meantime, that is, in the case of FIG. 5A, the light reception output shown in the lower part of the figure is obtained. At this time, JP-A-9-2296
According to the method disclosed in Japanese Patent Publication No. 7, even if the distance measurement value is shorter than the predetermined distance, the light receiving output is higher than the glass-through determination level which is the predetermined value. Is adopted.

【0013】しかしながら通常の測距環境で図5(b)
のような測距対象に投光素子のスポット光の一部が当た
り残りは背景に抜けてしまった時、受光出力は同図の下
に示すようにガラス越し判定レベルより小さくなる。こ
の結果、従来の手法であればこのときの測距値が所定距
離よりも近ければ、通常の測距環境であるにもかかわら
ずガラス越し撮影であると判定してしまい、図4によれ
ば距離情報は無限距離となるためにピンボケ写真を提供
することになる。
However, in a normal distance measuring environment, FIG.
When a part of the spot light of the light projecting element hits the object to be measured and the rest falls through the background, the light reception output becomes smaller than the through glass determination level as shown in the lower part of the figure. As a result, according to the conventional method, if the distance measurement value at this time is closer than the predetermined distance, it is determined that the photographing is through the glass despite the normal distance measurement environment, and according to FIG. Since the distance information is an infinite distance, a defocused photograph will be provided.

【0014】尚、ここで測距対象からの反射光が受光素
子上に結像された像を受光スポットと表現し、図5
(b)のような測距条件で得られた時の受光素子上の像
の状態をスポット欠けと表現する。
Here, an image in which the reflected light from the object to be measured is formed on the light receiving element is expressed as a light receiving spot, and FIG.
The state of the image on the light receiving element obtained under the distance measuring condition as shown in (b) is referred to as spot defect.

【0015】[0015]

【課題を解決するための手段】本発明の目的は上記にあ
るような測距対象に向けた投光素子からの光の一部が背
景に抜けてしまってスポット欠けが生じても誤ってガラ
ス越し判定する事のない測距装置を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to erroneously display glass even if a portion of light from a light-projecting element directed to an object for distance measurement as described above escapes to the background and spot spots occur. An object is to provide a distance measuring device that does not make a pass judgment.

【0016】上記問題を解決するために本発明の測距装
置は、測距対象にスポット光を投光する投光手段と、上
記測距対象からの反射光を受光する受光手段と、上記受
光手段の出力信号に基づいて上記測距対象までの距離を
算出する演算手段と、上記演算手段で算出された距離と
所定距離とを比較する第一の比較手段と、上記算出され
た距離が上記所定距離より近距離である時、上記受光手
段の出力値と所定値とを比較する第二の比較手段と、上
記受光手段の出力値が所定値より小さい時、上記測距対
象からの反射光が受光手段に結像したときの像の幅を検
出する検出手段と、上記検出手段の検出結果に応じて上
記算出された距離を所定の距離に補正する補正手段を備
えたことを特徴とする。
In order to solve the above problems, the distance measuring apparatus of the present invention comprises a light projecting means for projecting a spot light onto a distance measuring object, a light receiving means for receiving a reflected light from the distance measuring object, and the light receiving means. Calculating means for calculating the distance to the object to be measured based on the output signal of the means, first comparing means for comparing the distance calculated by the calculating means with a predetermined distance, and the calculated distance is Second comparison means for comparing the output value of the light receiving means with a predetermined value when the distance is shorter than a predetermined distance, and reflected light from the distance measuring object when the output value of the light receiving means is smaller than the predetermined value. A detection means for detecting the width of the image when the image is formed on the light receiving means, and a correction means for correcting the calculated distance to a predetermined distance according to the detection result of the detection means. .

【0017】また、上記測距装置の上記受光手段は、セ
ンサアレイで構成されることを特徴とする。
Further, the light receiving means of the distance measuring device is composed of a sensor array.

【0018】また、上記測距装置の上記受光手段は、一
対の光学レンズとそれぞれに対応した一対のセンサアレ
イで構成されたことを特徴とする。
Further, the light receiving means of the distance measuring device is characterized by comprising a pair of optical lenses and a pair of sensor arrays corresponding to the respective optical lenses.

【0019】また、上記受光手段であるところの上記セ
ンサアレイは、CCDであることを特徴とする。
The sensor array serving as the light receiving means is a CCD.

【0020】更に、上記受光手段であるところの上記セ
ンサアレイは、CMOSセンサであることを特徴とす
る。
Further, the sensor array serving as the light receiving means is a CMOS sensor.

【0021】(作用)請求項1によれば、測距装置から
得られた測距値が所定距離よりも近く、受光手段の出力
値が所定値よりも小さい時でも、該受光手段の受光スポ
ットのスポット欠けの有無を検出し、該受光スポットに
欠けがある時は、測距対象に投光素子からの光の一部だ
けしか当たっていないような状態であることがわかるの
で、これまでのように上記状態で誤ってガラス越し撮影
であると判断することなく正確な測距情報を提供する事
が可能になる。
(Operation) According to the first aspect, even when the distance measurement value obtained from the distance measuring device is closer than the predetermined distance and the output value of the light receiving means is smaller than the predetermined value, the light receiving spot of the light receiving means. The presence or absence of the spot defect of the light is detected, and when there is a defect in the light receiving spot, it is understood that only a part of the light from the light emitting element hits the distance measurement target. As described above, it is possible to provide accurate distance measurement information without erroneously determining that the image is captured through glass in the above state.

【0022】また請求項2、請求項4、5によれば、上
記受光手段はCCDやCMOSセンサのようなセンサア
レイで構成されることで、該センサアレイのそれぞれの
センサ出力から、受光スポットのスポット欠けを容易に
検出する事ができる。
According to the second and fourth aspects, the light receiving means is constituted by a sensor array such as a CCD or CMOS sensor, and the light receiving spot of each sensor output of the sensor array is detected. Spot missing can be detected easily.

【0023】また請求項3によれば、上記受光手段は、
一対の光学レンズとそれぞれに対応した一対のセンサア
レイで構成されているので、たとえ受光スポットに欠け
が生じても正確な測距値を得ることが可能である。
According to a third aspect, the light receiving means comprises:
Since it is composed of a pair of optical lenses and a pair of sensor arrays corresponding to each, it is possible to obtain an accurate distance measurement value even if the light receiving spot is chipped.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施例の形態を図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は本実施例にかかる測距装置のブロッ
ク構成図である。
FIG. 1 is a block diagram of the distance measuring apparatus according to this embodiment.

【0026】同図において、1はスポット光を投光する
ための光源となるIREDやLEDなどの投光素子であ
り、この素子は投光駆動部10とCPU9の制御によっ
てパルス点灯されている。また投光素子1からの光は投
光用レンズ2を通して測距対象に向けて投光される。
In FIG. 1, reference numeral 1 is a light projecting element such as an IRED or an LED which serves as a light source for projecting spot light, and this element is pulse-lit by the control of the light projecting drive unit 10 and the CPU 9. Further, the light from the light projecting element 1 is projected through the light projecting lens 2 toward the object for distance measurement.

【0027】3、4は受光用レンズであり、投光素子1
から測距対象に向けて投光された光の測距対象での反射
光を受光素子5、6にそれぞれ結像させる。
Reference numerals 3 and 4 denote light-receiving lenses, and the light-projecting element 1
The reflected light of the distance measurement target of the light projected from the distance measurement target to the distance measurement target is imaged on the light receiving elements 5 and 6, respectively.

【0028】受光素子5、6は、それぞれセンサ列で構
成されており、これは例えばCCDであったりCMOS
センサであったりする。またこれらのセンサ列の出力は
一対の受光信号として出力される。
Each of the light receiving elements 5 and 6 is composed of a sensor array, which is, for example, a CCD or a CMOS.
It may be a sensor. The outputs of these sensor arrays are output as a pair of light reception signals.

【0029】7は、受光素子5、6からの一対の受光信
号を距離に応じた値に演算するための受光信号処理部で
ある。
Reference numeral 7 is a light receiving signal processing unit for calculating a pair of light receiving signals from the light receiving elements 5 and 6 into a value according to the distance.

【0030】8は受光信号処理部7からの受光信号のレ
ベルを所定値と比較するための信号量判定部であり、1
2は同じく受光信号処理部7からの受光信号のスポット
欠けの有無を判別するためのスポット欠け判定部であ
る。
Reference numeral 8 is a signal amount determination unit for comparing the level of the received light signal from the received light signal processing unit 7 with a predetermined value.
Reference numeral 2 is also a spot defect determination unit for determining the presence or absence of a spot defect of the light reception signal from the light reception signal processing unit 7.

【0031】9は測距動作の統括制御を行うためのCP
Uであり、11は窓越し撮影時のガラス窓である。
Reference numeral 9 is a CP for performing integrated control of the distance measuring operation.
U is a glass window 11 at the time of shooting through the window.

【0032】次に本発明の測距動作について図2のフロ
ーチャートを使って説明する。
Next, the distance measuring operation of the present invention will be described with reference to the flowchart of FIG.

【0033】まずステップ201でアクティブ測距を行
う。図1のブロック構成図の場合、投光素子1を測距対
象に向けて投光し、受光素子5、6でそれぞれ受光し、
該受光素子から得られた一対の受光信号の位相差を検出
することにより測距対象までの距離を求めている。
First, in step 201, active distance measurement is performed. In the case of the block configuration diagram of FIG. 1, the light projecting element 1 projects light toward the object to be measured, and the light receiving elements 5 and 6 respectively receive the light.
The distance to the object for distance measurement is obtained by detecting the phase difference between the pair of received light signals obtained from the light receiving element.

【0034】尚アクティブ測距の動作については周知の
技術であるため詳細の説明は割愛する。
Since the operation of active distance measurement is a well-known technique, its detailed description will be omitted.

【0035】次にステップ201で求められた測距値L
と所定の距離の比較を行い、所定の距離より遠い場合
は、通常の測距環境であるか或いは、窓越しの撮影であ
っても窓ガラス11を測距していないものとし、ステッ
プ206で距離情報として測距値Lを採用する。
Next, the distance measurement value L obtained in step 201
Is compared with a predetermined distance, and if the distance is longer than the predetermined distance, it is determined that the distance measurement is in a normal distance measurement environment, or that the window glass 11 is not measured even when shooting through a window. The distance measurement value L is adopted as the distance information.

【0036】一方測距値Lが所定の距離よりも近い時
は、窓越し撮影で窓ガラスを測距している可能性がある
ので、次の判定をステップ203で行う。ステップ20
3では受光信号レベルと所定量との比較を信号量判定部
8で行っており、受光信号のレベルが所定量より大きい
時は、測距値が近距離でかつ受光信号が大きいので通常
の測距環境であると判断し、ステップ206で距離情報
として測距値Lを採用するる。
On the other hand, when the distance measurement value L is shorter than the predetermined distance, there is a possibility that the window glass is distance-measured by photographing through the window, so the next judgment is made in step 203. Step 20
In No. 3, the signal amount determination unit 8 compares the received light signal level with a predetermined amount. When the level of the received light signal is larger than the predetermined amount, the distance measurement value is a short distance and the received light signal is large. It is determined that the environment is the distance environment, and the distance measurement value L is adopted as the distance information in step 206.

【0037】一方受光信号レベルが所定量より小さい時
は、測距値は近距離であるのにもかかわらず受光信号が
小さいので、窓越し撮影で窓ガラス11を測距している
可能性が高い。よってステップ204で次の判定を行
う。
On the other hand, when the received light signal level is smaller than the predetermined amount, the received light signal is small even though the distance measurement value is a short distance, so there is a possibility that the window glass 11 is measured in distance through the window. high. Therefore, in step 204, the following judgment is made.

【0038】ステップ204では受光スポットのスポッ
ト欠けの有無をスポット欠け判定部12で行っている。
この判定方法としては、例えば受光素子であるセンサ列
のそれぞれのセンサの出力レベルにおいて所定他以上の
出力がどれだけ連続しているかを調べることで判定でき
る。該連続性が所定値よりも小さければ受光スポットに
スポット欠けであることになる。該受光信号にスポット
欠けがある場合は、図5のように測距対象に投光素子1
からのスポット光の一部しか当たらず残りのスポット光
は背景に抜けているめに、受光信号のレベルが小さくな
ってしまったと考えられるので、通常の測距環境である
からステップ206で距離情報として測距値Lを採用す
る。
In step 204, the spot missing determination section 12 determines whether or not the light receiving spot is missing.
As this determination method, for example, the determination can be made by checking how consecutive the outputs of a predetermined value or more are continuous at the output level of each sensor of the sensor array which is the light receiving element. If the continuity is smaller than a predetermined value, it means that the light receiving spot is missing. If the received light signal has a missing spot, the light projecting element 1
It is considered that the level of the received light signal has become low because only a part of the spot light from the above has been received and the rest of the spot light has passed through the background. The distance measurement value L is adopted as

【0039】一方受光スポットにスポット欠けが無い場
合は、測距対象には投光素子1からのスポット光全体が
当たっているにもかかわらず受光信号のレベルが低く、
しかも測距値Lは近距離であることから窓越し撮影で窓
ガラス11を測距しているものであると判断し、ステッ
プ205で距離情報としてあらかじめ設定された所定の
距離Aを採用する。
On the other hand, when the light receiving spot has no spot missing, the level of the light receiving signal is low even though the entire spot light from the light projecting element 1 hits the object to be measured.
Moreover, since the distance measurement value L is a short distance, it is determined that the window glass 11 is distance-measured by photographing through the window, and in step 205, a predetermined distance A preset as distance information is adopted.

【0040】尚、ステップ205では距離情報を所定の
距離Aとしているが、投光素子1を非投光でパッシブ測
距を実行しても構わない。
Although the distance information is set to the predetermined distance A in step 205, the passive distance measurement may be executed without projecting the light projecting element 1.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
測距装置から得られた測距値、受光信号の信号量だけで
なく受光スポットのスポット欠けの有無に応じて、測距
環境が通常であるか窓越しであるかを確実に判別するこ
とが可能になるので、窓越し判定の誤検知による誤測距
が無くなり高精度の測距装置を提供する事ができる。
As described above, according to the present invention,
It is possible to reliably determine whether the distance measuring environment is normal or through a window based on not only the distance measurement value obtained from the distance measuring device and the signal amount of the light receiving signal but also the presence or absence of spot missing of the light receiving spot. Since it becomes possible, erroneous distance measurement due to erroneous detection of through-window determination is eliminated, and a highly accurate distance measuring device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる測距装置を説明したブロック構
成図である。
FIG. 1 is a block diagram illustrating a distance measuring device according to the present invention.

【図2】本発明にかかる測距装置の動作を説明したフロ
ーチャートである。
FIG. 2 is a flowchart illustrating the operation of the distance measuring device according to the present invention.

【図3】従来例にかかる測距装置を説明したブロック構
成図である。
FIG. 3 is a block diagram illustrating a distance measuring device according to a conventional example.

【図4】従来例にかかる測距装置の動作を説明したフロ
ーチャートである。
FIG. 4 is a flowchart illustrating an operation of a distance measuring device according to a conventional example.

【図5】スポット欠けした時の測距対象とスポット光の
位置関係並びに受光出力の例を示した図である。
FIG. 5 is a diagram showing an example of a positional relationship between a distance measurement target and spot light and a light reception output when a spot is missing.

【符号の説明】[Explanation of symbols]

1 投光素子 2 投光用レンズ 3 受光用レンズ 4 受光用レンズ 5 受光素子 6 受光素子 7 受光信号処理部 8 信号判定部 9 CPU 10 投光駆動部 11 ガラス窓 12 スポット欠け判定部 1 Light emitting element 2 Projection lens 3 Light-receiving lens 4 Light receiving lens 5 Light receiving element 6 Light receiving element 7 Received light signal processing unit 8 Signal determination section 9 CPU 10 Projection drive unit 11 glass windows 12 Spot missing part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 測距対象にスポット光を投光する投光手
段と、 上記測距対象からの反射光を受光する受光手段と、 上記受光手段の出力信号に基づいて上記測距対象までの
距離を算出する演算手段と、 上記演算手段で算出された距離と所定距離とを比較する
第一の比較手段と、 上記算出された距離が上記所定距離より近距離である
時、上記受光手段の出力値と所定値とを比較する第二の
比較手段と、 上記受光手段の出力値が所定値より小さい時、上記測距
対象からの反射光が受光手段に結像したときの像の幅を
検出する検出手段と、 上記検出手段の検出結果に応じて上記算出された距離を
所定の距離に補正する補正手段を備えた事を特徴とする
測距装置。
1. A light projecting means for projecting a spot light onto a distance measuring object, a light receiving means for receiving reflected light from the distance measuring object, and a light receiving means up to the distance measuring object based on an output signal of the light receiving means. Calculating means for calculating the distance, first comparing means for comparing the distance calculated by the calculating means with a predetermined distance, and when the calculated distance is shorter than the predetermined distance, When the output value of the light receiving means is smaller than the predetermined value, the width of the image when the reflected light from the distance measuring object is formed on the light receiving means is compared with the second comparing means for comparing the output value with the predetermined value. A distance measuring device comprising: a detecting means for detecting; and a correcting means for correcting the calculated distance to a predetermined distance according to the detection result of the detecting means.
【請求項2】 請求項1において、上記受光手段は、セ
ンサアレイで構成されることを特徴とする。
2. The light receiving means according to claim 1, wherein the light receiving means is constituted by a sensor array.
【請求項3】 請求項1において、上記受光手段は、一
対の光学レンズとそれぞれに対応した一対のセンサアレ
イで構成されたことを特徴とする。
3. The light receiving unit according to claim 1, wherein the light receiving unit includes a pair of optical lenses and a pair of sensor arrays corresponding to the optical lenses.
【請求項4】 請求項2において、上記センサアレイ
は、CCDであることを特徴とする。
4. The sensor array according to claim 2, wherein the sensor array is a CCD.
【請求項5】 請求項2において、上記センサアレイ
は、CMOSセンサであることを特徴とする。
5. The sensor array according to claim 2, wherein the sensor array is a CMOS sensor.
JP2002159794A 2002-05-31 2002-05-31 Ranging apparatus Withdrawn JP2003344044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159794A JP2003344044A (en) 2002-05-31 2002-05-31 Ranging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159794A JP2003344044A (en) 2002-05-31 2002-05-31 Ranging apparatus

Publications (1)

Publication Number Publication Date
JP2003344044A true JP2003344044A (en) 2003-12-03

Family

ID=29773973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159794A Withdrawn JP2003344044A (en) 2002-05-31 2002-05-31 Ranging apparatus

Country Status (1)

Country Link
JP (1) JP2003344044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052767B2 (en) 2015-06-17 2018-08-21 Seiko Epson Corporation Robot, control device, and control method
WO2021065500A1 (en) * 2019-09-30 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 Distance measurement sensor, signal processing method, and distance measurement module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052767B2 (en) 2015-06-17 2018-08-21 Seiko Epson Corporation Robot, control device, and control method
WO2021065500A1 (en) * 2019-09-30 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 Distance measurement sensor, signal processing method, and distance measurement module

Similar Documents

Publication Publication Date Title
US7405762B2 (en) Camera having AF function
JP2003247823A (en) Method and device for detecting phase difference, range finder, and image pickup device
US6522394B2 (en) Rangefinder device and camera
JP2003344044A (en) Ranging apparatus
JP4426670B2 (en) Camera focusing device
US6219492B1 (en) Camera
US6744982B2 (en) Distance-measuring device of camera and focusing method of camera
JP2889102B2 (en) Distance measuring device
JP4074527B2 (en) Angle detection device and projector equipped with the same
JP2002090616A (en) Focus detector for camera
US6633730B2 (en) Rangefinder device and camera incorporating the same
JP3559638B2 (en) Distance measuring device
JP4282300B2 (en) Camera ranging device
JP3199969B2 (en) Multi-point distance measuring device
JPH1096851A (en) Range finder for camera
JP2002250857A (en) Range finder
JPH095617A (en) Auto-focusing device
JP3080862B2 (en) Distance measuring device
JP4611174B2 (en) Image sensor position measuring apparatus and image sensor position measuring method
JP2001356260A (en) Focusing device and range-finding device
JP2005010353A (en) Projector
JPS63266435A (en) Automatic focusing device
JP2001305414A (en) Range-finding device
JP2004117297A (en) Distance measuring apparatus and camera provided therewith
JP2001356380A (en) Device with shake detecting function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802