JP3198252U - External insulation structure of the structure - Google Patents

External insulation structure of the structure Download PDF

Info

Publication number
JP3198252U
JP3198252U JP2015001958U JP2015001958U JP3198252U JP 3198252 U JP3198252 U JP 3198252U JP 2015001958 U JP2015001958 U JP 2015001958U JP 2015001958 U JP2015001958 U JP 2015001958U JP 3198252 U JP3198252 U JP 3198252U
Authority
JP
Japan
Prior art keywords
water
surface layer
heat insulating
capillary
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2015001958U
Other languages
Japanese (ja)
Inventor
▲いつ▼紀 常森
▲いつ▼紀 常森
和雄 永橋
和雄 永橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaisui Chemical Industry Co Ltd
Original Assignee
Kaisui Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaisui Chemical Industry Co Ltd filed Critical Kaisui Chemical Industry Co Ltd
Priority to JP2015001958U priority Critical patent/JP3198252U/en
Application granted granted Critical
Publication of JP3198252U publication Critical patent/JP3198252U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

【課題】構築物の屋根面、壁面に設置する保水性と通水性と保温性と除熱性を有した外断熱構造を提供する。【解決手段】外断熱構造1の外面側に、毛細管連続構造を有した表面層2と、保温性を有する独立気泡型の保温板3を一体化したことを特徴とする。表面層の厚さが2mm乃至200mm、保水率が体積割合で20%乃至85%、乾燥時の比重が0.2乃至2.0であり、表面層の、平均毛細管径が0.5乃至500μmとする。【選択図】図1To provide an outer heat insulating structure having water retention, water permeability, heat retention and heat removal installed on a roof surface and a wall surface of a structure. A surface layer 2 having a capillary continuous structure and a closed cell type heat retaining plate 3 having heat retaining properties are integrated on an outer surface side of an outer heat insulating structure 1. The thickness of the surface layer is 2 mm to 200 mm, the water retention is 20% to 85% by volume, the specific gravity during drying is 0.2 to 2.0, and the average capillary diameter of the surface layer is 0.5 to 500 μm. And [Selection] Figure 1

Description

本考案は、建築物の外断熱工法において、外表面層に水の気化熱を利用した冷却機能を付加した構築物の省エネルギーシステム要素と外断熱構造に関する。The present invention relates to an energy saving system element and an outer heat insulating structure of a structure in which a cooling function using heat of vaporization of water is added to an outer surface layer in an outer heat insulating method for a building.

近年、化石燃料の利用過多に起因する地球温暖化や都市部のヒートアイランド現象などの解決が喫緊の課題となっている。従来より、これらの問題に取り組むべく様々な新エネルギー・省エネルギーシステムが提案されてきている。In recent years, solutions to global warming caused by excessive use of fossil fuels and urban heat island phenomena have become urgent issues. Conventionally, various new energy / energy saving systems have been proposed to address these problems.

構築物の屋根や壁などは、日中、直射日光に長時間晒されているため、高温になり易い。特に、日射時間の長い夏場においては、屋根の表面から吸収された熱が構築物内に伝わって室温を上昇させ、また、屋根や壁の表面から構築物に移行した熱による蓄熱のため、空調効率の低下を招いている。現在、最も普及している有効な建物の省エネルギーシステムの一つとして外断熱工法が挙げられる。外断熱工法とは、建物の外側に断熱層を設ける工法で、コンクリート構造物など熱容量の大きい躯体を外気の寒暖から守ることによって、夏季昼間における日射熱や、冬季夜間における冷気の蓄積に起因する建物内部の大きな温度上昇・下降を抑えることができる。一方、建物内部においては、外断熱の効果により、建物自身の大きな熱容量によって建物内部の温度を保ちやすくなる。従って、従来の内断熱、すなわち建物の内側に断熱層を設ける工法に比して、空調に係るエネルギーを大幅に抑えることができ、室温を快適な環境に保ちやすくなるといった利点がある。これまで外断熱工法は外壁耐火性能の観点から高価な工法に限定されていて、外断熱建物の普及が遅れていたが、30年以上にわたる国内および欧米での実績と、実大試験などによる耐火性能の確認を行った安価な外断熱工法の導入や、京都議定書に基づく省エネ効果への対策などが追い風となって、外断熱建物の新築や改修が増加している。  The roofs and walls of structures are subject to high temperatures because they are exposed to direct sunlight for a long time during the day. Especially in the summertime when the solar radiation is long, the heat absorbed from the roof surface is transferred into the structure to raise the room temperature, and the heat storage by the heat transferred from the surface of the roof and walls to the structure is effective. It is causing a decline. Currently, one of the most popular and effective building energy-saving systems is the outer insulation method. The outside heat insulation method is a method of providing a heat insulation layer on the outside of a building, which is caused by the accumulation of cold air during the daytime in the summer and cold air during the nighttime in the winter by protecting the frame with a large heat capacity such as concrete structures from the coldness of the outside air. Large temperature rise and fall inside the building can be suppressed. On the other hand, inside the building, due to the effect of external heat insulation, it becomes easy to maintain the temperature inside the building due to the large heat capacity of the building itself. Therefore, compared with the conventional internal heat insulation, that is, the construction method in which the heat insulation layer is provided inside the building, there is an advantage that the energy relating to air conditioning can be greatly suppressed and the room temperature can be easily maintained in a comfortable environment. Up to now, the outer insulation method has been limited to expensive construction methods from the viewpoint of fire resistance performance on the outer wall, and the spread of outer insulation buildings has been delayed, but the fire resistance by more than 30 years in Japan, Europe and the United States, and fire resistance by full-scale tests, etc. The introduction of inexpensive external insulation methods that have confirmed performance and measures for energy-saving effects based on the Kyoto Protocol have helped increase the number of new construction and renovation of external insulation buildings.

外断熱工法に関しては、屋根面や壁面に発泡ポリエチレンや発泡ポリスチレンなどの保温板を張り、その外側に保温板の紫外線劣化防止、耐火性能の向上、飛散防止等を目的としたシンダーコンクリートや押さえブロック、モルタルなどの表面層を設けることによって外部よりの熱を遮断する方法が一般的である。しかしながら、本方法では保温板の熱貫流抵抗により熱移動を抑制する断熱効果に留まり、積極的に屋根面や壁面を冷却することはできない。また、表面層は夏期には65℃にも達し、表面層に蓄熱され、保温板を通して漏れ伝わった熱は、構築物躯体に蓄積され、夜間や曇天などの日射が無いときでも構築物内部に熱が徐々に伝わり、根本的な空調機の省エネルギー対策や居住性の向上策としては限界的であり、また、高温となった表面層からの顕熱放射により、ヒートアイランド化を助長するなどの問題があった。With regard to the outer insulation method, heat insulation plates such as foamed polyethylene and foamed polystyrene are stretched on the roof and wall surfaces, and cinder concrete and holding blocks for the purpose of preventing UV degradation of the heat insulation plate, improving fire resistance, and preventing scattering. In general, a method of blocking heat from the outside by providing a surface layer such as mortar. However, in this method, the heat insulation effect of suppressing heat transfer is limited by the heat flow resistance of the heat insulating plate, and the roof surface and wall surface cannot be actively cooled. In addition, the surface layer reaches 65 ° C in summer, the heat stored in the surface layer, and the heat that leaks through the heat insulation plate is accumulated in the structure housing, so that heat can be generated inside the structure even when there is no solar radiation such as nighttime or cloudy weather. It is gradually transmitted and is a limit to energy saving measures and habitability improvement measures for fundamental air conditioners, and there are problems such as promoting sensible heat radiation from sensible heat radiation from the surface layer that has become hot. It was.

一方、構築物を直接除熱、すなわち積極的に熱量を奪う有効な方法の一つとして水の気化熱を利用した、いわゆる打ち水が拳げられる。打ち水は旧来より至る所で習慣的になされており、冷却効果については経験的に高いことが実証されている。最も多く見られる実用例としては透水性・保水性舗道で、都市部などでは雨水を有効利用したヒートアイランド対策として注目されている。しかしながら、建築物の一部としてこれらの技術を適用することはできない上、透水性・保水性舗道の技術は毛細管連続性が確保できず、同様に、ポーラスコンクリート技術においても、気孔が粗い部分の存在により毛細管連続性が確保困難であり、従って、表面層外面(気化部分)への底部よりの水供給ができず、高々数℃の温度低下しか期待できず、本考案の目的である大幅な温度低下(冷却)、即ち、例えば65℃を40℃に冷却する効果を期待することは難しい。考案者らは、これらの課題を解決するため、先に出願した特許文献1において、親水性の結合性成分によって結合された多孔性骨材から成る毛細管連続構造及び非毛細管空隙を有した表面層と独立気泡型の有機樹脂発泡系の保温板とを備え、この保温板と前記表面層を圧縮成型することによって一体化されたことを特徴とする外断熱パネルを提案した。On the other hand, as one effective method of directly removing heat from the structure, that is, actively taking away the amount of heat, so-called water hammering using the heat of vaporization of water is fisted. Water hammering has been customary everywhere since ancient times, and the cooling effect has been proven to be empirically high. The most common practical examples are water-permeable and water-retaining pavements, and are attracting attention as countermeasures against heat islands that effectively use rainwater in urban areas. However, these technologies cannot be applied as a part of the building, and the permeable / water-retaining pavement technology cannot secure capillary continuity. Similarly, in porous concrete technology, Capillary continuity is difficult to ensure due to its presence, so water cannot be supplied from the bottom to the outer surface of the surface layer (vaporization part), and only a temperature drop of a few degrees C can be expected. It is difficult to expect a temperature drop (cooling), that is, an effect of cooling 65 ° C. to 40 ° C., for example. In order to solve these problems, the inventors have proposed that in Patent Document 1 filed earlier, a capillary continuous structure composed of a porous aggregate bonded by a hydrophilic binding component and a surface layer having a non-capillary void. And an independent cell type organic resin foam heat insulating plate, and the heat insulating plate and the surface layer are integrated by compression molding.

WO2010/023957WO2010 / 023957

考案者らは、特許文献1の発明によって、上記課題を解決することができたが、さらに、次のような3つの課題を抱えている。The inventors have been able to solve the above problems by the invention of Patent Document 1, but have the following three problems.

まず、課題1として、特許文献1の発明については、連続毛細管構造を確保するための骨材が高価であり、選択の幅も狭いことがあげられる。First, as the first problem, in the invention of Patent Document 1, the aggregate for securing the continuous capillary structure is expensive and the selection range is narrow.

次に、課題2として、特許文献1の表面層の厚さは5mm程度が限界であり、パネルの含水時重量をさらに低下させるために、5mm程度以下の厚さにすると、骨材形状のばらつき、混合・成型時のばらつきにより、強度的弱点が生まれやすく、また、防火性能も急激に低下し、材料選別、及び、成型条件の選択の巾が狭い。さらには、厚さ5mm以上であっても重歩行強度にするためには、結合性成分を増やし、通水性、保水性をある程度犠牲にせざるを得ないことが挙げられる。Next, as the problem 2, the thickness of the surface layer of Patent Document 1 is about 5 mm, and if the thickness is about 5 mm or less in order to further reduce the wet weight of the panel, the aggregate shape varies. However, due to variations in mixing and molding, strength weak points are likely to be generated, and the fire prevention performance is drastically reduced, and the selection range of material selection and molding conditions is narrow. Furthermore, even if the thickness is 5 mm or more, in order to obtain heavy walking strength, it is necessary to increase the binding component and sacrifice water permeability and water retention to some extent.

また、課題3としては、様々な意匠性を要求される用途、たとえば、戸建外壁や、展示性の高い建物などの場合、表面積を増大させ、水の気化を促進する効果を有する骨材による凹凸が意匠性の自由度を低下させることがあげられる。
考案者らは、これら3つの問題点を解決するために鋭意研究を進めた結果、本考案に至ったものである。
In addition, as the problem 3, in applications that require various design characteristics, for example, in the case of a detached outer wall or a highly exhibiting building, the aggregate has an effect of increasing the surface area and promoting the vaporization of water. Unevenness can reduce the degree of freedom in design.
As a result of intensive research to solve these three problems, the inventors have arrived at the present invention.

すなわち、上記目的を達成するために、請求項1記載の考案である構築物の外断熱構造は、構築物の屋根面や壁面に設置される構築物の外断熱構造であって、その外面側に、毛細管連続構造を有した不燃性の表面層と、独立気泡型の保温板を一体化し、前記表面層の厚さが2mm乃至200mm、保水率が体積割合で20%乃至85%、乾燥時の比重が0.2乃至2.0であることを特徴とし、前記表面層の、平均毛細管径が0.5乃至500μmであることを特徴とするものである。That is, in order to achieve the above object, the external heat insulating structure of a structure according to claim 1 is an external heat insulating structure of a structure installed on a roof surface or a wall surface of the structure, and a capillary tube is provided on the external surface side thereof. A non-flammable surface layer having a continuous structure and a closed cell type heat insulating plate are integrated, the thickness of the surface layer is 2 mm to 200 mm, the water retention is 20% to 85% by volume, and the specific gravity during drying is It is 0.2 to 2.0, and the average capillary diameter of the surface layer is 0.5 to 500 μm.

請求項2記載の考案は、請求項1に記載の構築物の外断熱構造において、前記外断熱構造の、前記表面層の一部に、通水溝を有することを特徴とするものである。The invention according to claim 2 is characterized in that in the outer heat insulating structure of the structure according to claim 1, a water passage groove is provided in a part of the surface layer of the outer heat insulating structure.

請求項3記載の考案は、請求項1又は2に記載の構築物の外断熱構造において、前記外断熱構造の前記保温板の一部に、通水体を有することを特徴とするものである。The invention described in claim 3 is characterized in that in the outer heat insulating structure of the structure according to claim 1 or 2, a water passage is provided in a part of the heat insulating plate of the outer heat insulating structure.

以上説明したように、本考案の請求項1記載の外断熱構造においては、高い強度と保水性と耐凍結融解性を備え、且つ安価・軽量で、冷却効果の高い構築物の外断熱構造を得ることが可能である。また、毛細管連続構造により表面層の外表面に効率的に水を移送・揚水・供給せしめ、水の気化熱により表面層を冷却し、温度上昇を防ぐことによって、構築物の省エネルギー効果やヒートアイランド防止効果を大幅に高め、構築物への熱ストレス変化の防止による建築物、防水層等の寿命延長を図ることが可能である。さらには、保水性を低下させることなく、長期間構築物の外断熱構造の強度および保形性を得ることが可能である。また、軽量で、高い保水性を有し、表面層内の水の毛細管移動性を高めた外断熱構造を得ることが可能である。As described above, in the outer heat insulating structure according to claim 1 of the present invention, an outer heat insulating structure of a structure having high strength, water retention, freeze-thaw resistance, low cost, light weight and high cooling effect is obtained. It is possible. In addition, the continuous capillary structure efficiently transports, pumps, and supplies water to the outer surface of the surface layer, cools the surface layer with the heat of vaporization of water, and prevents the temperature from rising. It is possible to extend the life of buildings, waterproof layers, etc. by significantly increasing the thermal stress and preventing changes in thermal stress on the structure. Furthermore, it is possible to obtain the strength and shape retention of the outer heat insulating structure of the structure for a long time without lowering the water retention. In addition, it is possible to obtain an outer heat insulating structure that is lightweight, has high water retention, and has improved water capillary movement in the surface layer.

本考案の請求項2記載の考案においては、材料的には保水機能を、構造的には通水機能を持たせることによって、高い保水性と耐凍結融解性を同時に得ることが可能である。In the invention according to claim 2 of the present invention, it is possible to obtain high water retention and freeze-thaw resistance at the same time by providing a water retention function in terms of material and a water passage function in terms of structure.

本考案の請求項3記載の考案においては、材料的には保水機能を、構造的には通水機能を持たせることによって、高い保水性と耐凍結融解性を同時に得ることが可能である。In the device according to claim 3 of the present invention, it is possible to obtain high water retention and freeze-thaw resistance at the same time by providing a water retention function in terms of material and a water passage function in terms of structure.

本考案の実施の形態に係る外断熱構造1の断面概略図および斜視図である。It is the cross-sectional schematic and perspective view of the outer heat insulation structure 1 which concerns on embodiment of this invention. 本考案の実施の形態に係る、表面層2内部に通水溝4を有する外断熱構造1の断面概略図である。It is the cross-sectional schematic of the outer heat insulation structure 1 which has the water flow groove | channel 4 inside the surface layer 2 based on embodiment of this invention. 本考案の実施の形態に係る、保温板3に通水溝4を有する外断熱構造1の断面概略図である。It is the cross-sectional schematic of the outer heat insulation structure 1 which has the water flow groove | channel 4 in the heat retention board 3 based on embodiment of this invention. 本考案の実施の形態に係る、表面層2内部に通水体5を有する外断熱構造1の断面概略図である。It is the cross-sectional schematic of the outer heat insulation structure 1 which has the water flow body 5 inside the surface layer 2 based on embodiment of this invention. 本考案の実施の形態に係る、表面層2の外表面に通水溝4を有する外断熱構造1の断面概略図である。It is the cross-sectional schematic of the outer heat insulation structure 1 which has the water flow groove | channel 4 in the outer surface of the surface layer 2 based on embodiment of this invention.

本考案の最良の実施の形態に係る外断熱構造の実施例について、図1乃至図5を用いて説明する。なお、本考案は実施例に示す形態に限定されるものではない。An example of the outer heat insulating structure according to the best mode of the present invention will be described with reference to FIGS. In addition, this invention is not limited to the form shown in the Example.

図1に、本考案を適用した構築物の外断熱構造1の断面概略図(a)、(b)及び、斜視図(c)を示す。本考案の外断熱構造1の最も単純な構造については、図1(a)に示すように、外断熱構造1は表面層2と保温板3より形成されている。FIG. 1 shows a schematic cross-sectional view (a), (b) and a perspective view (c) of an outer heat insulating structure 1 of a structure to which the present invention is applied. As for the simplest structure of the outer heat insulating structure 1 of the present invention, the outer heat insulating structure 1 is formed of a surface layer 2 and a heat insulating plate 3 as shown in FIG.

表面層2は毛細管連続構造を有した多孔性材料より形成されており、保温板3を日射より保護する機能の他に、本考案の要である保水機能、及び、表面層2内における揚水機能を有している。揚水機能とは、表面層2に保水された水が、表面層2の底部に滞留することなく、常に毛細管連続性により表面層2の底部側から、蒸散が行われる外表面側に供給される機能を言う。降雨や散水・給水によって表面層2には水が保水され、夏季晴天時などには保水された水が蒸散し始め、同時に毛細管連続構造により表面層2外表面に水が揚水されて供給される。水の気化熱によって表面層2付近の温度は著しく低下するため、日射熱を積極的に除去することが可能となる。The surface layer 2 is formed of a porous material having a continuous capillary structure. In addition to the function of protecting the heat insulating plate 3 from solar radiation, the water retention function that is essential to the present invention and the water pumping function in the surface layer 2 have. With the pumping function, water retained in the surface layer 2 is always supplied from the bottom side of the surface layer 2 to the outer surface side where transpiration is performed by capillary continuity without staying at the bottom of the surface layer 2. Say function. Water is retained in the surface layer 2 due to rainfall, watering and water supply, and the retained water begins to evaporate during sunny weather, and at the same time, water is pumped and supplied to the outer surface of the surface layer 2 by a continuous capillary structure. . Since the temperature in the vicinity of the surface layer 2 is significantly lowered by the heat of vaporization of water, it is possible to positively remove solar heat.

毛細管連続性とは、表面層2下面より上面まで水を拡散させ、水の気化を促進するための毛細管の連続性、並びに、平面方向への水の拡散を毛細管現象により促進し続けるための毛細管の連続性のことである。また、毛細管連続性を有した表面層2の構造を毛細管連続構造という。毛細管連続構造を形成する多孔性材料については、次のような方法によって容易に確認・選定を行うことができる。すなわち、巾50mm、厚さ10mm、長さ300mm程度の多孔性材料を、バットに水を200mL程度張って、材料の一端10mmをバット内に浸漬させる。3時間後に多孔性骨材の保水湿潤上面とバット内の水面の距離(揚水高さ)を測定する。多孔性材料の色によっては、湿潤すなわち毛細管連続構造による揚水した上面が確認しづらいことがある。このような場合は界面活性能力の低い染料を適度に水中に溶解させておくことで、より明確な測定が可能である。例えば、表面層2の厚さを200mmとした場合においては、材料形状、成型時のばらつき、揚水速度のばらつきを考慮して、安全率を1.5倍とする。従って、揚水高さが300mmを超える多孔性骨材が望ましい。例えば、珪藻土板の場合には、300mm以上の揚水高さを有しており、表面層2の材料としては最も適した材料の一つである。その他、パーライト、連続発泡火山砂礫(軽石)、シラス、ゼオライト、バーミキュライト、人工ゼオライト、素焼または陶器、瓦等の粉砕品を材料として用い、板状化したり、素焼板や、有機質または無機質の分解を利用して過熱発泡させたセラミック板、珪藻土板や天然多孔質保水性板、高密度グラスウール板、高密度ロックウール板等の多孔性板などを保温板3と張り合わせてもよい。粘土、フライアッシュなどの微紛や、溶融ガラスや水ガラスなどを微細発泡させて固化したものであってもよい。Capillary continuity is the continuity of the capillary for diffusing water from the lower surface to the upper surface of the surface layer 2 and promoting the vaporization of water, and the capillary for continuing to promote the diffusion of water in the plane direction by the capillary phenomenon. It is the continuity of. The structure of the surface layer 2 having capillary continuity is referred to as a capillary continuous structure. The porous material forming the continuous capillary structure can be easily confirmed and selected by the following method. That is, a porous material having a width of about 50 mm, a thickness of about 10 mm, and a length of about 300 mm is filled with about 200 mL of water on a bat, and one end of the material is immersed in the bat. After 3 hours, the distance (pumping height) between the water retaining wet top surface of the porous aggregate and the water surface in the bat is measured. Depending on the color of the porous material, it may be difficult to confirm the wetted or pumped upper surface due to the continuous capillary structure. In such a case, a clearer measurement can be performed by appropriately dissolving a dye having low surface activity ability in water. For example, when the thickness of the surface layer 2 is 200 mm, the safety factor is set to 1.5 times in consideration of variations in material shape, molding, and pumping speed. Therefore, a porous aggregate having a pumping height exceeding 300 mm is desirable. For example, a diatomaceous earth plate has a pumping height of 300 mm or more, and is one of the most suitable materials for the surface layer 2. Other pulverized products such as perlite, continuous foamed volcanic gravel (pumice), shirasu, zeolite, vermiculite, artificial zeolite, unglazed or earthenware, roof tiles, etc. A ceramic plate, a diatomaceous earth plate, a natural porous water-retaining plate, a high-density glass wool plate, a high-density rock wool plate, or other porous plate that has been superheated and foamed using the heat-insulating plate 3 may be bonded together. Fine powder such as clay and fly ash, or molten glass or water glass may be finely foamed and solidified.

均一な組成から成る毛細管連続・保水構造体は、例えば、次のような方法で作成することができる。即ち、保温板3上に化学発泡性物質を含む無機組成物や、多孔性フィラーとセメント、水ガラス、マグネシア等の混合物や、不燃性のフェノールフォーム形成組成物を、保温板3上にキャスティング、または、吹付けした後、一定厚さに成型するか、型枠内にセットした保温板3上に流し込み圧縮して厚みを整えるかの方法により得られる。多孔性フィラーとは、珪藻土、パーライト、シラス、ゼオライト、バーミキュライト、人工ゼオライトなどの微小な連続気孔または空隙を有する材料をさす。いずれにしても、表面層2の外表面部分は連続した毛細管の端部が開口した状態であることが必須で、皮膜状に覆われていると気化が阻害され、十分な冷却機能が果たせない。また、表面層2は不燃性の材料であることが望ましい。不燃性とは、建築基準法に規定される屋根・壁に関する不燃材料試験・飛び火試験・耐火試験等に適合することを意味する。保温板3は、有機発泡体、即ち、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェノール等の発泡板か、ALC、気泡コンクリート板等の無機系多孔質保温板3が用いられる。いずれにおいても、独立気泡を有し、発泡倍率が高く、気泡径が小さい方が断熱性能は高い。独立気泡型の保温板とは、高度な断熱性を確保し、且つ、湿度や浸水による断熱性能の低下が少ないもので、且つ、施工時における取扱い上、及び、軽歩行に耐える圧縮強度、及び、曲げ強度を有するもので、独立気泡を有するガラス発泡板、セラミック発泡板、ALC板、などの無機断熱板、発泡ポリエチレン、発泡ポリプロピレン、発泡ポリウレタン、発泡ユリア樹脂、発泡合成ゴム、発泡ポリ塩化ビニル、発泡ポリフェノール、発泡ポリスチレンなどやこれらに充填材、補強材などを混入した樹脂断熱板などを用いることができる。本考案による外断熱構造1に関しては、表面層2と保温板3を一体化した形態にすると、表面層2は表面層2単独の場合に比して低い強度でも実用に耐える軽歩行強度以上の強度を確保できるというメリットがある。A capillary continuous / water retaining structure having a uniform composition can be produced, for example, by the following method. That is, an inorganic composition containing a chemical foaming substance on the heat insulating plate 3, a mixture of a porous filler and cement, water glass, magnesia, or a non-flammable phenol foam forming composition is cast on the heat insulating plate 3. Or after spraying, it is obtained by the method of shaping | molding to fixed thickness, or pouring on the heat insulating board 3 set in the formwork, and compressing and adjusting the thickness. The porous filler refers to a material having minute continuous pores or voids such as diatomaceous earth, perlite, shirasu, zeolite, vermiculite, artificial zeolite and the like. In any case, it is essential that the outer surface portion of the surface layer 2 is in a state where the ends of continuous capillaries are open, and if it is covered with a film, vaporization is inhibited and a sufficient cooling function cannot be achieved. . The surface layer 2 is preferably a non-flammable material. Non-flammability means conforming to the non-flammable material test, flying fire test, fire resistance test, etc. for roofs and walls stipulated in the Building Standard Law. As the heat insulating plate 3, an organic foam, that is, a foamed plate made of polystyrene, polyethylene, polypropylene, polyphenol or the like, or an inorganic porous heat insulating plate 3 such as ALC or cellular concrete plate is used. In any case, the heat insulation performance is higher when the cell has closed cells, the expansion ratio is higher, and the bubble diameter is smaller. The closed-cell type heat insulating plate ensures high heat insulation and has little deterioration in heat insulation performance due to humidity and water immersion. Insulating insulation plates such as glass foam plates, ceramic foam plates, ALC plates, etc. that have bending strength, foamed polyethylene, foamed polypropylene, foamed polyurethane, foamed urea resin, foamed synthetic rubber, foamed polyvinyl chloride Further, it is possible to use foamed polyphenol, foamed polystyrene or the like, or a resin heat insulating board in which a filler, a reinforcing material or the like is mixed. With regard to the outer heat insulating structure 1 according to the present invention, when the surface layer 2 and the heat insulating plate 3 are integrated, the surface layer 2 has a light walking strength that is practical enough to withstand practical use even at a lower strength than the surface layer 2 alone. There is a merit that strength can be secured.

また、板状体、即ち、概ね600℃以上の高温で融解発泡させた毛細管連続・保水構造体や、無機発泡毛細管連続保水構造体板や、多孔質フィラー及び強化用フィラーを用いて固化させた毛細管連続保水構造体や、天然の毛細管連続性保水構造を有する板状体等を、保温板3と張り合わせる方法では、表面層2の厚さが15mm以上の場合、接着剤や樹脂モルタル等の接着層6により貼り合わせを行う前に、板状体に後述する通水部を形成しておくことが望ましい。Moreover, it was solidified using a plate-like body, that is, a capillary continuous / water retaining structure melted and foamed at a high temperature of approximately 600 ° C. or higher, an inorganic foamed capillary continuous water retaining structure board, a porous filler, and a reinforcing filler. In the method of laminating a capillary continuous water retaining structure or a plate-like body having a natural capillary continuous water retaining structure with the heat insulating plate 3, when the thickness of the surface layer 2 is 15 mm or more, adhesive, resin mortar, etc. Before bonding with the adhesive layer 6, it is desirable to form a water passage portion to be described later on the plate-like body.

外断熱構造1の通水部に関しては、図1(b)および(c)のように表面層2の下に通水溝4を溝加工して接着層6で保温板3と張り合わせることによって形成せしめることが可能である。通水溝4または通水体5は、水上から水下方向に水を流下させ、その周辺の毛細管連続性を有する表面層2に保水せしめるためのものであり、水上から水下に向かって、直線的、または、蛇行して設けられる。通水溝4に十分な水を供給することにより、表面層2中の水は保温板3に接する側から、外表面に向けて流れ、表面層2の砂塵等による目詰まりを防止、或いは、洗浄除去することもできる。通水溝4の形状に関しては、図2(a)乃至(c)のように、各種形状が考えられる。また、通水溝4は図3(a)乃至(c)のように、保温板3の上に通水溝4を溝加工して、接着層6で保温板3と張り合わせることによって形成せしめることが可能である。通水溝4によって、水は直ちに外断熱構造1の水の流下方向(図1の矢印方向)に渡ってほぼ一様に供給される。通水溝の数が多いと、水の流下方向(図1の矢印方向)と垂直な方向にも迅速に保水することが可能である。また、冬季において表面層2内の水が凍結膨張した際、通水溝4によって水の逃げ道が確保されるため、表面層2の凍結融解を防ぐことが可能である。さらに、通水部には、通水溝4以外にも、図4(a)乃至(c)に示すように、通水体5を施してもよい。この場合、保温板3上に通水体5を置き、表面層2を形成することによって外断熱構造1を作成する。通水体5は、例えば、ガラス繊維を寄り合わせた棒状体、ジンタードグラスなどの連続気泡体、有孔パイプなどを用いることができる。これらを用いることにより、通水速度を抑制して効率よく表面層2に水を供給せしめることが可能となる。また、通水体5に澱粉などの水溶性筒状体などを用いると、通水体5の溶出後に通水溝4を形成せしめることも可能である。外断熱構造1を屋根に施す場合には、通水部に関しては図5に示すように表面層2の上面に通水溝4を施してもよい。この場合、水の気化面積が増大するというメリットがある。通水部はなくても表面を流下させることもできるが、この場合、わずかな傾斜や厚みムラのため、必ずしも全体に均一に給水ができない。したがって、好ましくは、図2乃至図5に示すように、表面層の表面または内部または下部に通水可能な連続溝構造があることが望ましい。With respect to the water passage portion of the outer heat insulating structure 1, as shown in FIGS. 1B and 1C, the water passage groove 4 is formed under the surface layer 2 and bonded to the heat insulating plate 3 with the adhesive layer 6. It can be formed. The water flow groove 4 or the water flow body 5 is for allowing water to flow down from above the water and keeping it in the surface layer 2 having capillary continuity around the water, and is linear from the water toward the bottom. Or meandering. By supplying sufficient water to the water flow groove 4, the water in the surface layer 2 flows from the side in contact with the heat insulating plate 3 toward the outer surface, preventing clogging of the surface layer 2 due to dust or the like, or It can also be removed by washing. Regarding the shape of the water flow groove 4, various shapes are conceivable as shown in FIGS. 2 (a) to 2 (c). Further, as shown in FIGS. 3 (a) to 3 (c), the water flow groove 4 is formed by forming the water flow groove 4 on the heat insulating plate 3 and bonding the heat conductive groove 4 to the heat insulating plate 3 with the adhesive layer 6. It is possible. By the water flow groove 4, water is immediately supplied almost uniformly in the flow direction of the water in the outer heat insulating structure 1 (arrow direction in FIG. 1). When the number of water passage grooves is large, it is possible to quickly retain water in a direction perpendicular to the water flow direction (arrow direction in FIG. 1). In addition, when the water in the surface layer 2 freezes and expands in winter, a water escape path is secured by the water flow grooves 4, so that the surface layer 2 can be prevented from being frozen and thawed. Furthermore, you may give the water flow body 5 to the water flow part other than the water flow groove 4, as shown to Fig.4 (a) thru | or (c). In this case, the outer heat insulating structure 1 is created by placing the water flow body 5 on the heat insulating plate 3 and forming the surface layer 2. As the water flow body 5, for example, a rod-shaped body in which glass fibers are brought together, an open-cell body such as gintard glass, a perforated pipe, or the like can be used. By using these, it is possible to efficiently supply water to the surface layer 2 while suppressing the water flow rate. In addition, when a water-soluble cylindrical body such as starch is used for the water flow body 5, the water flow groove 4 can be formed after the water flow body 5 is eluted. When the outer heat insulating structure 1 is applied to the roof, the water flow groove 4 may be provided on the upper surface of the surface layer 2 as shown in FIG. In this case, there is an advantage that the water vaporization area increases. Even if there is no water flow portion, the surface can be allowed to flow down, but in this case, due to slight inclination and uneven thickness, water cannot be supplied uniformly throughout. Therefore, preferably, as shown in FIGS. 2 to 5, it is desirable that there is a continuous groove structure capable of passing water on the surface, inside, or lower part of the surface layer.

本考案のごとく、均一な組成物による毛細管連続・保水構造を有した表面材は、多くの場合、一部への衝撃荷重により亀裂が拡大し、破壊しやすかったり、耐凍結融解性能が低いなどの問題があった。このため、考案者らは鋭意研究の結果、次の方法によって解決可能なことも見出した。例えば、均一な組成物を、例えば、800℃以上の高温で溶解発泡させる方法、ガラス繊維・ウイスカー等の強化繊維を混合して補強する方法、細状体を成型時に積層する方法等によって解決は可能である。As in the present invention, a surface material having a continuous capillary structure and a water retention structure with a uniform composition often has cracks due to impact load on some parts, is easily broken, and has low freeze-thaw resistance. There was a problem. For this reason, as a result of diligent research, the inventors have found that the problem can be solved by the following method. For example, the solution can be solved by, for example, dissolving and foaming a uniform composition at a high temperature of 800 ° C. or higher, mixing and reinforcing glass fibers / whiskers and other reinforcing fibers, and laminating thin bodies at the time of molding. Is possible.

表面層2の保水率に関しては、表面層2の空隙率によって決定され、毛細管構造部の空隙のみならず、非毛細管構造の空隙によっても保水率を向上せしめることが可能である。しかしながら、保水率が低いと、気化による冷却が短時間で終わり、間欠給水の制御が頻繁となり、ポンプや電磁弁などの故障に通じやすくなる。また、多くの場合、毛細管連続性が極端に低下し、更には、保水量を確保するために外断熱構造1の表面層2を厚くする必要があるため、結果として外断熱構造1の重量が嵩んでしまう。また、保水率が高すぎると表面層2の強度が極端に低下する。従って、保水率は体積割合で20%乃至85%である必要がある。このときの表面層2の乾燥時比重は、材料によっても異なるが、概ね0.2乃至2.0となる。The water retention rate of the surface layer 2 is determined by the porosity of the surface layer 2, and the water retention rate can be improved not only by the gap of the capillary structure part but also by the gap of the non-capillary structure. However, when the water retention rate is low, cooling due to vaporization is completed in a short time, intermittent water supply control is frequent, and failure of pumps and solenoid valves is likely to occur. Further, in many cases, the capillary continuity is extremely lowered, and furthermore, it is necessary to thicken the surface layer 2 of the outer heat insulating structure 1 in order to secure a water retention amount. As a result, the weight of the outer heat insulating structure 1 is increased. It becomes bulky. Moreover, when the water retention rate is too high, the strength of the surface layer 2 is extremely lowered. Accordingly, the water retention rate needs to be 20% to 85% in volume ratio. The specific gravity during drying of the surface layer 2 at this time is approximately 0.2 to 2.0, although it varies depending on the material.

本考案による外断熱構造1に関しては、望ましくは厚さ2mm乃至200mmの表面層2を有するものが良い。表面層2を薄くするほど強度は低下してしまい、2mm以下では軽歩行が困難になると共に、外部よりの炎に対する防火性能が低下する。さらに、表面層2を日射が通過してしまい保温板3を保護することが難しくなる。また、表面層2に給水する際、間欠的に給水することが省エネルギー面および給水ポンプの故障軽減にもなることから、表面層2の保水力は0.4L/m乃至160L/mが必要となり、厚さは2mm乃至200mmが適切である。表面層2の厚さは200mm以上あっても良いが、含水時質量が560kg/m以下であることが、一般的建築物の場合望ましい。また、200mmを超えると、外断熱構造1の乾燥時重量が400kg/mを超えてしまうため、構築物の耐荷重上施工が困難となってしまう。The outer heat insulating structure 1 according to the present invention preferably has a surface layer 2 having a thickness of 2 mm to 200 mm. The thinner the surface layer 2 is, the lower the strength is. If the thickness is 2 mm or less, it is difficult to walk lightly, and the fire-proof performance against external flames is reduced. Furthermore, the solar radiation passes through the surface layer 2 and it is difficult to protect the heat insulating plate 3. Further, when the water in the surface layer 2, to intermittently feed water since it also becomes the failure relief of energy conservation surface and the feed water pump, water holding capacity of the surface layer 2 is 0.4 L / m 2 to 160L / m 2 A thickness of 2 to 200 mm is appropriate. Although the thickness of the surface layer 2 may be 200 mm or more, it is desirable in the case of a general building that the moisture content is 560 kg / m 2 or less. Moreover, since the weight at the time of the drying of the outer heat insulation structure 1 will exceed 400 kg / m < 2 > when it exceeds 200 mm, construction will be difficult on the load resistance of a structure.

表面層2内に蓄積された水が表面層2内を移動して、常に表面層2の外表面、すなわち、水の気化する面に揚水・供給されるためには、表面層2が毛細管連続構造を有していることが必要となる。この際、毛細管平均径が大きすぎると、表面層の下面から上面への水の移動、すなわち、揚水ができないか、表面より気化する水の速度に応じた揚水ができなくなり、毛細管内の水が不連続(毛細管連続性切断)となり、水の気化が満足にできなくなる。また、毛細管径が小さすぎると、水の表面張力によって水の毛細管への浸入が阻害されてしまう。従って、毛細管平均径は0.5乃至500μmであることが望ましい。但し、本考案においては、平均毛細管径が0.5以下、及び、500μm以上の部分が皆無であることを意味せず、大部分の毛細管平均径が0.5乃至500μmの範囲にあって、特に500μm以上の部分があっても、本考案の目的・方法である毛細管連続性による気化の促進効果が保たれ、概ね1.5mm/hrの毛細管による水の移送・揚水が起きればよい。また、毛細管は表面層の下面から上面への移動のみならず、水平方向や、斜め方向にも移動可能なようにして、前面が均一に濡れ、かつ、複数の揚水経路が確保されている必要がある。In order for the water accumulated in the surface layer 2 to move within the surface layer 2 and be pumped and supplied to the outer surface of the surface layer 2, that is, the surface where water is vaporized, the surface layer 2 is continuously connected to the capillary. It is necessary to have a structure. At this time, if the capillary average diameter is too large, the movement of water from the lower surface to the upper surface of the surface layer, that is, the water cannot be pumped or cannot be pumped according to the speed of the water vaporized from the surface, and the water in the capillary tube It becomes discontinuous (capillary continuous cutting) and water vaporization is not satisfactory. On the other hand, if the capillary diameter is too small, the surface tension of water prevents the water from entering the capillary. Therefore, the average capillary diameter is preferably 0.5 to 500 μm. However, in the present invention, it does not mean that the average capillary diameter is 0.5 or less and that there is no portion of 500 μm or more, and most capillary average diameters are in the range of 0.5 to 500 μm, In particular, even if there is a portion of 500 μm or more, the effect of promoting vaporization by capillary continuity, which is the object and method of the present invention, is maintained, and water transfer / pumping by a capillary of approximately 1.5 mm / hr should occur. In addition, the capillary tube must be able to move not only from the lower surface to the upper surface of the surface layer, but also in the horizontal and diagonal directions, so that the front surface is evenly wet and multiple pumping paths must be secured. There is.

以上説明したように、請求項1乃至請求項5に記載された考案は、構築物の空調エネルギー削減、および、構築物の熱ストレスからの保護を目的とした構築物屋根面、壁面への設置はもとより、ヒートアイランド対策を目的とした軽歩行を行う保水性舗道などに適用することも可能である。As described above, the invention described in claims 1 to 5 is not only installed on the roof surface and wall surface of the building for the purpose of reducing the air conditioning energy of the building and protecting the building from thermal stress. It can also be applied to water-retaining pavements that perform light walks for the purpose of heat island countermeasures.

1…外断熱構造 2…表面層 3…保温板 4…通水溝 5…通水体 6…接着層DESCRIPTION OF SYMBOLS 1 ... Outer heat insulation structure 2 ... Surface layer 3 ... Thermal insulation board 4 ... Water flow groove 5 ... Water flow body 6 ... Adhesive layer

Claims (3)

構築物の屋根面や壁面に設置される構築物の外断熱構造であって、その外面側に、毛細管連続構造を有した不燃性の表面層と、独立気泡型の保温板を一体化し、前記表面層の厚さが2mm乃至200mm、保水率が体積割合で20%乃至85%、乾燥時の比重が0.2乃至2.0であることを特徴とし、
前記表面層の、平均毛細管径が0.5乃至500μmであることを特徴とする、構築物の外断熱構造。
An outer heat insulating structure of a structure installed on a roof surface or a wall surface of the structure, and a nonflammable surface layer having a capillary continuous structure and a closed cell type heat insulating plate are integrated on the outer surface side, and the surface layer The thickness is 2 mm to 200 mm, the water retention is 20% to 85% by volume, and the specific gravity during drying is 0.2 to 2.0,
An outer heat insulating structure of a structure, wherein the surface layer has an average capillary diameter of 0.5 to 500 μm.
前記外断熱構造の、前記表面層の一部に、通水溝を有することを特徴とする、請求項1に記載の構築物の外断熱構造。The outer heat insulating structure for a structure according to claim 1, wherein the outer heat insulating structure has a water passage groove in a part of the surface layer. 前記外断熱構造の、前記保温板の一部に、通水体を有することを特徴とする、請求項1又は2に記載の構築物の外断熱構造。The outer heat insulating structure for a structure according to claim 1, wherein a water passage is provided in a part of the heat insulating plate of the outer heat insulating structure.
JP2015001958U 2010-04-11 2015-03-31 External insulation structure of the structure Expired - Lifetime JP3198252U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001958U JP3198252U (en) 2010-04-11 2015-03-31 External insulation structure of the structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010104426 2010-04-11
JP2010104426 2010-04-11
JP2015001958U JP3198252U (en) 2010-04-11 2015-03-31 External insulation structure of the structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011100113A Continuation JP2011236732A (en) 2010-04-11 2011-04-10 External heat insulation structure of building

Publications (1)

Publication Number Publication Date
JP3198252U true JP3198252U (en) 2015-06-25

Family

ID=45324996

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011100113A Pending JP2011236732A (en) 2010-04-11 2011-04-10 External heat insulation structure of building
JP2015001958U Expired - Lifetime JP3198252U (en) 2010-04-11 2015-03-31 External insulation structure of the structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011100113A Pending JP2011236732A (en) 2010-04-11 2011-04-10 External heat insulation structure of building

Country Status (1)

Country Link
JP (2) JP2011236732A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758849B2 (en) * 2012-06-15 2015-08-05 ミサワホーム株式会社 Exterior member and exterior structure
JP6059131B2 (en) * 2013-12-25 2017-01-11 ミサワホーム株式会社 Exterior structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208607A (en) * 2007-02-26 2008-09-11 Nippon Naturock Kk Siding utilizing porous natural stone and siding construction method
JP2009300050A (en) * 2008-06-17 2009-12-24 Morisho Techno:Kk Cold radiation panel
US8524359B2 (en) * 2008-08-29 2013-09-03 Kaisui Chemical Industrial Co., Ltd. Exterior heat insulation panel

Also Published As

Publication number Publication date
JP2011236732A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5298306B2 (en) Outside insulation panel
Meng et al. Preparation and thermal performance of phase change material (PCM) foamed cement used for the roof
ES2670021T3 (en) Heat insulating plate
CN107313573B (en) Quick-heating energy-saving wet floor heating structure and construction method thereof
ES2298056B1 (en) ARGAMASA, THAT INCLUDES MICROCAPSULES OF MATERIALS WITH PHASE CHANGES (PCM), ITS PROCEDURE OF OBTAINING AND ITS USE IN THE INTERIOR COATING OF CONSTRUCTION SYSTEMS.
JP3198252U (en) External insulation structure of the structure
JP2007197914A (en) Coolant and cooling method for building
CN201294786Y (en) Novel heat-storage insulation gypsum composite material sunlight greenhouse
CN110847415A (en) Building enclosure wall capable of playing energy-saving role all year round
Kumar et al. Advances in the building materials for thermal comfort and energy saving
JP2004190336A (en) Moisture evaporation type cooling roof and wall body structure
JP2006214221A (en) Road pavement material having water-retentivity
JP2007077660A (en) External wall material and laying material containing diatom shale, building using the same, and functional solid containing diatom shale and holding functional substance inside
CN203361381U (en) Hard foam polyurethane composite board with embedded microencapsulated phase change materials
CN103161265B (en) Water storage roof capable of supporting person
CN216688867U (en) Water permeable water retaining brick for paving sidewalk
CN204626675U (en) Refractory casting working lining
JP2007132182A (en) Paving method and paving material for cooling and heat-retaining
CN111152517B (en) Roof with cooling and heat preservation functions
KR101103145B1 (en) Block having porous material and energy-save system using the same
CN202430847U (en) Foamed ceramic wall insulation board
JP3588632B2 (en) Asphalt pavement surface and pavement structure
JP5351374B2 (en) Exterior finishing structure of building and its construction method
CN218233017U (en) Water-retaining and cooling type double-layer water-retaining and draining pavement structure
CN201292617Y (en) Vaporizing heat insulating roof overhead plate

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3198252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term