JP3195816B2 - Method and apparatus for measuring sample vapor pressure - Google Patents

Method and apparatus for measuring sample vapor pressure

Info

Publication number
JP3195816B2
JP3195816B2 JP01587192A JP1587192A JP3195816B2 JP 3195816 B2 JP3195816 B2 JP 3195816B2 JP 01587192 A JP01587192 A JP 01587192A JP 1587192 A JP1587192 A JP 1587192A JP 3195816 B2 JP3195816 B2 JP 3195816B2
Authority
JP
Japan
Prior art keywords
sample
temperature
measuring
vapor pressure
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01587192A
Other languages
Japanese (ja)
Other versions
JPH05264431A (en
Inventor
善和 高橋
明一 前園
Original Assignee
日本真空技術株式会社
真空理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社, 真空理工株式会社 filed Critical 日本真空技術株式会社
Priority to JP01587192A priority Critical patent/JP3195816B2/en
Publication of JPH05264431A publication Critical patent/JPH05264431A/en
Application granted granted Critical
Publication of JP3195816B2 publication Critical patent/JP3195816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空雰囲気下での微分
熱重量測定結果に基づき試料の蒸気圧対温度の関係を求
めるため試料の蒸気圧を蒸気圧約10-4Torr〜数十Torr、
温度-150℃〜1500℃の範囲で測定する方法及び装置に関
するものである。
The present invention relates to the vapor pressure of the sample vapor pressure of about 10 -4 Torr to several tens Torr for determining the relationship between the vapor pressure versus temperature of the sample based on the differential thermogravimetric measurement under a vacuum atmosphere,
The present invention relates to a method and an apparatus for measuring a temperature in a range of -150 ° C to 1500 ° C.

【0002】[0002]

【従来の技術】従来の蒸気圧測定法としては、一定の温
度の下で、(1)直接、蒸気圧を測定する方法、(2)
ガス気流中の試料蒸気の流量を測定する方法、(3)試
料の蒸発による重量減少の速度を測定する方法等があ
る。これらの方法はいずれも、一定温度の下において測
定の行われるいわゆる定温測定法である。
2. Description of the Related Art Conventional methods for measuring vapor pressure include: (1) a method for directly measuring the vapor pressure at a constant temperature;
There are a method of measuring the flow rate of the sample vapor in the gas stream, and (3) a method of measuring the rate of weight loss due to evaporation of the sample. Each of these methods is a so-called constant temperature measurement method in which measurement is performed at a constant temperature.

【0003】[0003]

【発明が解決しようとする課題】上記のような定温測定
法では、定温測定法は精密な測定が可能であるが、測定
に要する時間が長く簡便でないという問題点がある。と
ころで、定温測定法に対比されるものとして、定速昇温
測定法があるが、定速昇温測定法は定温測定法に比べて
簡便ではあるが、測定精度が高くないという問題があ
る。そこで、本発明は、このような従来技術の問題点を
解決して簡便でしかも正確に測定できる試料の蒸気圧測
定方法及び装置を提供することを目的としている。
In the above-mentioned constant temperature measurement method, the constant temperature measurement method can perform precise measurement, but has a problem that the time required for the measurement is long and not simple. By the way, there is a constant-rate temperature rise measurement method as compared with the constant temperature measurement method. The constant-rate temperature rise measurement method is simpler than the constant temperature measurement method, but has a problem that the measurement accuracy is not high. Accordingly, it is an object of the present invention to provide a method and an apparatus for measuring the vapor pressure of a sample, which can solve the problems of the prior art and can simply and accurately measure the sample.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の第1の発明によれば、一定圧力に保持し
た真空槽内で、試料温度を直接測定し、測定した温度を
検出端として、試料を一定昇温速度で昇温させ、その際
に生ずる試料の蒸発による重量減少量を、試料温度と共
に測定することを特徴とする試料の蒸気圧測定方法が提
供される。また、本発明の第2の発明によれば、一定圧
力に保持した真空槽内で、試料温度を直接測定し、測定
した温度を検出端として、試料を一定昇温速度で昇温さ
せてその際に生ずる試料の蒸発による単位時間当たりの
重量減少量を、試料温度と共に測定することを特徴とす
る試料の蒸気圧測定方法が提供される。さらに、本発明
の第3の発明によれば、一定圧力に保持した真空槽内
で、試料温度を直接測定し、測定した温度を検出端とし
て、試料を一定昇温速度で昇温させ、その際に生ずる試
料の蒸発による重量減少量及び単位時間当たりの重量減
少量を、試料温度と共に測定し、これらの測定データに
基づき試料温度の絶対温度に対する蒸気圧の変化をを求
めることを特徴とする試料の蒸気圧測定方法が提供され
る。さらにまた、上記各方法を実施する装置として、本
発明の第4の発明では、所定の真空度に保たれる真空槽
内に収容された試料容器と、この試料容器に接触して設
けられ、試料容器内に入れられた試料の温度を測定する
熱電対と、熱電対及び試料容器を支持する支持体と、真
空槽内で支持体に接続され、試料の重量を測定する重量
測定装置と、真空槽外に配置された赤外線加熱炉と、赤
外線加熱炉の動作を制御して試料容器の温度を定速で昇
温させる温度制御装置と、蒸発した試料をトラップする
装置と、熱電対及び重量測定装置からの出力に基づき重
量変化率対温度を記録する装置とを有することを特徴と
する蒸気圧測定装置が提供される。
According to the first aspect of the present invention, a sample temperature is directly measured in a vacuum chamber maintained at a constant pressure, and the measured temperature is measured. As a detection end, there is provided a method for measuring the vapor pressure of a sample, wherein the sample is heated at a constant heating rate, and the weight loss caused by evaporation of the sample at that time is measured together with the sample temperature. Further, according to the second aspect of the present invention, the sample temperature is directly measured in a vacuum chamber maintained at a constant pressure, and the measured temperature is used as a detection end to raise the temperature of the sample at a constant heating rate. There is provided a method for measuring the vapor pressure of a sample, characterized in that the amount of weight loss per unit time due to evaporation of the sample caused at the time is measured together with the temperature of the sample. Further, according to the third aspect of the present invention, the sample temperature is directly measured in a vacuum chamber maintained at a constant pressure, and the measured temperature is used as a detection end to raise the temperature of the sample at a constant rate. The amount of weight loss due to evaporation of the sample and the amount of weight loss per unit time are measured together with the sample temperature, and a change in the vapor pressure of the sample temperature with respect to the absolute temperature is obtained based on the measured data. A method for measuring the vapor pressure of a sample is provided. Still further, as a device for performing each of the above methods, in the fourth invention of the present invention, a sample container housed in a vacuum tank maintained at a predetermined degree of vacuum, and provided in contact with the sample container, A thermocouple that measures the temperature of the sample placed in the sample container, a support that supports the thermocouple and the sample container, and a weight measuring device that is connected to the support in a vacuum chamber and measures the weight of the sample, An infrared heating furnace placed outside the vacuum chamber, a temperature control device for controlling the operation of the infrared heating furnace to raise the temperature of the sample container at a constant speed, a device for trapping the evaporated sample, a thermocouple and a weight A device for recording the rate of change of weight versus temperature based on the output from the measuring device.

【0005】[0005]

【作用】本発明の各方法においては、試料は温度上昇と
ともにある温度以上で蒸発し始め、重量減少が生じる。
試料の温度上昇速度を一定にし、各温度における試料重
量の減少速度を連続的に測定することにより、試料の温
度対蒸発速度を得ることができる。また、本発明の装置
においては、加熱炉により加熱されて蒸発した試料の一
部は真空排気装置によって吸引され、大部分は途中の低
温の管壁の表面や重量測定装置の部品表面に凝結付着
し、重量測定のノイズ源となるが、蒸発した試料のトラ
ップ機構の働きでこのような凝結付着試料はトラップさ
れ、重量測定に対する影響を防ぐことができる。
In each method of the present invention, the sample starts to evaporate at a certain temperature or higher as the temperature rises, resulting in a weight loss.
By keeping the temperature rise rate of the sample constant and continuously measuring the rate of decrease in sample weight at each temperature, the rate of evaporation of the sample versus temperature can be obtained. Further, in the apparatus of the present invention, a part of the sample heated and evaporated by the heating furnace is sucked by the vacuum evacuation device, and most of the sample is condensed and adhered to the surface of the low-temperature tube wall and the surface of the parts of the weight measuring device. However, the coagulated sample is trapped by the trapping mechanism of the evaporated sample, and the influence on the weight measurement can be prevented.

【0006】[0006]

【実施例】以下本発明の実施例を添付図面について説明
する。図1には本発明の装置の原理を示し、1は真空槽
の一部を成す石英ガラス製保護管であり、その中には、
測定すべき試料の入れられる試料容器2が配置され、こ
の試料容器2の底部下側には試料容器2内の試料の温度
を測定する熱電対3が接触させて設けられ、この熱電対
3は絶縁用アルミナ管4内に収納されており、その一端
は試料容器2を支持し、他端は石英ガラス製保護管1の
下端に連通し、真空槽の他の部分5内に伸び、その中に
収納された天秤機構6の竿の一端に取り付けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the principle of the apparatus of the present invention. Reference numeral 1 denotes a quartz glass protective tube that forms a part of a vacuum chamber.
A sample container 2 in which a sample to be measured is placed is arranged, and a thermocouple 3 for measuring the temperature of the sample in the sample container 2 is provided below the bottom of the sample container 2 in contact therewith. It is housed in an insulating alumina tube 4, one end of which supports the sample container 2, and the other end communicates with the lower end of the quartz glass protective tube 1 and extends into another portion 5 of the vacuum chamber. It is attached to one end of the rod of the balance mechanism 6 housed in the balance.

【0007】天秤機構6には図示したように試料の重量
変化連続的に測定する重量測定回路7及び試料の重量
の時間微分値を連続的に測定する時間微分器8が接続さ
れ、そして重量測定回路7及び時間微分器8の出力はX
Y記録計9に接続され、このXY記録計9は重量変化率
と温度との関係を記録する。
As shown, a weight measuring circuit 7 for continuously measuring a change in weight of the sample and a time differentiator 8 for continuously measuring a time differential value of the weight of the sample are connected to the balance mechanism 6. The outputs of the measuring circuit 7 and the time differentiator 8 are X
The XY recorder 9 is connected to a Y recorder 9 and records the relationship between the weight change rate and the temperature.

【0008】また、真空槽の一部すなわち石英ガラス製
保護管1及び真空槽の他の部分5は真空排気装置を成す
真空ポンプ10に接続され、そして石英ガラス製保護管1
内の下方部分には試料容器1の支持体を成す絶縁用アル
ミナ管4を取り巻いて断面漏斗状の環状の水冷トラップ
11が設けられ、この水冷トラップ11は、試料容器2内の
試料から加熱により蒸発した試料蒸気が石英ガラス製保
護管1の下端に連通した真空槽の他の部分5内に入り込
み、天秤機構6の各部に凝結付着するのを防止する働き
をしている。すなわち、蒸発した試料の一部は真空ポン
プ10へ吸引されるが、大部分は途中の低温の管壁の表面
や下部の天秤機構6の部品表面に凝結付着する。この凝
結付着は重量測定のノイズ源となり、また天秤機構6の
故障原因となる。そのため水冷トラップ11によって凝
結、付着試料をトラップするように構成されている。
A part of the vacuum chamber, that is, the quartz glass protective tube 1 and the other part 5 of the vacuum chamber are connected to a vacuum pump 10 forming an evacuation device.
In the lower part of the inside, an annular water-cooled trap having a funnel cross section surrounding an insulating alumina tube 4 forming a support of the sample container 1 is provided.
The water-cooled trap 11 allows the sample vapor evaporated from the sample in the sample container 2 by heating to enter the other portion 5 of the vacuum tank communicating with the lower end of the quartz glass protective tube 1, and the balance mechanism 6. It has the function of preventing it from condensing and adhering to each part. That is, a part of the evaporated sample is sucked into the vacuum pump 10, but most of the sample is condensed and attached to the surface of the low-temperature tube wall in the middle and the surface of the component of the balance mechanism 6 at the bottom. This cohesion and adhesion becomes a noise source for weight measurement and also causes a failure of the balance mechanism 6. Therefore, the water-cooled trap 11 is configured to trap the coagulated and adhered sample.

【0009】さらに、石英ガラス製保護管1の外周には
内部に収容された試料容器2内の試料を加熱する赤外線
ランプを用いた赤外線加熱炉12が設けられている。この
赤外線加熱炉12はプログラム温度制御装置13によって動
作制御され、すなわちプログラム温度制御装置13は熱電
対3からの出力を受け、熱電対3による試料の測定温度
に応じて赤外線加熱炉12の動作をプログラムし、試料の
温度上昇速度が一定となるように温度制御する。
Further, an infrared heating furnace 12 using an infrared lamp for heating a sample in a sample container 2 housed therein is provided on the outer periphery of the quartz glass protective tube 1. The operation of the infrared heating furnace 12 is controlled by a program temperature control device 13, that is, the program temperature control device 13 receives an output from the thermocouple 3 and controls the operation of the infrared heating furnace 12 according to the measurement temperature of the sample by the thermocouple 3. Program and control the temperature so that the temperature rise rate of the sample becomes constant.

【0010】次に図示装置の動作に関連して本発明の方
法について説明する。石英ガラス製保護管1及び真空槽
の他の部分5の内部は、真空ポンプ10によって排気さ
れ、所定の真空度(例えば、0.3Torr )に保持される。
熱電対3は試料の温度を測定し、その出力は温度制御装
置13に入力され、温度制御装置13は、熱電対3からの試
料の測定温度に応じて、赤外線加熱炉12の動作をプログ
ラムし、例えば、試料を6℃/min(0.1℃/sec)の昇温速
度で昇温するように制御する。こうして試料が昇温され
ると、試料は温度上昇につれてある温度以上で蒸発し始
め、重量減少が生じる。この場合、試料の温度上昇速度
を一定にし、各温度における試料重量の減少速度を連続
的に測定することにより、試料の温度対蒸発速度を得る
ことができる。試料の重量変化△w(mg)は、天秤機構6
及び重量測定回路7により自動的に連続的して測定測定
され、そしてXY記録計9上、横軸に試料温度T
(℃)、縦軸に試料重量変化△wをとり、重量変化曲線
(A曲線とよぶ)が記録され、この記録曲線を図2に示
す。同時に試料の重量の時間微分値を連続的に測定する
時間微分器8には、重量測定回路7の出力が入力され、
△wの時間微分値d(△w)/dt(mg/sec) が連続的に求
められ、XY記録計(11)上、横軸に試料温度、また縦軸
に重量変化時間微分値d(△w)/dt をとり、重量微分
曲線(B曲線とよぶ)が記録され、この記録曲線を図3
に示す。試料の蒸発分子のグラム分子量をMとし、試料
容器2の表面積をA(cm2 )とし、重量微分曲線(B曲
線)の縦軸の値をM・Aで割算すると、縦軸値は単位時
間当たりの分子蒸発速度m(mol/(sec・cm2 ))となり、
この曲線を分子蒸発速度曲線とよび、図4に示した。
Next, the method of the present invention will be described with reference to the operation of the illustrated apparatus. The inside of the quartz glass protective tube 1 and the other portion 5 of the vacuum chamber are evacuated by a vacuum pump 10 and maintained at a predetermined degree of vacuum (for example, 0.3 Torr).
The thermocouple 3 measures the temperature of the sample, and its output is input to a temperature control device 13, which programs the operation of the infrared heating furnace 12 according to the measured temperature of the sample from the thermocouple 3. For example, the temperature of the sample is controlled to be raised at a rate of 6 ° C./min (0.1 ° C./sec). When the sample is heated in this way, the sample starts to evaporate at a certain temperature or higher as the temperature rises, and a weight loss occurs. In this case, by keeping the temperature rising rate of the sample constant and continuously measuring the decreasing rate of the sample weight at each temperature, the evaporation rate of the sample can be obtained. The weight change Δw (mg) of the sample is calculated by the balance mechanism 6
And the weighing circuit 7 automatically and continuously measures and measures the sample temperature T on the XY recorder 9 on the horizontal axis.
(° C.), the weight change curve (referred to as A curve) is recorded with the sample weight change Δw on the vertical axis, and the recorded curve is shown in FIG. At the same time, the output of the weight measuring circuit 7 is input to the time differentiator 8 for continuously measuring the time differential value of the weight of the sample.
The time derivative d (△ w) / dt (mg / sec) of Δw is continuously obtained. On the XY recorder (11), the horizontal axis represents the sample temperature, and the vertical axis represents the weight change time derivative d ( Δw) / dt, and a weight differential curve (referred to as a B curve) was recorded.
Shown in When the gram molecular weight of the evaporated molecules of the sample is M, the surface area of the sample container 2 is A (cm 2 ), and the value of the vertical axis of the weight differential curve (B curve) is divided by MA, the vertical axis value is expressed in units. The molecular evaporation rate per hour is m (mol / (sec · cm 2 )),
This curve is called a molecular evaporation rate curve and is shown in FIG.

【0011】試料の蒸発速度と蒸気圧との間には、ラン
グミュアによって提案された次の式が成り立つ。 m=a・p・[M/2πRT]1/2 (1) ここで、m、a、p、M、R、Tは、それぞれ蒸発速
度、凝結係数、蒸気圧、蒸気の分子量、気体常数、蒸発
表面の絶対温度である。ラングミュアの式により、蒸発
蒸気が自由空間に妨害を受けずに蒸発できる場合にはa
は1にほぼ等しい。従って(1)式は次のように表され
る。 m=5.85×10-2・p・[M/T]1/2 (2) (2)式を蒸気圧pについて書き直すと、 p=17.1・m・[T/M]1/2 (3) 図4の縦軸のmの値を(3)式により蒸気圧pに変換す
ることができる。また図4の横軸の温度、Tを絶対温度
の逆数1/Tで目盛り、縦軸に蒸気圧pの自然対数をと
ると、図5に示すように、ln(p)〜1/T の関係を表す図
が得られる。さらに縦軸を図5と同じくln(p) にし、横
軸に温度Tを目盛ることもできる。その場合には図6に
示すような曲線となる。
The following equation, proposed by Langmuir, holds between the evaporation rate of the sample and the vapor pressure. m = ap · [M / 2πRT] 1/2 (1) where m, a, p, M, R, and T are the evaporation rate, the coagulation coefficient, the vapor pressure, the molecular weight of the vapor, the gas constant, Absolute temperature of the evaporation surface. According to the Langmuir equation, if the vapor can be evaporated without disturbing free space, a
Is approximately equal to 1. Therefore, equation (1) is expressed as follows. m = 5.85 × 10 −2 · p · [M / T] 1/2 (2) When the equation (2) is rewritten for the vapor pressure p, p = 17.1 · m · [T / M] 1/2 (3) The value of m on the vertical axis in FIG. 4 can be converted to the vapor pressure p by equation (3). Also, when the temperature and T on the horizontal axis in FIG. 4 are graduated by the reciprocal 1 / T of the absolute temperature, and the vertical axis is the natural logarithm of the vapor pressure p, as shown in FIG. 5, ln (p) 〜1 / T A diagram representing the relationship is obtained. Further, the vertical axis may be ln (p) as in FIG. 5, and the temperature T may be graduated on the horizontal axis. In that case, a curve as shown in FIG. 6 is obtained.

【0012】このようにして得られる蒸気圧対温度曲線
は、例えば、蒸着重合法で高分子を合成する際の基礎デ
ータを提供するのに応用され得る。その一例を図7及び
図8について説明する。図7は単分子のモノマーAとモ
ノマーBとをベルジャ20中で、蒸着重合する場合の原理
図である。ベルジャ20内には、モノマーAの容器21とモ
ノマーBの容器22とが並べて配置され、これら容器には
それぞれモノマーを加熱するためのヒータ23、24及びモ
ノマーの温度測定、制御用の熱電対25、26が設けられて
いる。またベルジャ20の内部の上方位置にはサブストレ
ート27が配置されている。ベルジャ20内は図示してない
真空排気装置によりある一定の真空度に保持される。こ
の状態でモノマーAとモノマーBをそれぞれヒータ23、
24最適な温度に調節すると、モノマーA,Bは蒸発し、
上部のサブストレート27に、A−Bの高分子物質が形成
される。この技術において、最も重要な点は、ベルジャ
20内の真空度、モノマーAの保持温度、モノマーBの保
持温度である。もしこれらが適当でないと、モノマーA
とモノマーBの蒸気圧が等しくなくなり、その結果モノ
マーAとモノマーBを等量に合成することが不可能とな
る。
The vapor pressure versus temperature curve thus obtained can be applied, for example, to provide basic data for synthesizing a polymer by a vapor deposition polymerization method. One example will be described with reference to FIGS. FIG. 7 is a principle diagram in the case where a monomer A and a monomer B are vapor-deposited and polymerized in a bell jar 20. Inside the bell jar 20, a container 21 for the monomer A and a container 22 for the monomer B are arranged side by side, and these containers have heaters 23 and 24 for heating the monomer, respectively, and a thermocouple 25 for measuring and controlling the temperature of the monomer. , 26 are provided. A substrate 27 is disposed at an upper position inside the bell jar 20. The inside of the bell jar 20 is maintained at a certain degree of vacuum by a vacuum exhaust device (not shown). In this state, the monomer A and the monomer B are supplied to the heater 23, respectively.
24 When adjusted to the optimum temperature, monomers A and B evaporate,
On the upper substrate 27, a high molecular substance AB is formed. The most important point in this technology is
20 are the degree of vacuum, the holding temperature of monomer A, and the holding temperature of monomer B. If these are not appropriate, monomer A
And the vapor pressure of the monomer B become unequal. As a result, it becomes impossible to synthesize the monomer A and the monomer B in equal amounts.

【0013】そこで、本発明を用いてモノマーAとモノ
マーBの蒸気圧対温度曲線を図8にしめすように求める
ことによって、例えば、図8の槽内真空度に相当する圧
力、0.3Torr に対応するモノマーA及びBのそれぞれの
温度TA 、TB が得られる。次に、図7のベルジャ20内
の圧力を0.3Torr にして、そしてモノマーAの保持温度
をTA に、モノマーBの保持温度をTB に制御すれば、
サブストレート27にはA−Bの高分子のフィルムが合成
されることになる。図9には耐熱性高分子として知られ
るポリイミドの蒸着重合に使用する二つのモノマーの蒸
気圧・絶対温度の逆数の曲線で、このデータによりポリ
イミド・フィルムが蒸着重合される。
Therefore, the vapor pressure versus temperature curve of the monomers A and B is obtained by using the present invention as shown in FIG. 8 so that, for example, the pressure corresponding to the degree of vacuum in the tank of 0.3 Torr in FIG. The respective temperatures TA and TB of the monomers A and B are obtained. Next, the pressure in the bell jar 20 of FIG. 7 is set to 0.3 Torr, and the holding temperature of the monomer A is controlled to TA and the holding temperature of the monomer B is controlled to TB.
A polymer film of AB is synthesized on the substrate 27. FIG. 9 shows a curve of the reciprocal of the vapor pressure / absolute temperature of two monomers used for the vapor deposition polymerization of polyimide known as a heat-resistant polymer, and a polyimide film is vapor-deposited and polymerized according to this data.

【0014】[0014]

【発明の効果】以上説明してきたように、本発明の方法
によれば、一定圧力に保持した真空槽内で、試料温度を
直接測定し、測定した温度に基づき、試料を一定昇温速
度で昇温させ、その際に生ずる試料の蒸発による重量減
少量及び(または)単位時間当たりの重量減少量を、試
料温度と共に測定するように構成しているので、試料の
温度対蒸気圧曲線を容易に得ることができ、例えば現在
皆無に等しい多くの有機化合物に関する蒸気圧のデータ
を容易に得ることができる。また、本発明の装置を用い
ることにより、試料の蒸発による凝結、付着の影響なし
に物質、特に有機化合物の蒸気圧・温度の関係曲線を正
確かつ短時間で得ることができ、蒸着重合法の操業のた
めのデータを提供することができる。
As described above, according to the method of the present invention, the sample temperature is directly measured in a vacuum chamber maintained at a constant pressure, and the sample is heated at a constant rate based on the measured temperature. Since the temperature is increased and the weight loss due to evaporation of the sample and / or the weight loss per unit time is measured together with the sample temperature, the temperature versus vapor pressure curve of the sample can be easily calculated. For example, data on vapor pressures for many organic compounds which are equal to none at present can be easily obtained. In addition, by using the apparatus of the present invention, the relationship between the vapor pressure and the temperature of a substance, particularly an organic compound, can be obtained accurately and in a short time without the influence of coagulation and adhesion due to the evaporation of the sample. Data can be provided for operations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による蒸気圧測定装置の構成を示す概
略線図。
FIG. 1 is a schematic diagram showing a configuration of a vapor pressure measuring device according to the present invention.

【図2】 本発明によって測定した試料の重量減量と温
度との関係を示す重量変化曲線。
FIG. 2 is a weight change curve showing a relationship between weight loss and temperature of a sample measured according to the present invention.

【図3】 本発明によって測定した試料の重量変化微分
量と温度との関係を示す重量微分曲線。
FIG. 3 is a weight differential curve showing the relationship between the weight change differential amount of a sample measured according to the present invention and temperature.

【図4】 本発明によって得られた試料の分子蒸発速度
と温度との関係を示す分子蒸発曲線。
FIG. 4 is a molecular evaporation curve showing the relationship between the molecular evaporation rate and temperature of a sample obtained according to the present invention.

【図5】 本発明によって得られた試料の蒸気圧の対数
と絶対温度の逆数との関係を示す曲線。
FIG. 5 is a curve showing the relationship between the logarithm of the vapor pressure of a sample obtained according to the present invention and the reciprocal of the absolute temperature.

【図6】 本発明によって得られた試料の蒸気圧の対数
と絶対温度との関係を示す曲線。
FIG. 6 is a curve showing the relationship between the logarithm of the vapor pressure of a sample obtained according to the present invention and the absolute temperature.

【図7】 本発明をモノマーの蒸着重合法に適用した例
を示す装置の概略線図。
FIG. 7 is a schematic diagram of an apparatus showing an example in which the present invention is applied to a vapor deposition polymerization method of a monomer.

【図8】 図7に示すモノマーの蒸着重合において本発
明を実施することによって得られた二種類のモノマーの
それぞれの蒸気圧・温度特性を示す曲線。
8 is a curve showing vapor pressure / temperature characteristics of two types of monomers obtained by carrying out the present invention in vapor deposition polymerization of the monomers shown in FIG.

【図9】 ポリイミド合成用のモノマー、オキシジアニ
リンとピロメリット酸無水物の蒸気圧・温度特性を示す
曲線。
FIG. 9 is a curve showing vapor pressure / temperature characteristics of oxydianiline and pyromellitic anhydride, monomers for polyimide synthesis.

【符号の説明】[Explanation of symbols]

1:真空槽 2:試料容器 3:熱電対 4:支持体 5:真空槽 6:天秤機構 7:重量測定回路 8:時間微分器 9:XY記録計 10:真空排気装置 11:水冷トラップ 12:赤外線加熱炉 13:プログラム温度制御装置 1: Vacuum tank 2: Sample container 3: Thermocouple 4: Support body 5: Vacuum tank 6: Balance mechanism 7: Weight measurement circuit 8: Time differentiator 9: XY recorder 10: Vacuum exhaust device 11: Water-cooled trap 12: Infrared heating furnace 13: Programmed temperature controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−43187(JP,A) 特開 平4−140640(JP,A) 特開 昭59−54944(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 5/04 G01N 7/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-43187 (JP, A) JP-A-4-140640 (JP, A) JP-A-59-54944 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) G01N 5/04 G01N 7/00 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定圧力に保持した真空槽内で、試料温度
を直接測定し、測定した温度を検出端として、試料を一
定昇温速度で昇温させ、その際に生ずる試料の蒸発によ
る重量減少量を、試料温度と共に測定することを特徴と
する試料の蒸気圧測定方法。
The temperature of a sample is directly measured in a vacuum chamber maintained at a constant pressure, and the measured temperature is used as a detection end to raise the temperature of the sample at a constant rate of heating. A method for measuring the vapor pressure of a sample, comprising measuring the amount of decrease together with the temperature of the sample.
【請求項2】一定圧力に保持した真空槽内で、試料温度
を直接測定し、測定した温度を検出端として、試料を一
定昇温速度で昇温させ、その際に生ずる試料の蒸発によ
る単位時間当たりの重量減少量を、試料温度と共に測定
することを特徴とする試料の蒸気圧測定方法。
2. A unit for measuring a sample temperature directly in a vacuum chamber maintained at a constant pressure, heating the sample at a constant heating rate using the measured temperature as a detection end, and evaporating the sample at that time. A method for measuring the vapor pressure of a sample, comprising measuring the amount of weight loss per hour together with the temperature of the sample.
【請求項3】一定圧力に保持した真空槽内で、試料温度
を直接測定し、測定した温度を検出端として、試料を一
定昇温速度で昇温させ、その際に生ずる試料の蒸発によ
る重量減少量及び単位時間当たりの重量減少量を、試料
温度と共に測定し、これらの測定データに基づき試料温
度の絶対温度に対する蒸気圧の変化をを求めることを特
徴とする試料の蒸気圧測定方法。
3. A sample temperature is directly measured in a vacuum chamber maintained at a constant pressure, and the measured temperature is used as a detection end to raise the temperature of the sample at a constant heating rate. A method for measuring the vapor pressure of a sample, comprising measuring the amount of decrease and the amount of weight loss per unit time together with the sample temperature, and obtaining a change in the vapor pressure of the sample temperature with respect to the absolute temperature based on the measured data.
【請求項4】所定の真空度に保たれる真空槽内に収容さ
れた試料容器と、この試料容器に接触して設けられ、試
料容器内に入れられた試料の温度を測定する熱電対と、
熱電対及び試料容器を支持する支持体と、真空槽内で支
持体に接続され、試料の重量を測定する重量測定装置
と、真空槽外に配置された赤外線加熱炉と、赤外線加熱
炉の動作を制御して試料容器の温度を定速で昇温させる
温度制御装置と、蒸発した試料をトラップする装置と、
熱電対及び重量測定装置からの出力に基づき重量変化率
対温度を記録する装置とを有することを特徴とする蒸気
圧測定装置。
4. A sample container housed in a vacuum chamber maintained at a predetermined degree of vacuum, and a thermocouple provided in contact with the sample container and measuring the temperature of the sample placed in the sample container. ,
A support for supporting the thermocouple and the sample container, a weight measuring device connected to the support in the vacuum chamber to measure the weight of the sample, an infrared heating furnace disposed outside the vacuum chamber, and operation of the infrared heating furnace A temperature control device for controlling the temperature of the sample container at a constant speed by controlling the temperature, and a device for trapping the evaporated sample,
A device for recording the rate of change of weight versus temperature based on the output from the thermocouple and the weight measuring device.
JP01587192A 1992-01-31 1992-01-31 Method and apparatus for measuring sample vapor pressure Expired - Lifetime JP3195816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01587192A JP3195816B2 (en) 1992-01-31 1992-01-31 Method and apparatus for measuring sample vapor pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01587192A JP3195816B2 (en) 1992-01-31 1992-01-31 Method and apparatus for measuring sample vapor pressure

Publications (2)

Publication Number Publication Date
JPH05264431A JPH05264431A (en) 1993-10-12
JP3195816B2 true JP3195816B2 (en) 2001-08-06

Family

ID=11900867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01587192A Expired - Lifetime JP3195816B2 (en) 1992-01-31 1992-01-31 Method and apparatus for measuring sample vapor pressure

Country Status (1)

Country Link
JP (1) JP3195816B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837423B (en) * 2014-03-24 2016-06-15 北京英斯派克科技有限公司 A kind of device simultaneously measuring polymorphic type insoluble matter
CN106640009B (en) * 2015-11-02 2019-06-18 中国石油化工股份有限公司 For simulating the experimental system and experimental method of oil shale in-situ destructive distillation exploitation
CN116183433A (en) * 2023-03-01 2023-05-30 哈尔滨工程大学 Liquid working medium evaporation rate measuring method and device

Also Published As

Publication number Publication date
JPH05264431A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
Grassie et al. The thermal degradation of polyvinyl compounds. I. A new type of molecular still
KR100278052B1 (en) Gravity directing diaphragm Deflection type pressure measuring device
US7416328B2 (en) System and method for a thermogravimetric analyzer having improved dynamic weight baseline
JP2000503407A (en) Differential scanning calorimeter
Alvesteffer et al. Miniaturized thin film thermal vacuum sensor
JP3195816B2 (en) Method and apparatus for measuring sample vapor pressure
JP2024051099A (en) Partial pressure detection device and method
Vollrath et al. Evaluation of heat flux measurement as a new process analytical technology monitoring tool in freeze drying
NL8103262A (en) VIBRATION INSTRUMENT.
JP2002520613A (en) Pressure sensor, pressure measuring device and method for monitoring pressure in a chamber
EP1094344A2 (en) Thin film forming method and apparatus
JP2002122498A (en) Method and device for measuring pressure of inclusion gas
US4304118A (en) Process and equipment for the thermal analysis of materials
US6730351B2 (en) Method and apparatus for forming light absorption film
JPS63238281A (en) Wafer treating device and micromanometer used therefor
JP3319824B2 (en) Membrane weight measurement device
Gouault et al. 3.2 The electromechanical behaviour of a full component (dielectric and Cu/Ni constantan alloy) for thin film strain gauge deposited upon steel-substrate
JPH07180055A (en) Vacuum film forming device
JPH0259645A (en) Method for measuring water content in sample
JPH05281073A (en) Pirani gauge
JP3745051B2 (en) Film thickness measurement method
JP2009103584A (en) Steam pressure measurement device
JPH08128978A (en) Specific heat measuring method and device therefor
JP2753654B2 (en) Moisture sensitive element
JPH09138167A (en) Method and instrument for surface temperature measurement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11