JP3194062B2 - Method of forming thermal oxide film - Google Patents

Method of forming thermal oxide film

Info

Publication number
JP3194062B2
JP3194062B2 JP19609993A JP19609993A JP3194062B2 JP 3194062 B2 JP3194062 B2 JP 3194062B2 JP 19609993 A JP19609993 A JP 19609993A JP 19609993 A JP19609993 A JP 19609993A JP 3194062 B2 JP3194062 B2 JP 3194062B2
Authority
JP
Japan
Prior art keywords
substrate
processed
furnace
oxide film
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19609993A
Other languages
Japanese (ja)
Other versions
JPH0754125A (en
Inventor
伸 浅利
誠一 高橋
哲雄 三橋
賀文 太田
久三 中村
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP19609993A priority Critical patent/JP3194062B2/en
Publication of JPH0754125A publication Critical patent/JPH0754125A/en
Application granted granted Critical
Publication of JP3194062B2 publication Critical patent/JP3194062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱酸化膜の形成方法に
関し、更に詳しくは、主としてゲートおよびキャパシタ
ー絶縁膜を製造するために、半導体基板である被処理基
板の表面に酸化法により酸化薄膜を形成するための熱酸
化膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thermal oxide film, and more particularly to a method for manufacturing a gate and capacitor insulating film, in which an oxide thin film is formed on a surface of a substrate to be processed, which is a semiconductor substrate, by an oxidation method. The present invention relates to a method for forming a thermal oxide film for forming a film.

【0002】[0002]

【従来の技術】従来より、半導体基板である被処理基板
(ウェハまたはワークとも称する)の表面に酸化膜を形
成する方法として、熱酸化方法が採用されている。これ
は被処理基板を酸化雰囲気中で、1000℃程度の温度
で加熱して被処理基板表面を酸化する方法であり、膜質
の良い酸化膜が得られるという利点がある。
2. Description of the Related Art Conventionally, a thermal oxidation method has been adopted as a method for forming an oxide film on the surface of a substrate to be processed (also referred to as a wafer or a work) which is a semiconductor substrate. This is a method in which the substrate to be processed is heated at a temperature of about 1000 ° C. in an oxidizing atmosphere to oxidize the surface of the substrate to be processed, and has an advantage that an oxide film having good film quality can be obtained.

【0003】近年、半導体の高集積化に伴ない、被処理
基板表面に形成される酸化膜の薄膜化が必要となり、成
膜条件が厳しく行われるようになってきた。
In recent years, as semiconductors have become more highly integrated, it has become necessary to reduce the thickness of an oxide film formed on the surface of a substrate to be processed, and film forming conditions have become stricter.

【0004】このような厳しい成膜条件に対処出来る酸
化法またはCVD(Chemical VaporDeposition) 法によ
り薄膜を形成する装置として本出願人は先に、特開昭6
3−241936号でプロセスチューブ内に、その一側
の取出口からSiウェハ、Ga−Asウェハ等の被処理
基板を収めて密閉し、該被処理基板の表面にプロセスチ
ューブ内へ導入したガスの成分を化学反応させて薄膜を
形成するようにしたものにおいて、該取出口の前方にガ
ス導入口と真空排気口および該被処理基板の物理的洗浄
手段を備えた該プロセスチューブへの被処理基板の挿
入、取出のための密閉室を連設した酸化、CVD用炉を
提案した。そして、プロセスチューブ内への石英製のボ
ートに積層状に間隔を存して載置されたSiウェハ等の
被処理基板の挿入、取出を密閉室を介して行い、該プロ
セスチューブ内で該被処理基板を加熱しながらガス導入
口よりSiH4等の反応ガスを導入して該被処理基板の
表面上に該反応ガスの化学反応による薄膜、即ちCVD
法による薄膜を形成する。
As an apparatus for forming a thin film by an oxidation method or a CVD (Chemical Vapor Deposition) method capable of coping with such severe film formation conditions, the present applicant has previously disclosed in Japanese Patent Laid-Open No.
In Japanese Patent Application Laid-Open No. 3-241936, a substrate to be processed such as a Si wafer or a Ga-As wafer is placed and sealed in a process tube through an outlet on one side, and the surface of the substrate to be processed is filled with a gas introduced into the process tube. A substrate to be processed into a process tube provided with a gas inlet and a vacuum exhaust port in front of the outlet and a means for physically cleaning the substrate to be processed, wherein a thin film is formed by chemically reacting the components. We have proposed a furnace for oxidation and CVD, in which a closed chamber for insertion and removal of a gas is connected. Then, the substrate to be processed, such as a Si wafer, placed in a quartz boat at an interval in a laminated manner into the process tube is inserted into and taken out of the process tube through a sealed chamber. A reaction gas such as SiH 4 is introduced from a gas inlet while heating the processing substrate, and a thin film, ie, CVD, on the surface of the processing target substrate by a chemical reaction of the reaction gas.
A thin film is formed by the method.

【0005】前記装置による被処理基板表面への酸化膜
の形成についてのシーケンス(システム)の1例を図2
に従って説明する。 先ず、密閉室内にボートに間隔
を存して積層状に載置された被処理基板を搬入した後、
該密閉室内を真空排気系により例えば1×10- 4Pa
程度に排気(ステップ1)する。 続いて、ボートを
プロセスチューブ内に搬送、即ち移動(ステップ2)せ
しめる。 プロセスチューブ内は常時例えば1×10
- 4Pa程度に真空排気されており、また、例えば80
0℃の温度に保たれている。 被処理基板がプロセス
チューブ内に搬送された後、プロセスチューブ内の温度
を例えば1000℃まで昇温(プロセス3)し、該温度
を一定時間保持(プロセス4)した後、プロセスチュー
ブ内に酸素を導入して酸化処理(プロセス5)を行う。
更に被処理基板に対し一定時間アニール処理(プロ
セス6)を行う。 その後、プロセスチューブ内の温
度を例えば800℃まで降温(ステップ7)し、ボート
をプロセスチューブ内より密閉室内に搬送、即ち移動
(ステップ8)した後、密閉室内に大気を導入し、大気
圧まで復圧(ステップ9)してボートと共に被処理基板
を密閉室内より搬出する。
FIG. 2 shows an example of a sequence (system) for forming an oxide film on the surface of a substrate to be processed by the above apparatus.
It will be described according to. First, after loading a substrate to be processed, which is placed in a stacked state at an interval on a boat, into a closed chamber,
The sealed chamber by a vacuum pumping system for example 1 × 10 - 4 Pa
Evacuate to a degree (step 1). Subsequently, the boat is transported into the process tube, that is, moved (step 2). The inside of the process tube is always 1 × 10
- are evacuated to about 4 Pa, also, for example, 80
It is kept at a temperature of 0 ° C. After the substrate to be processed is transported into the process tube, the temperature raised to, for example, 1000 ° C. in the process tube and (Process 3), after a certain time Maho lifting said temperature (Process 4), the process tube to Oxidation treatment (process 5) is performed by introducing oxygen.
Further, an annealing process (process 6) is performed on the substrate to be processed for a predetermined time. Thereafter, the temperature in the process tube is lowered to, for example, 800 ° C. (Step 7), and the boat is transferred from the process tube into the closed chamber, that is, moved (Step 8). The pressure is restored (step 9), and the substrate to be processed is carried out of the closed chamber together with the boat.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記シ
ーケンス(システム)で被処理基板の表面を酸化させる
場合、被処理基板表面の熱酸化処理までの高温、かつ真
空状態では、被処理基板表面の自然酸化膜と被処理基板
自体が反応したり、或いはプロセスチューブ内の残留微
量不純物と被処理基板が反応する等の現象により、被処
理基板表面が荒れるという問題があった。
However, when the surface of the substrate to be processed is oxidized in the above-mentioned sequence (system), the surface of the substrate to be processed is naturally oxidized at a high temperature until the thermal oxidation treatment of the surface of the substrate and in a vacuum state. There has been a problem that the surface of the substrate to be processed is roughened due to a phenomenon such as a reaction between the oxide film and the substrate to be processed or a reaction between the substrate and the remaining trace impurities in the process tube.

【0007】また、この表面荒れの現象は真空状態のみ
ならず、高温状態下ではアルゴン(Ar)或いは窒素
(N2)等の不活性ガス雰囲気中でも発生するという問
題があった。
Further, there is a problem that this surface roughening phenomenon occurs not only in a vacuum state but also in an atmosphere of an inert gas such as argon (Ar) or nitrogen (N 2 ) at a high temperature.

【0008】本発明はかかる問題点を解消し、被処理基
板表面に荒れが生ずることなく、酸化薄膜を形成するこ
とが出来る熱酸化膜の形成方法を提供することを目的と
する。
It is an object of the present invention to provide a method for forming a thermal oxide film capable of forming an oxide thin film without solving the above problems and without causing the surface of the substrate to be processed to be rough.

【0009】[0009]

【課題を解決するための手段】本発明の熱酸化膜の形成
方法は、被処理基板を酸化処理する炉と、該炉に接続し
て設けられた予備排気室から成る装置で、炉および予備
排気室を減圧雰囲気にした状態で、被処理基板を予備排
気室から炉内へ移動し、炉内で酸化処理して被処理基板
表面に熱酸化膜を形成する方法において、酸化処理工程
以外の工程中に酸素ガスを分圧10 -1 〜10 -3 Paとな
るように導入した減圧雰囲気に保つ工程が含まれている
ことを特徴とする。
According to the present invention, there is provided a method for forming a thermal oxide film, comprising a furnace for oxidizing a substrate to be processed, and a preliminary exhaust chamber connected to the furnace. In a method in which the substrate to be processed is moved from the preliminary exhaust chamber into the furnace while the exhaust chamber is in a reduced-pressure atmosphere, and the substrate is oxidized in the furnace to form a thermal oxide film on the surface of the substrate to be processed, During the process, the oxygen gas is brought to a partial pressure of 10 -1 to 10 -3 Pa.
Characterized in that it contains the step of maintaining the reduced pressure atmosphere introduced into so that.

【0010】[0010]

【作用】被処理基板を微量酸素雰囲気の減圧状態下に維
持することにより、被処理基板表面に数原子層の極薄酸
化膜が成長する。この極薄酸化膜が被処理基板表面での
不純物の炭素と基板のシリコンとの反応および荒れを防
止する。
By maintaining the substrate to be processed under a reduced pressure in a trace oxygen atmosphere, an extremely thin oxide film of several atomic layers grows on the surface of the substrate to be processed. The ultra-thin oxide film prevents the reaction and the roughening of the impurity carbon on the surface of the substrate to be processed with the silicon of the substrate.

【0011】[0011]

【実施例】本発明の熱酸化膜の形成方法は、ボート搬
入、搬送(移動)、搬出、昇温、降温、温度安定等の、
主に熱酸化前後のプロセスにおいて、装置の予備排気室
内並びに炉内を例えば30SCCM程度の微量酸素を流
して真空状態とした雰囲気で行うものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for forming a thermal oxide film according to the present invention includes the steps of loading, transporting (moving), unloading, heating, cooling, and temperature stabilization.
Mainly, in the process before and after the thermal oxidation, the process is performed in a vacuum atmosphere by flowing a trace amount of oxygen, for example, about 30 SCCM, in the preliminary exhaust chamber and the furnace of the apparatus.

【0012】以下添付図面に従って本発明の実施例につ
いて説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0013】図1は本発明方法を実施するための装置の
1例を示すもので、図中、1はロードロック式縦型炉を
示す。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. In the figure, reference numeral 1 denotes a load-lock type vertical furnace.

【0014】そしてロードロック式縦型炉1はステンレ
ス製のチャンバーから成る予備排気室2と石英製のチュ
ーブから成る炉3とから成り、予備排気室2と炉3との
間を仕切弁4で仕切り、予備排気室2内と炉3内の雰囲
気を夫々分離可能とした。
The load-lock type vertical furnace 1 comprises a pre-evacuation chamber 2 made of a stainless steel chamber and a furnace 3 made of a quartz tube, and a gate valve 4 connects the pre-evacuation chamber 2 and the furnace 3 to each other. The partition, the atmosphere in the preliminary exhaust chamber 2 and the atmosphere in the furnace 3 can be separated from each other.

【0015】予備排気室2内を所定の真空度にするため
に、外部の真空ポンプその他の真空排気系5にバルブ6
を介して接続すると共に、該予備排気室2内に例えば窒
素(N2)ガスを導入するガス導入管7を接続した。
A valve 6 is connected to an external vacuum pump or other vacuum exhaust system 5 in order to make the inside of the preliminary exhaust chamber 2 have a predetermined degree of vacuum.
And a gas introduction pipe 7 for introducing, for example, nitrogen (N 2 ) gas into the preliminary exhaust chamber 2.

【0016】また、炉3内を所定の真空度にするため
に、外部の真空ポンプその他の真空排気系8にバルブ9
を介して接続すると共に、該炉3内に例えば酸素
(O2)ガスを導入するガス導入管10と、例えば窒素
(N2)ガスを導入するガス導入管11を夫々接続し
た。また、炉3の外側に例えばカンタル線から成るヒー
ター12を配置して炉3内を加熱するようにした。
In order to make the inside of the furnace 3 a predetermined vacuum, a valve 9 is connected to an external vacuum pump or other vacuum exhaust system 8.
And a gas introduction pipe 10 for introducing, for example, oxygen (O 2 ) gas into the furnace 3 and a gas introduction pipe 11 for introducing, for example, nitrogen (N 2 ) gas. Further, a heater 12 made of, for example, a Kanthal wire is arranged outside the furnace 3 to heat the inside of the furnace 3.

【0017】また、石英製のボート13にSiウェハ等
の被処理基板14を一定間隔を存して層状に載置した
後、これを予備排気室2内に搬入して回転自在であって
進退自在の移動台15上に載置し、該移動台15により
更に予備排気室2内より炉3内に搬入出来るようにし、
また、被処理基板14表面への酸化膜形成後は炉3内よ
り予備排気室2内に搬出し、更に予備排気室2内より搬
出出来るようにした。
After a substrate to be processed 14 such as a Si wafer is placed in layers on a quartz boat 13 at regular intervals, the substrate 14 is loaded into the pre-evacuation chamber 2 and is rotatable so as to advance and retreat. Placed on a freely movable table 15 so that the movable table 15 can be further loaded into the furnace 3 from the preliminary exhaust chamber 2;
Further, after the oxide film is formed on the surface of the substrate to be processed 14, it is carried out from the furnace 3 into the preliminary exhaust chamber 2, and furthermore, can be carried out from the preliminary exhaust chamber 2.

【0018】尚、図中、16は予備排気室2内に被処理
基板14を出し入れする出入口、17は該出入口16を
密閉する扉を夫々示す。
In the drawing, reference numeral 16 denotes an entrance for taking the substrate 14 into and out of the preliminary exhaust chamber 2, and 17 denotes a door for closing the entrance 16.

【0019】次に本発明の具体的実施例を比較例と共に
説明する。
Next, specific examples of the present invention will be described together with comparative examples.

【0020】実施例1 前記構成のロードロック式縦型炉1を用いて被処理基板
14の表面に酸化膜を形成する場合について図2と共に
説明する。
Embodiment 1 A case where an oxide film is formed on the surface of a substrate 14 to be processed using the load-lock type vertical furnace 1 having the above-described configuration will be described with reference to FIG.

【0021】先ず、石英製ボート13に一定間隔を存し
て層状に載置された被処理基板14を予備排気室2の外
方から出入口16を介して予備排気室2内に搬入して図
1の仮想線に示すように移動台15上に載置し、扉17
を閉じて出入口16を密閉した後、真空排気系5で予備
排気室2内の真空度を1×10- 3Paに設定(ステッ
プ1)した。
First, a substrate 14 to be processed, which is placed on a quartz boat 13 in a layered manner at a predetermined interval, is carried into the preliminary exhaust chamber 2 from outside the preliminary exhaust chamber 2 through the entrance 16. 1 is placed on the moving table 15 as indicated by the phantom line, and the door 17
After sealing the doorway 16 closed, the vacuum degree of the pre-evacuation chamber 2 1 × 10 in an evacuation system 5 - it was set to 3 Pa (Step 1).

【0022】次に、仕切弁4を開弁し、予め真空排気系
8で真空度を1×10- 4Paに維持され、ヒーター1
2で温度が800℃に設定された炉3内に、前記被処理
基板14を移動台15の進出で予備排気室2内より図1
の実線で示すように搬入(ステップ2)した後、仕切弁
4を閉弁した。
Next, opens the gate valve 4, the degree of vacuum 1 × 10 advance evacuation system 8 - is maintained at 4 Pa, a heater 1
The substrate to be processed 14 is moved into the furnace 3 in which the temperature is set to 800 ° C. in FIG.
After carrying in (step 2) as shown by the solid line, the gate valve 4 was closed.

【0023】この時、炉3内にガス導入管10より酸素
(O2)ガスを分圧10- 1〜10- 3Paとなるように導
入し、炉3内を微量酸素雰囲気の減圧状態とし、被処理
基板14の表面に厚さが例えば1〜2原子程度の最小限
の極薄酸化膜が成長するようにした。これはあえて被処
理基板14表面に極薄の酸化膜を成長させることで、被
処理基板14と炉3内に残留せる炭素のような残留不純
物との反応を防止することにある。
[0023] At this time, oxygen (O 2) from the gas introducing pipe 10 into the furnace 3 partial pressure 10 of the gas - 1-10 - introduced so that 3 Pa, the inside of the furnace 3 to a vacuum of trace oxygen atmosphere A very thin oxide film having a minimum thickness of, for example, about 1 to 2 atoms is grown on the surface of the substrate 14 to be processed. This is to prevent the reaction between the substrate 14 and residual impurities such as carbon remaining in the furnace 3 by intentionally growing an extremely thin oxide film on the surface of the substrate 14.

【0024】続いて、ヒーター12により炉3内を昇温
速度8℃/分で加熱して被処理基板14の温度を100
0℃まで昇温(ステップ3)し、該温度を40分間保持
して被処理基板14の温度安定(ステップ4)化を行っ
た。このステップ3およびステップ4の間も前記ステッ
プ2と同様に反応防止のために炉3内に所定の酸素分圧
を導入しながら、炉3内を微量酸素の減圧雰囲気に維持
した。
Subsequently, the inside of the furnace 3 is heated by the heater 12 at a heating rate of 8 ° C./min to reduce the temperature of the substrate 14 to be treated to 100 ° C.
The temperature was raised to 0 ° C. (Step 3), and the temperature was maintained for 40 minutes to stabilize the temperature of the substrate 14 (Step 4). During the steps 3 and 4, as in the case of the step 2, a predetermined oxygen partial pressure was introduced into the furnace 3 to prevent the reaction, and the inside of the furnace 3 was maintained at a reduced pressure atmosphere of a trace amount of oxygen.

【0025】次に、被処理基板14の酸化処理のために
炉3内にガス導入管10より酸素(O2)ガスを流量2
0slmで導入し、その状態を1分間維持しながら、酸
化処理(ステップ5)して被処理基板14の表面に厚さ
6nmの熱酸化膜を形成した。尚、酸化処理(ステップ
5)中は、炉3内の圧力は大気圧に維持した。
Next, oxygen (O 2 ) gas is supplied into the furnace 3 through the gas introduction pipe 10 at a flow rate of 2 for the oxidation treatment of the substrate 14 to be processed.
Oxidation was performed at 0 slm, and while maintaining that state for 1 minute, a thermal oxide film having a thickness of 6 nm was formed on the surface of the substrate to be processed 14 (step 5). During the oxidation treatment (step 5), the pressure in the furnace 3 was maintained at the atmospheric pressure.

【0026】更に、被処理基板14を同温度に15分間
維持しながら、炉3内に窒素(N2)ガスを同流量で導
入して、被処理基板14表面に形成された熱酸化膜をア
ニール処理(ステップ6)した後、ヒーター12による
加熱を停止し、炉3内を酸素分圧が10- 1〜10- 3
aの微量酸素雰囲気の減圧状態にすると共に、炉3内の
温度を降温速度4℃/分で800℃まで降温(ステップ
7)した。尚、降温(ステップ7)中は、炉3内の圧力
は昇温中(ステップ3)と同圧に維持した。
Further, while maintaining the substrate 14 at the same temperature for 15 minutes, nitrogen (N 2 ) gas is introduced into the furnace 3 at the same flow rate to remove the thermal oxide film formed on the surface of the substrate 14. after annealing (step 6), the heating was stopped by the heater 12, the inside of the furnace 3 is an oxygen partial pressure of 10 - 1 ~10 - 3 P
The pressure in the trace oxygen atmosphere of a was reduced, and the temperature in the furnace 3 was lowered to 800 ° C. at a rate of 4 ° C./min (step 7). During the cooling (Step 7), the pressure in the furnace 3 was maintained at the same pressure as during the heating (Step 3).

【0027】続いて、仕切弁4を開弁し、炉3内のボー
ト13を移動台15の退入で予備排気室2内に図1の仮
想線で示すように搬出(ステップ8)した後、仕切弁4
を閉弁すると共に、直ちに炉3内への微量酸素の導入を
停止した。
Subsequently, the gate valve 4 is opened, and the boat 13 in the furnace 3 is carried out into the preliminary exhaust chamber 2 by retreating the moving table 15 as shown by the phantom line in FIG. 1 (step 8). , Gate valve 4
Was closed and the introduction of trace oxygen into the furnace 3 was immediately stopped.

【0028】次に、予備排気室2内にガス導入管7より
窒素(N2)ガスを導入し、予備排気室2内の圧力を大
気圧まで復圧(ステップ9)して被処理基板14を15
0℃まで冷却した後、扉17を開放し、ボート13と共
に、被処理基板14を出入口16を介して予備排気室2
内より搬出した。
Next, nitrogen (N 2 ) gas is introduced into the pre-evacuation chamber 2 from the gas introduction pipe 7, and the pressure in the pre-evacuation chamber 2 is restored to the atmospheric pressure (step 9). 15
After cooling to 0 ° C., the door 17 is opened, and the substrate to be processed 14 is moved together with the boat 13 through the entrance 16 into the preliminary exhaust chamber 2.
Removed from inside.

【0029】前記のようにステップ2からステップ8の
間は微量酸素雰囲気の減圧状態としたので、各ステップ
の工程中は被処理基板14の表面が酸素に覆われること
になり、被処理基板が従来のような不純物と反応するこ
とがないため、被処理基板表面には荒れがない高品質な
酸化膜が形成されることになる。
As described above, during step 2 to step 8, the pressure in a trace oxygen atmosphere is reduced, so that the surface of the substrate 14 is covered with oxygen during each step, and the substrate to be processed is Since it does not react with impurities as in the prior art, a high-quality oxide film without roughness is formed on the surface of the substrate to be processed.

【0030】前記ステップで作製された被処理基板14
の表面に形成された熱酸化膜の電流−電圧特性の耐圧試
験を行い、その結果を図3に曲線Aとして示した。
The substrate to be processed 14 manufactured in the above steps
A withstand voltage test of the current-voltage characteristics of the thermal oxide film formed on the surface was performed, and the result is shown as a curve A in FIG.

【0031】尚、耐圧試験は被処理基板がP型で面方位
(100)の比抵抗1〜10Ωcmの鏡面仕上げ、熱酸
化膜の膜厚が6nmの場合について行った。
The withstand voltage test was carried out when the substrate to be processed was a P-type substrate, the surface orientation (100) was mirror-finished with a specific resistance of 1 to 10 Ωcm, and the thickness of the thermal oxide film was 6 nm.

【0032】比較例1 従来法により、即ちステップ2,3,4,6,7,8に
おける雰囲気を微量酸素のない減圧状態のみとした以外
は、前記実施例1と同様の方法で被処理基板の表面に熱
酸化膜を形成した。
Comparative Example 1 A substrate to be processed was produced in the same manner as in Example 1 except that the atmosphere in Steps 2, 3, 4, 6, 7, and 8 was changed to a reduced pressure state without trace oxygen. A thermal oxide film was formed on the surface of.

【0033】そして、従来法で作製された被処理基板の
表面に形成された熱酸化膜の電流−電圧特性の耐圧試験
を前記実施例1と同一条件で行い、その結果を図3に曲
線Bとして示した。
Then, a withstand voltage test of the current-voltage characteristics of the thermal oxide film formed on the surface of the substrate to be processed manufactured by the conventional method was performed under the same conditions as in the first embodiment, and the results are shown in FIG. As shown.

【0034】図3から明らかなように、本発明の実施例
1の場合は、印加電圧が8MV/cmでリーク電流が増
加(立上がり)し始めるのに対し、比較例1の場合は、
印加電圧が7MV/cm程度でリーク電流が増加し始め
た。この結果、本発明法では被処理基板の表面の絶縁特
性が改善されたことが確認された。
As is apparent from FIG. 3, in the case of the first embodiment of the present invention, the leak current starts to increase (rise) when the applied voltage is 8 MV / cm, whereas in the case of the first comparative example,
When the applied voltage was about 7 MV / cm, the leak current started to increase. As a result, it was confirmed that the insulating property of the surface of the substrate to be processed was improved in the method of the present invention.

【0035】前記実施例1では微量酸素雰囲気の減圧状
態をステップ2からステップ8の工程中としたが、本発
明はこれに限定されるものではなく、酸化処理の温度条
件や、予備排気室2内の真空度、炉3内の真空度等によ
り微量酸素雰囲気の減圧状態をステップ3からステップ
6の工程中の局部的としてもよい。
In the first embodiment, the depressurized state of the trace oxygen atmosphere is set in the steps 2 to 8. However, the present invention is not limited to this. Depending on the degree of vacuum in the furnace, the degree of vacuum in the furnace 3 and the like, the reduced pressure state of the trace oxygen atmosphere may be localized in the steps 3 to 6.

【0036】また、前記実施例1では、酸化処理工程
(ステップ5)中は炉3内の雰囲気を酸素のみとした
が、本発明はこれに限定されるものではなく、酸素ガス
中に窒素(N2)ガス、水素(H2)ガス、ハロゲンガス
を酸素ガスに対し1〜95at%程度添加した雰囲気とし
てもよい。
In the first embodiment, the atmosphere in the furnace 3 is only oxygen during the oxidation process (step 5). However, the present invention is not limited to this. An atmosphere in which N 2 ) gas, hydrogen (H 2 ) gas, and halogen gas are added at about 1 to 95 at% to oxygen gas may be used.

【0037】また、本発明法は、被処理基板の表面に熱
酸化膜の形成だけではなく、HTO(High Temperature
Oxidation)等のCVD法酸化膜や、窒化シリコン膜の成
膜プロセスに利用しても前記と同様に被処理基板の表面
の保護効果が得られる。
In addition, the method of the present invention is not limited to the formation of a thermal oxide film on the surface of a substrate to be processed.
Oxidation) and the like, a protective effect on the surface of the substrate to be processed can be obtained in the same manner as described above even when used in a film forming process of a CVD oxide film or a silicon nitride film.

【0038】[0038]

【発明の効果】本発明の熱酸化膜の形成方法によるとき
は、被処理被板の表面への酸化処理工程以外の搬送、昇
温、降温等の工程を微量酸素雰囲気の減圧状態下で行う
ようにしたので、被処理基板の表面を微量酸素により成
長した数原子層程度の極薄酸化膜で保護することとな
り、被処理基板表面に高品質で安定した熱酸化膜を形成
することが出来る効果がある。
According to the method for forming a thermal oxide film of the present invention, the steps of transporting, raising and lowering the temperature other than the step of oxidizing the substrate to be processed are performed under reduced pressure in a trace oxygen atmosphere. As a result, the surface of the substrate to be processed is protected by an ultra-thin oxide film of about several atomic layers grown by a trace amount of oxygen, and a high-quality and stable thermal oxide film can be formed on the surface of the substrate to be processed. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱酸化膜の形成方法を実施するため
の装置の1例の概略説明図、
FIG. 1 is a schematic explanatory view of one example of an apparatus for performing a method for forming a thermal oxide film of the present invention;

【図2】 本発明の熱酸化膜の形成方法の1例を示す工
程図、
FIG. 2 is a process chart showing one example of a method for forming a thermal oxide film of the present invention;

【図3】 本発明の実施例と比較例における熱酸化膜の
リーク電流と印加電圧の関係を示す特性線図。
FIG. 3 is a characteristic diagram showing a relationship between a leak current of a thermal oxide film and an applied voltage in an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

2 予備排気室、 3 炉、4 仕切
弁、 5,8 真空排気系、10,11
ガス導入管、 12 ヒーター、14
被処理基板。
2 Preliminary exhaust chamber, 3 Furnace, 4 Gate valve, 5, 8 Vacuum exhaust system, 10, 11
Gas inlet pipe, 12 heater, 14
Substrate to be processed.

フロントページの続き (72)発明者 太田 賀文 千葉県山武郡山武町横田523 日本真空 技術株式会社千葉超材料研究所内 (72)発明者 中村 久三 千葉県山武郡山武町横田523 日本真空 技術株式会社千葉超材料研究所内 (58)調査した分野(Int.Cl.7,DB名) C23C 8/12,16/44 H01L 21/31,21/316 Continued on the front page (72) Inventor Kafumi Ota 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Pref. Japan Vacuum Engineering Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8 / 12,16 / 44 H01L 21 / 31,21 / 316

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被処理基板を酸化処理する炉と、該炉に
接続して設けられた予備排気室から成る装置で、炉およ
び予備排気室を減圧雰囲気にした状態で、被処理基板を
予備排気室から炉内へ移動し、炉内で酸化処理して被処
理基板表面に熱酸化膜を形成する方法において、酸化処
理工程以外の工程中に酸素ガスを分圧10 -1 〜10 -3
aとなるように導入した減圧雰囲気に保つ工程が含まれ
ていることを特徴とする熱酸化膜の形成方法。
An apparatus comprising a furnace for oxidizing a substrate to be processed and a preliminary exhaust chamber connected to the furnace, wherein the substrate to be processed is preliminarily kept in a state where the furnace and the preliminary exhaust chamber are in a reduced pressure atmosphere. In the method of moving from the exhaust chamber into the furnace and performing oxidation treatment in the furnace to form a thermal oxide film on the surface of the substrate to be processed, the oxygen gas is subjected to a partial pressure of 10 -1 to 10 -3 during a process other than the oxidation process. P
a method for forming a thermal oxide film, the method including a step of maintaining a reduced-pressure atmosphere introduced so as to be a .
JP19609993A 1993-08-06 1993-08-06 Method of forming thermal oxide film Expired - Fee Related JP3194062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19609993A JP3194062B2 (en) 1993-08-06 1993-08-06 Method of forming thermal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19609993A JP3194062B2 (en) 1993-08-06 1993-08-06 Method of forming thermal oxide film

Publications (2)

Publication Number Publication Date
JPH0754125A JPH0754125A (en) 1995-02-28
JP3194062B2 true JP3194062B2 (en) 2001-07-30

Family

ID=16352209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19609993A Expired - Fee Related JP3194062B2 (en) 1993-08-06 1993-08-06 Method of forming thermal oxide film

Country Status (1)

Country Link
JP (1) JP3194062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079702B2 (en) 2018-09-04 2022-06-02 清水建設株式会社 Centre rail delivery system, and centre

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186257A (en) * 1997-12-24 1999-07-09 Asahi Kasei Micro Syst Co Ltd Manufacture of semiconductor device
DE19983456B4 (en) * 1999-06-21 2007-03-01 Asahi Kasei Microsystems Co., Ltd. Heat oxidation film formation in semiconductor device manufacture - involves subjecting process object to oxidation treatment using gas-containing pure nitrogen@ and micro-dose of oxygen@

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079702B2 (en) 2018-09-04 2022-06-02 清水建設株式会社 Centre rail delivery system, and centre

Also Published As

Publication number Publication date
JPH0754125A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP4104676B2 (en) In situ cleaning of native oxide from silicon surface
EP2040287B1 (en) Method of improving oxide growth rate of selective oxidation processes
WO2006095752A1 (en) Semiconductor device manufacturing method and substrate treatment device
JP2892170B2 (en) Heat treatment film formation method
JP3437830B2 (en) Film formation method
JP4259247B2 (en) Deposition method
JP3667038B2 (en) CVD film forming method
JP3194062B2 (en) Method of forming thermal oxide film
US20020090802A1 (en) Safe arsenic gas phase doping
US6649537B1 (en) Intermittent pulsed oxidation process
US6579614B2 (en) Structure having refractory metal film on a substrate
JP3095519B2 (en) Method for manufacturing semiconductor device
JP3297958B2 (en) Thin film formation method
JP3667535B2 (en) Deposition method
JPH11186248A (en) Silicon oxide film forming method and equipment
JP2003031571A (en) Method for forming oxidized film of silicon carbide semiconductor
JP2001148381A (en) Method for forming insulating film and device therefor
JP2855978B2 (en) Method for manufacturing silicon nitride film
JPH0766193A (en) Deposition of oxide in semiconductor device
JP3136615B2 (en) Multi-chamber process apparatus and semiconductor device manufacturing method
JP3173698B2 (en) Heat treatment method and apparatus
JP3058655B2 (en) Wafer diffusion processing method and wafer heat treatment method
JPH04345024A (en) Manufacture of semiconductor device
JPH11260738A (en) Vacuum heat treatment apparatus
KR100312380B1 (en) Method for planarizing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees