JP3182323B2 - mask - Google Patents

mask

Info

Publication number
JP3182323B2
JP3182323B2 JP22905095A JP22905095A JP3182323B2 JP 3182323 B2 JP3182323 B2 JP 3182323B2 JP 22905095 A JP22905095 A JP 22905095A JP 22905095 A JP22905095 A JP 22905095A JP 3182323 B2 JP3182323 B2 JP 3182323B2
Authority
JP
Japan
Prior art keywords
mask
film
bar
crosspiece
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22905095A
Other languages
Japanese (ja)
Other versions
JPH0974214A (en
Inventor
肇 齋藤
哲正 梅本
喜彦 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22905095A priority Critical patent/JP3182323B2/en
Publication of JPH0974214A publication Critical patent/JPH0974214A/en
Application granted granted Critical
Publication of JP3182323B2 publication Critical patent/JP3182323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パターン形成方法
用いるマスクに関し、特に、太陽電池の薄膜のパター
ン形成方法に用いるマスクに関する。
[0001] The present invention relates to a method for forming a pattern.
More particularly, the present invention relates to a mask used in a method for forming a thin film pattern of a solar cell.

【0002】[0002]

【従来の技術】一般に、薄膜は蒸着法、スパッタ法、C
VD法等の様々な形成法により形成され、この薄膜は、
通常所望の形状に加工するために、薄膜形成後にフォト
エッチング等の加工技術を用いてパターン形成を行って
いた。
2. Description of the Related Art Generally, a thin film is formed by a vapor deposition method, a sputtering method,
The thin film is formed by various forming methods such as a VD method.
Usually, in order to process into a desired shape, a pattern is formed by using a processing technique such as photoetching after forming a thin film.

【0003】このようなパターニング技術を用いる用途
の1つとして薄膜太陽電池がある。薄膜太陽電池の直列
接続加工により集積型薄膜太陽電池とするには比較的簡
単な等間隔の平行な直線状のパターン形成を行う必要が
ある。つまり、各光電変換素子の金属薄膜裏面電極が隣
接する光電変換発電素子の透明導電性膜電極の端部と電
気的に接触する直列接続構造により集積型薄膜太陽電池
を形成する。この集積型薄膜太陽電池は、ガラス等の透
光性絶縁基板上にSnO2 やITO等の透明導電性膜電
極を形成し、その上に非晶質半導体光電変換層、金属薄
膜裏面電極を形成してなる。ここで、非晶質半導体光電
変換層の形成は、原料ガスのグロー放電分解によるプラ
ズマCVD法や光CVD法等の気相成長により形成され
る。こうした集積型薄膜太陽電池のパターン形成は、各
層を全面に製膜した後、その都度パターニングすること
により行われる。各層をパターニングして集積化する手
段としては、フォトエッチング法、レーザスクライブ
法、メタルマスクを用いてパターニングする方法等があ
る。
[0003] One of applications using such a patterning technique is a thin-film solar cell. In order to form an integrated thin-film solar cell by series connection processing of thin-film solar cells, it is necessary to form relatively straight, parallel linear patterns at relatively simple intervals. That is, an integrated thin-film solar cell is formed by a series connection structure in which the metal thin-film back surface electrode of each photoelectric conversion element electrically contacts the end of the transparent conductive film electrode of the adjacent photoelectric conversion power generation element. In this integrated thin-film solar cell, a transparent conductive film electrode such as SnO 2 or ITO is formed on a translucent insulating substrate such as glass, and an amorphous semiconductor photoelectric conversion layer and a metal thin film back electrode are formed thereon. Do it. Here, the amorphous semiconductor photoelectric conversion layer is formed by vapor phase growth such as a plasma CVD method or a photo CVD method by glow discharge decomposition of a source gas. The pattern formation of such an integrated thin-film solar cell is performed by forming each layer on the entire surface and then patterning each time. Means for patterning and integrating each layer include a photoetching method, a laser scribe method, and a method of patterning using a metal mask.

【0004】フォトエッチング法は、マスク位置合わ
せ、レジスト膜塗布、光照射、洗浄の工程を必要とする
ので、工程数が多く煩雑で、薄膜太陽電池基板が大面積
となるにつれ生産コストが高くなる。また、レジスト膜
除去液に浸漬する化学処理工程を経る時に、表面がダメ
ージを受けて太陽電池の変換効率を低下させる要因とな
る。
[0004] The photoetching method requires steps of mask alignment, application of a resist film, light irradiation, and cleaning, so that the number of steps is complicated, and the production cost increases as the thin film solar cell substrate becomes larger. . Further, during a chemical treatment step of immersion in a resist film removing liquid, the surface is damaged, which causes a reduction in the conversion efficiency of the solar cell.

【0005】レーザスクライブ法は、加工対象物を載せ
たステージを走査させながらレーザ光を照射すること、
或は、加工対象物上をレーザを照射させながら走査する
ことにより、容易に開溝を形成することができるので、
生産工程が簡略化され、生産コストを低く抑えることが
できる。さらに、レーザスクライブにより形成された素
子分割の溝幅が100μm以下に加工できるため、光電
変換素子の電極接合部分の面積が小さくてすみ、光電変
換に関与しない面積が小さく、集積型薄膜太陽電池の発
電有効面積を増大させることができる。
The laser scribing method irradiates a laser beam while scanning a stage on which an object to be processed is placed,
Alternatively, it is possible to easily form a groove by scanning the object to be processed while irradiating the laser,
The production process is simplified, and production costs can be kept low. Further, since the groove width of the element division formed by laser scribing can be processed to 100 μm or less, the area of the electrode junction portion of the photoelectric conversion element can be small, the area not involved in photoelectric conversion is small, and the integrated thin-film solar cell The power generation effective area can be increased.

【0006】しかしながら、レーザスクライブ法は金属
薄膜裏面反射電極のパターニングにおいて極めて微妙な
加工技術と精度を必要とし、生産工程における歩留まり
が高くないという問題がある。
However, the laser scribing method requires extremely delicate processing technology and precision in patterning the reflective electrode on the back surface of the metal thin film, and has a problem that the yield in the production process is not high.

【0007】メタルマスクを用いてパターニングする方
法は、その簡便性、工程数の少なさ、コスト面において
有力な方法である。
The patterning method using a metal mask is an effective method in terms of its simplicity, small number of steps, and cost.

【0008】[0008]

【発明が解決しようとする課題】上述したように、メタ
ルマスクを用いてパターニングする方法は、その簡便
性、工程数の少なさ、コスト面において有力な手段であ
るが、製膜時の加熱の影響によってメタルマスクが製膜
しようとする基板から浮き上がったり、メタルマスク自
体が金属熱膨張によって変形して、積層しようとする薄
膜物質が、マスクで被覆した部分に回り込んで付着した
りして、形成されたパターンが変形して正確なパターニ
ングを行えない場合があり、歩留まりの低下を引き起こ
す原因になっていた。通常、これらを防ぐべく、磁石を
用いてメタルマスクを固定する方法が用いられるが、磁
力の影響によりメタルマスクがより変形することがあ
り、この場合には、微細なパターン形成ができないとい
う問題が生じる。
As described above, the patterning method using a metal mask is an effective means in terms of its simplicity, small number of steps, and cost. The metal mask rises from the substrate to be formed due to the influence, or the metal mask itself is deformed by thermal expansion of the metal, and the thin film material to be laminated wraps around and adheres to the portion covered with the mask, In some cases, the formed pattern is deformed and accurate patterning cannot be performed, which causes a reduction in yield. Usually, in order to prevent these, a method of fixing the metal mask using a magnet is used, but the metal mask may be further deformed by the influence of the magnetic force, and in this case, there is a problem that a fine pattern cannot be formed. Occurs.

【0009】さらに、製膜しようとする物質がマスクで
被覆した部分に回り込んで付着することを避けるために
はメタルマスクと基板の密着強度を上げなければならな
いが、このためには磁石で引き付けて固定するメタルマ
スクの桟の面積を大きく取る必要があるので、桟を太く
しなければならず、やはり微細なパターン形成ができな
いという問題点があった。
Furthermore, in order to prevent the substance to be formed into a part covered with the mask from wrapping around and adhering, it is necessary to increase the adhesion strength between the metal mask and the substrate. Since it is necessary to increase the area of the metal mask crossbar to be fixed, the crossbar must be made thicker, and there is a problem that a fine pattern cannot be formed.

【0010】また、面積の比較的大きい太陽電池基板に
対しメタルマスクを適用した場合、用いるメタルマスク
が大きくなり、磁石を用いて固定する方法では太陽電池
基板に余分な加重をかけることで、太陽電池基板自体の
変形を生じさせることもあり、この場合は正確なパター
ニングはより一層困難になるという問題があった。
In addition, when a metal mask is applied to a solar cell substrate having a relatively large area, the metal mask to be used becomes large. In some cases, the battery substrate itself may be deformed. In this case, there is a problem that accurate patterning becomes more difficult.

【0011】[0011]

【課題を解決するための手段】本発明のマスクは、マス
クとしての桟と、該桟に所定方向に張力を付与する張力
付与手段と、上記桟と上記張力付与手段とを支持するマ
スク支持体と、上記桟の位置を固定するために上記マス
ク支持体に設けられたガイド部とを備え、該ガイド部の
断面形状は、上記桟の断面形状に対応した形状であるこ
とを特徴とする。
According to the present invention, there is provided a mask comprising a mask.
And a tension for applying tension to the cross in a predetermined direction.
Applying means, and a machine for supporting the crosspiece and the tension applying means.
Screen support and the mass to fix the position of the crosspiece
And a guide portion provided on the support member.
The cross-sectional shape must be a shape corresponding to the cross-sectional shape of the crosspiece.
And features.

【0012】ここで、ガイド部の断面形状は、桟の断面
形状に対応した形状であるので、桟を正確に固定するこ
とができる。
Here, the cross-sectional shape of the guide portion is the cross-section of the crosspiece.
Since the shape corresponds to the shape, it is necessary to fix the crosspiece accurately.
Can be.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】ここで、桟の所定方向に対して自由度を与
えることができる張力付与手段としては、例えばバネ等
の弾性体によって桟の長さ方向に伸縮可能な張力を加え
ることにより実現される。その結果、薄膜の製膜時の温
度により太陽電池基板温度の昇温、降温に伴い生じる桟
の熱膨張、収縮により、基板に対する押し付け応力が低
下しても、常に張力がかかった状態を保持できるため、
製膜中において基板に対する密着応力を常に保持でき、
製膜しようとする物質がマスクで被覆した部分に回り込
んで付着することを避け、位置精度の高いパターニング
を実現することができる。
Here, the tension applying means capable of giving a degree of freedom in a predetermined direction of the crosspiece is realized by applying a tension which can be extended and contracted in the length direction of the crosspiece by an elastic body such as a spring. . As a result, even if the pressing stress on the substrate is reduced due to the thermal expansion and contraction of the cross-section caused by the rise and fall of the temperature of the solar cell substrate due to the temperature at the time of forming the thin film, the tensioned state can always be maintained. For,
Adhesive stress to the substrate can always be maintained during film formation,
It is possible to prevent the substance to be formed into a part covered with the mask from coming around and adhering, thereby realizing patterning with high positional accuracy.

【0017】特に、集積型薄膜太陽電池のパターンは直
線状のパターンであるので、本発明のマスクを用いてパ
ターニングするのがよい。本発明のマスクによれば、従
来マスクと比べてマスキングされる桟の幅が狭くなるた
め、各光電変換部の電極接合部分の面積が小さくてす
み、光電変換部の有効面積の減少を抑えることができ
る。
In particular, since the pattern of the integrated thin-film solar cell is a linear pattern, it is preferable to perform patterning using the mask of the present invention. According to the mask of the present invention, since the width of the masking bar is narrower than that of the conventional mask, the area of the electrode joining portion of each photoelectric conversion unit can be small, and the decrease in the effective area of the photoelectric conversion unit can be suppressed. Can be.

【0018】また、マスクとしての桟の細線の材質とし
ては、ピアノ線等の金属細線、カーボンファイバー等の
耐熱材料細線を用いることができ、その細線の断面形状
は円形に限らず、半円形や三角形、矩形形状のものを選
択することができる。つまり、断面形状は円形に限ら
ず、一部に直線部を含む形状であることを特徴とするも
のが使える。
Further, as a material of the fine wire of the crosspiece as a mask, a thin metal wire such as a piano wire or a heat-resistant material fine wire such as a carbon fiber can be used. Triangular and rectangular shapes can be selected. That is, the cross-sectional shape is not limited to a circular shape, and a shape characterized by a portion partially including a linear portion can be used.

【0019】なお、マスクの固定に磁石は必要ないの
で、磁力によるマスクの歪みの影響はない。
Since no magnet is required for fixing the mask, there is no influence of the distortion of the mask due to the magnetic force.

【0020】本発明のマスクは、マスクとしての桟と、
該桟に所定方向に張力を付与する張力付与手段と、上記
桟と上記張力付与手段とを支持するマスク支持体とを備
え、上記桟と上記張力付与手段とは一体に形成されてい
る。
The mask according to the present invention includes a crosspiece as a mask,
Tension applying means for applying a tension to the bar in a predetermined direction;
A mask support for supporting the beam and the tension applying means;
The crosspiece and the tension applying means are integrally formed.
You.

【0021】ここで、上記桟及び上記張力付与手段が、
上記マスク支持体に着脱自在に設けられているので、張
力の設定、変更が容易であり、また、付け替えでのマス
クパターンの変更が容易にでき多品種少量生産に適し、
さらに、マスクのメインテナンスについても容易にな
る。
Here, the crosspiece and the tension applying means are:
Since it is detachably provided on the mask support, it is easy to set and change the tension, and it is also easy to change the mask pattern by replacement and suitable for high-mix low-volume production.
Further, maintenance of the mask is facilitated.

【0022】[0022]

【0023】ここで、ガイド部は、例えば、マスク支持
体の両端に溝切りを施すことにより実現され、桟を正確
に位置合わせすることができ、付け替え時の作業性も向
上する。
Here, the guide portion is realized, for example, by forming grooves on both ends of the mask support, so that the crosspiece can be accurately positioned, and the workability at the time of replacement is improved.

【0024】[0024]

【発明の実施の形態】図1に、本発明に係るマスクの斜
視図を示す。その構造は、ステンレスからなる中抜けの
マスク支持体であるマスク枠1は、パターン形成を行う
べき基板を落とし込んで固定する段2が設けられ、マス
ク枠1の一辺には、マスクとなる桟4を固定する螺子3
が設けられ、対向する一辺には、桟4が熱膨張や伸縮し
ても常に張力がかかるようにバネ5を固定する螺子3が
設けられている。桟4とバネ5とは一体に成形されてお
り、桟4とバネ5は、マスク枠1に固着された螺子3に
対して、着脱自在になっている。従って、桟4とバネ5
の螺子3に対する架け替え、マスクパターン変更が容易
にできる。
FIG. 1 is a perspective view of a mask according to the present invention. The structure is such that a mask frame 1 which is a hollow mask support made of stainless steel is provided with a step 2 for dropping and fixing a substrate on which a pattern is to be formed, and one side of the mask frame 1 is provided with a bar 4 serving as a mask. Screw 3 for fixing
And a screw 3 for fixing the spring 5 so that tension is always applied even when the bar 4 is thermally expanded or contracted. The bar 4 and the spring 5 are integrally formed, and the bar 4 and the spring 5 are detachable from the screw 3 fixed to the mask frame 1. Therefore, the cross 4 and the spring 5
Of the screw 3 and the mask pattern can be easily changed.

【0025】また、桟4を固定するためにマスク枠1に
ガイド8が機械切削され設けられている。これは、桟4
が、基板の自重で横ズレすることを防ぎ、桟4の位置決
めを正確に決定するためのものである。
A guide 8 is provided on the mask frame 1 by machine cutting in order to fix the bar 4. This is pier 4
However, it is intended to prevent lateral displacement due to the substrate's own weight, and to accurately determine the positioning of the rail 4.

【0026】本マスクでは、桟4に直径100μmのス
テンレス製のピアノ線を用い、その延長線上にバネ5が
設けてある。ここで、桟4にはピアノ線を用いたが、こ
れに限らず、例えばカーボンファイバーの耐熱性材料を
用いることができ、この場合は、ピアノ線よりも変形に
強い。
In this mask, a stainless steel piano wire having a diameter of 100 μm is used for the bar 4, and a spring 5 is provided on an extension of the piano wire. Here, the bar 4 is made of a piano wire, but is not limited to this. For example, a heat-resistant material such as carbon fiber can be used, and in this case, the wire is more resistant to deformation than the piano wire.

【0027】図2に、桟4の断面形状の例を示す。円形
や偏平楕円形に限らず(図2(g),(h))、断面形
状の一部が平面形状(図2(a)〜(f))のものを用
いることができ、その場合は、断面形状の平面形状の部
分を製膜面に密着することで、桟4と製膜面の密着がよ
り確実なものとなり好ましい。
FIG. 2 shows an example of the cross-sectional shape of the bar 4. The shape is not limited to a circle or a flat ellipse (FIGS. 2 (g) and 2 (h)), and a part of the cross-sectional shape may be a plane shape (FIGS. 2 (a) to 2 (f)). By adhering the plane-shaped portion of the cross-sectional shape to the film-forming surface, the contact between the crosspiece 4 and the film-forming surface is more reliably ensured, which is preferable.

【0028】図3に、ガイド8の断面形状を示す。ガイ
ド8の断面形状は、桟4の形状が嵌合(図3(a)〜
(f)が図2(a)〜(f)に各対応する)するよう
に、V字形、U字形等の断面形状とすることにより、桟
4をより正確に固定することができる。
FIG. 3 shows a sectional shape of the guide 8. The cross-sectional shape of the guide 8 is such that the shape of the bar 4 is fitted (FIG. 3A).
As shown in FIG. 2 (a) to (f), (f) corresponds to each of FIGS. 2 (a) to 2 (f), the cross-section of the V-shape, U-shape or the like allows the bar 4 to be more accurately fixed.

【0029】次に、上記マスクの使い方について説明す
る。パターン形成時に、パターン形成を行うべき基板を
製膜面を下にして、桟4のピアノ線に密着するように、
段2に落とし込んで固定し、振動等によるズレが生じな
いように押さえ板6をかぶせて固定バネ板7で固定保持
し、プラズマCVD装置、スパッタ装置、又は蒸着装置
等の製膜装置にセットして製膜を行い、パターン形成を
行う。ここで、桟4と製膜面とが製膜時に密着した状態
であるので、マスクの部分には、製膜物質が回り込んで
付着しないので、正確なパターニングを行うことができ
る。
Next, how to use the mask will be described. At the time of pattern formation, the substrate on which pattern formation is to be performed is to be in close contact with the piano wire of the bar 4 with the film-forming surface facing down.
Drop it into the stage 2 and fix it, cover it with a holding plate 6 so as not to cause displacement due to vibration and the like, fix it with a fixed spring plate 7, and set it in a film forming device such as a plasma CVD device, a sputtering device, or a vapor deposition device. To form a film and form a pattern. Here, since the crosspiece 4 and the film-forming surface are in close contact with each other at the time of film-forming, the film-forming substance does not go around and adhere to the mask portion, so that accurate patterning can be performed.

【0030】なお、桟4が製膜面に密着しない構造のマ
スクとすることもできるが、密着しておく方が望まし
く、本発明のマスクはスパッタや蒸着のように一定方向
から堆積すべき物質が飛来する工程に用いるとよい。
Although a mask having a structure in which the crossbar 4 does not adhere to the film forming surface can be used, it is desirable to keep the mask closely, and the mask of the present invention is a material to be deposited from a certain direction such as sputtering or vapor deposition. It is good to use it for the process of flying.

【0031】本発明のマスクを用いたパターン形成方法
を、集積型薄膜太陽電池に適用した場合について、図4
に基づき説明する。
FIG. 4 shows a case where the pattern forming method using the mask of the present invention is applied to an integrated thin-film solar cell.
It will be described based on.

【0032】まず、透光性絶縁基板41として厚さ1m
mのガラス基板を用い、その片面に透明導電性膜電極4
2としてSnO2 を1μmの厚さに常圧CVD法で形成
する。次に、レーザ光を紙面に垂直方向に走査しながら
照射してパターニングを施し、各々の透明導電性膜電極
42に分離する(図4(a))。このとき照射するレー
ザ光は、Nd:YAGレーザ、エキシマレーザのいずれ
でも良いが、保守が簡便で、ランニングコストが安いY
AGレーザが工業的に優位である。
First, a light-transmissive insulating substrate 41 having a thickness of 1 m
m glass substrate with a transparent conductive film electrode 4 on one side.
As No. 2 , SnO 2 is formed to a thickness of 1 μm by normal pressure CVD. Next, a laser beam is irradiated while scanning the paper in the vertical direction to perform patterning, and is separated into the respective transparent conductive film electrodes 42 (FIG. 4A). The laser beam applied at this time may be either a Nd: YAG laser or an excimer laser, but is easy to maintain and has a low running cost.
AG lasers have an industrial advantage.

【0033】次に、非晶質半導体層のp層を12nmの
厚さに積層する。即ち、プラズマCVD装置中に基板を
置き、基板温度を200℃に昇温する。反応ガスはモノ
シランガスを流量30sccm 、メタンガスを流量89scc
m 、キャリアガスは水素ガスを流量150sccm 、ドー
ピングガスは1%水素希釈のジボランガスを流量10sc
cm で流す。続いてi層を400nmの厚さに積層す
る。この時、基板温度は200℃に保持し、反応ガスは
モノシランガスを流量60sccm 、キャリアガスは水素
ガスを流量20sccm 流す。続いてn層を100nmの
厚さに積層する。この時、基板を200℃に保持し、反
応ガスはモノシランガスを流量60sccm 、キャリアガ
スは水素ガスを流量3sccm 、ドーピングガスは0.3
%水素希釈のホスフィンガスを流量18sccm で流す。
こうして、非晶質半導体光電変換層13を積層した後、
レーザ光を紙面に垂直方向に走査しながら照射してスク
ライブ溝を形成し、各々の非晶質半導体光電変換層43
に分離する(図4(b))。
Next, a p-layer of an amorphous semiconductor layer is laminated to a thickness of 12 nm. That is, the substrate is placed in a plasma CVD apparatus, and the temperature of the substrate is raised to 200 ° C. The reaction gas is monosilane gas at a flow rate of 30 sccm and methane gas at a flow rate of 89 scc.
m, the carrier gas is a hydrogen gas at a flow rate of 150 sccm, and the doping gas is a 1% hydrogen-diluted diborane gas at a flow rate of 10 sccm.
Flow in cm. Subsequently, an i-layer is laminated to a thickness of 400 nm. At this time, the substrate temperature is maintained at 200 ° C., the reaction gas is a monosilane gas at a flow rate of 60 sccm, and the carrier gas is a hydrogen gas at a flow rate of 20 sccm. Subsequently, an n-layer is laminated to a thickness of 100 nm. At this time, the substrate was kept at 200 ° C., the reaction gas was a monosilane gas at a flow rate of 60 sccm, the carrier gas was a hydrogen gas at a flow rate of 3 sccm, and the doping gas was 0.3 sccm.
% Hydrogen diluted phosphine gas at a flow rate of 18 sccm.
Thus, after the amorphous semiconductor photoelectric conversion layer 13 is laminated,
The scribe grooves are formed by irradiating the amorphous semiconductor photoelectric conversion layer 43 with laser light while scanning the paper perpendicularly to the paper surface.
(FIG. 4B).

【0034】最後に、図1に示すマスクを用いて、桟4
を紙面に垂直方向にして透光性絶縁基板41をマスクに
セットし、透明導電性膜電極44として、ZnOを50
nmの厚さでスパッタ法又は蒸着法により積層し、続い
て裏面反射金属膜45としてAgを500nmの厚さで
スパッタ法又は蒸着法により積層し、各々の透明導電性
膜電極44及び裏面反射金属膜45に分離し、集積型薄
膜太陽電池を形成する(図4(c))。
Finally, using the mask shown in FIG.
Is set in a direction perpendicular to the plane of the paper, the translucent insulating substrate 41 is set as a mask, and ZnO of 50 is used as the transparent conductive film electrode 44.
Ag is laminated by sputtering or vapor deposition with a thickness of 500 nm, and then Ag is laminated with a thickness of 500 nm by sputtering or vapor deposition as the back surface reflective metal film 45. The film is separated into films 45 to form integrated thin-film solar cells (FIG. 4C).

【0035】なお、隣接する非晶質半導体光電変換層4
3のp層とn層とが透明導電性膜電極44で短絡してい
るが直列動作で実用上問題のないレベルであり、集積度
が上がり、非晶質半導体光電変換層43の間の溝が狭い
時には望ましい形である。もっとも構内を非晶質半導体
光電変換層43で埋めないで集積型薄膜太陽電池を形成
する場合にも本発明のマスクを用いることができる。
The adjacent amorphous semiconductor photoelectric conversion layer 4
Although the p-layer and the n-layer of No. 3 are short-circuited by the transparent conductive film electrode 44, they are in a level that does not pose a practical problem due to serial operation, the degree of integration increases, and the groove between the amorphous semiconductor photoelectric conversion layers 43 is formed. This is the preferred shape when is narrow. However, the mask of the present invention can also be used when forming an integrated thin-film solar cell without filling the premises with the amorphous semiconductor photoelectric conversion layer 43.

【0036】上記実施例では、透明導電性膜電極44と
裏面反射金属膜45のパターン形成に用いたが、他の薄
膜のパターン形成に用いることもできる。
In the above-described embodiment, the transparent conductive film electrode 44 and the back surface reflective metal film 45 are used for pattern formation, but may be used for pattern formation of other thin films.

【0037】[0037]

【発明の効果】本発明によれば、所定方向に張力をマス
クの各桟にかけることにより、製膜工程時の熱工程の影
響を除外することにより、大面積基板においても正確な
パターニング加工を行うことが可能となり、工程数が少
なくコスト面で優位なため、大面積集積型太陽電池に適
用できる。
According to the present invention, an accurate patterning process can be performed even on a large-area substrate by applying a tension to each crosspiece of a mask in a predetermined direction, thereby eliminating the influence of a heat process during a film forming process. Since this method can be performed and the number of steps is small and the cost is superior, the present invention can be applied to a large-area integrated solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るマスクの斜視図である。FIG. 1 is a perspective view of a mask according to the present invention.

【図2】桟の断面形状を示す図である。FIG. 2 is a diagram showing a cross-sectional shape of a crosspiece.

【図3】ガイドの断面形状を示す図である。FIG. 3 is a diagram showing a cross-sectional shape of a guide.

【図4】本発明に係る集積型薄膜太陽電池の各製造工程
での断面を示す図である。
FIG. 4 is a view showing a cross section in each manufacturing process of the integrated thin film solar cell according to the present invention.

【符号の説明】[Explanation of symbols]

1 マスク枠 2 段 3 螺子 4 桟 5 バネ 6 押さえ板 7 固定バネ板 8 ガイド 41 透光性絶縁基板 42 透明導電性膜電極(SnO2) 43 非晶質半導体光電変換層(p-i-n) 44 透明導電性膜電極(ZnO) 45 裏面反射金属膜(Ag)REFERENCE SIGNS LIST 1 mask frame 2 step 3 screw 4 beam 5 spring 6 holding plate 7 fixed spring plate 8 guide 41 translucent insulating substrate 42 transparent conductive film electrode (SnO 2 ) 43 amorphous semiconductor photoelectric conversion layer (pin) 44 transparent conductive Film electrode (ZnO) 45 Back reflection metal film (Ag)

フロントページの続き (56)参考文献 特開 昭63−283173(JP,A) 特開 平1−225371(JP,A) 特開 平4−116925(JP,A) 実開 昭64−44626(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 H01L 21/205 Continuation of the front page (56) References JP-A-63-283173 (JP, A) JP-A-1-225371 (JP, A) JP-A-4-116925 (JP, A) Japanese Utility Model Publication No. 64-44626 (JP) , U) (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078 H01L 21/205

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マスクとしての桟と、該桟に所定方向に
張力を付与する張力付与手段と、上記桟と上記張力付与
手段とを支持するマスク支持体と、上記桟の位置を固定
するために上記マスク支持体に設けられたガイド部とを
備え、 該ガイド部の断面形状は、上記桟の断面形状に対応した
形状であることを特徴とするマスク。
1. A bar as a mask, and the bar is mounted on the bar in a predetermined direction.
Tension applying means for applying tension, the crosspiece and the tension applying
Fix the position of the crossbar and the mask support that supports the means
And a guide portion provided on the mask support in order to
Provided, the cross-sectional shape of the guide portion, corresponding to the cross-sectional shape of the bar
A mask having a shape.
【請求項2】 マスクとしての桟と、該桟に所定方向に
張力を付与する張力付与手段と、上記桟と上記張力付与
手段とを支持するマスク支持体とを備え、 上記桟と上記張力付与手段とは一体に形成されているこ
とを特徴とするマスク。
2. A bar as a mask, and the bar is mounted on the bar in a predetermined direction.
Tension applying means for applying tension, the crosspiece and the tension applying
And a mask support for supporting said means, and said crosspiece and said tension applying means are integrally formed.
And a mask characterized by the following.
JP22905095A 1995-09-06 1995-09-06 mask Expired - Fee Related JP3182323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22905095A JP3182323B2 (en) 1995-09-06 1995-09-06 mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22905095A JP3182323B2 (en) 1995-09-06 1995-09-06 mask

Publications (2)

Publication Number Publication Date
JPH0974214A JPH0974214A (en) 1997-03-18
JP3182323B2 true JP3182323B2 (en) 2001-07-03

Family

ID=16885966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22905095A Expired - Fee Related JP3182323B2 (en) 1995-09-06 1995-09-06 mask

Country Status (1)

Country Link
JP (1) JP3182323B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516870B2 (en) * 2004-07-06 2010-08-04 株式会社アルバック Method for simultaneously forming vapor deposition film on a plurality of substrates and transport tray
JP2006045663A (en) * 2004-07-06 2006-02-16 Ulvac Japan Ltd Method for depositing vapor-deposited film on substrate and transport tray
JP2006225748A (en) * 2005-02-21 2006-08-31 Ulvac Japan Ltd Method for depositing sputter thin film onto substrate and carrier
WO2011002212A2 (en) * 2009-06-30 2011-01-06 엘지이노텍주식회사 Photovoltaic power-generating apparatus and method for manufacturing same
WO2013140599A1 (en) * 2012-03-23 2013-09-26 株式会社島津製作所 Film forming mask and film forming apparatus

Also Published As

Publication number Publication date
JPH0974214A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US5538902A (en) Method of fabricating a photovoltaic device having a three-dimensional shape
US5665607A (en) Method for producing thin film solar cell
US8092601B2 (en) System and process for fabricating photovoltaic cell
JP4981020B2 (en) INTEGRATED THIN FILM SOLAR CELL, METHOD FOR MANUFACTURING THE SAME, METHOD FOR PROCESSING TRANSPARENT ELECTRODE FOR INTEGRATED THIN FILM SOLAR CELL, ITS STRUCTURE AND TRANSPARENT SUBSTRATE PROVIDED WITH SAME
JP2002511981A (en) Method for manufacturing layered structure on substrate, and substrate and semiconductor component manufactured by the method
US5281541A (en) Method for repairing an electrically short-circuited semiconductor device, and process for producing a semiconductor device utilizing said method
JPH1070295A (en) Fabrication of integrated thin film solar cell
JP3182323B2 (en) mask
JPH0851229A (en) Integrated solar battery and its manufacture
JPS616828A (en) Manufacture of semiconductor device
US6184058B1 (en) Integrated thin film solar battery and method for fabricating the same
JPS61234082A (en) Super lightweight flexible semiconductor device array and manufacture thereof
JPH1052780A (en) Laser beam machine
JPH01105581A (en) Manufacture of photovoltaic device
JP5288149B2 (en) Method for manufacturing integrated thin film element
JP2003303981A (en) Method for manufacturing integrated solar cell and patterning device
JPH0528513B2 (en)
JPH1168133A (en) Thin-film element module and its manufacture
JPH10335312A (en) Patterning method using radical reaction
JPH0551190B2 (en)
JPH0745853A (en) Photovoltaic device and manufacture thereof
JPH0533833B2 (en)
JP5637473B2 (en) Layered structure manufacturing method, semiconductor substrate, element circuit manufacturing method, and series connection circuit of solar cell elements
JP2000261020A (en) Integrated thin-film solar battery
JP2002231982A (en) Method for forming flexible solar battery module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees