JP3181382U - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP3181382U
JP3181382U JP2012007116U JP2012007116U JP3181382U JP 3181382 U JP3181382 U JP 3181382U JP 2012007116 U JP2012007116 U JP 2012007116U JP 2012007116 U JP2012007116 U JP 2012007116U JP 3181382 U JP3181382 U JP 3181382U
Authority
JP
Japan
Prior art keywords
heat dissipation
dissipation device
heat
rough structure
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012007116U
Other languages
Japanese (ja)
Inventor
志曄 林
Original Assignee
奇▲こう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇▲こう▼科技股▲ふん▼有限公司 filed Critical 奇▲こう▼科技股▲ふん▼有限公司
Priority to JP2012007116U priority Critical patent/JP3181382U/en
Application granted granted Critical
Publication of JP3181382U publication Critical patent/JP3181382U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】安価に製造出来、大巾に熱抵抗の低減が出来る放熱装置を提供する。
【解決手段】放熱装置1は、第1板体及び第2板体を含み、該第1板体は、第1側面及び第2側面を有し、該第2側面上に粗構造1021を形成し、該第2板体は、第3側面及び第4側面を有し、該第4側面は、相対する該第2側面に被せ合わせられ、共同でチャンバ113を定義し、作動流体12を充填し、前記粗構造1021の上に更にメッキ膜層1022を被覆でき、前記粗構造及びメッキ膜層の設置によりコストを減少し、全体の熱抵抗を低減することができる。
【選択図】図3
Disclosed is a heat dissipation device that can be manufactured at low cost and can greatly reduce thermal resistance.
A heat dissipation device includes a first plate and a second plate, and the first plate has a first side and a second side, and a rough structure is formed on the second side. The second plate body has a third side surface and a fourth side surface, and the fourth side surface is put on the opposite second side surface, jointly defines the chamber 113, and is filled with the working fluid 12. In addition, a plating film layer 1022 can be further coated on the rough structure 1021, and the installation of the rough structure and the plating film layer can reduce the cost and reduce the overall thermal resistance.
[Selection] Figure 3

Description

本考案は、放熱装置に関し、特に、コストを減少し、全体の熱抵抗を大幅に低減することができる放熱装置に関する。   The present invention relates to a heat radiating device, and more particularly, to a heat radiating device capable of reducing cost and greatly reducing the overall thermal resistance.

科学技術産業の急速な進歩に伴い、電子装置の機能も益々強大になり、例えば、CPU(Central Processing Unit)、チップセット又は表示ユニットの電子素子演算速度も伴って増長され、電子素子が単位時間に発生する熱量は、相対して上昇している。従って、電子部材が放出する熱量が適時放熱できない場合、電子装置全体の動作に影響を及ぼすか、電子装置の損壊を招く。   With the rapid advancement of the science and technology industry, the functions of electronic devices are becoming more and more powerful. For example, the electronic element operation speed of a CPU (Central Processing Unit), chipset or display unit is increased, and the electronic elements are unit time. The amount of heat generated is relatively increased. Therefore, when the amount of heat released by the electronic member cannot be radiated in a timely manner, the operation of the entire electronic device is affected or the electronic device is damaged.

一般の業界で採用する電子デバイスの放熱装置は、大部分がファン、ヒートシンク又は熱管等の放熱部材を介し、放熱を行っており、ヒートシンクを熱源に接触させ、熱管により熱を遠隔地に放熱するか、ファンで気流を強制的に誘導し、該ヒートシンクに対し、強制的に放熱し、空間が狭いか、面積が大きな熱源に対しては、均温板を選択し、導熱部材とし、熱源を伝導する用途としている。   Most of the heat dissipation devices for electronic devices used in the general industry radiate heat via heat radiating members such as fans, heat sinks, and heat tubes. The heat sink is brought into contact with a heat source, and heat is radiated to a remote place through the heat tubes. Or, forcibly induce airflow with a fan, forcibly dissipate heat to the heat sink, select a soaking plate for a heat source with a small space or large area, use it as a heat conducting member, It is used for conducting.

従来の均温板は、2片の板材を対応して被せ合わせて形成される。該板材の互いに対応する側は、溝及び毛細構造(例えば、メッシュ、焼結体)の何れか1つ又はその何れか1つを合わせたものを設け、該板材を対応して被せ合わせ、密閉チャンバを形成し、該密閉チャンバは、真空状態を呈し、その内部に作動流体を充填し、毛細極限を増加し、銅柱コーティング焼結、焼結柱、発泡柱等の毛細構造を利用し、支持することに用い、回流路とし、前記均温板内の動作流体が蒸発領域で熱を受けて蒸発し、動作流体が液体から気体に変換され、気体の作動流体が均温板の冷凝領域に至った後気体から液体に冷凝変換され、更に銅柱を開始、蒸発領域に回流し、循環作用を継続し、気体の作動流体が該冷凝領域で液体の小さな水珠状に冷凝された後、重力又は毛細作用の関係により作動流体を蒸発領域に回流させることができる。   A conventional temperature equalizing plate is formed by covering two pieces of plate materials correspondingly. The plate members corresponding to each other are provided with any one of grooves and capillaries (for example, mesh, sintered body) or a combination thereof, and the plate members are covered and sealed in a sealed manner. Forming a chamber, the sealed chamber is in a vacuum state, filled with a working fluid therein, increases the capillary limit, and utilizes a capillary structure such as copper pillar coating sintered, sintered pillar, foam pillar, The working fluid in the soaking plate is evaporated by receiving heat in the evaporating region, the working fluid is converted from liquid to gas, and the gaseous working fluid is cooled in the soaking plate. After being cooled and solidified from gas to liquid, the copper column is started, circulated to the evaporation zone, and the circulation action is continued. After the gas working fluid is cooled to a small liquid bead in the cooling zone. The working fluid is circulated into the evaporation zone due to gravity or capillary action Rukoto can.

従来の均温板は、その作動流体の回流速度が遅すぎることにより、空燃焼又は均温不良を生じ易く、作動流体に効率的に気液変化の熱交換を行わせることができなくなり、その均温効果が顕著でなくなるので、設計において、毛細構造の作動流体に対する毛細吸力を増加することを考慮する場合、冷却する作動流体の回流(吸引)力を加速し、毛細力を大幅に向上し、均温板の熱伝導能力を効率的に向上するが、従来の毛細吸収力及び流体抵抗力は、2つの相互に衝突する設計要素である。毛細吸収力の向上を考慮する場合、孔が比較的小さい毛細構造を提供する必要があるが、この小さな孔は、比較的大きな流体抵抗力を提供して作動流体の回流作用を阻害する。流体抵抗力の低減を考慮する場合、孔が比較的大きな毛細構造を提供し、作動流体の回流に有利にさせるが、この大きな孔は、毛細吸収力を増加させるのに有利でない。   The conventional temperature equalizing plate is prone to air combustion or poor temperature equalization because the circulating speed of the working fluid is too slow, making it impossible for the working fluid to efficiently perform heat exchange for gas-liquid changes. Since the soaking effect will not be noticeable, when considering increasing the capillary suction force for the working fluid with a capillary structure in the design, the circulatory (suction) force of the cooling working fluid is accelerated and the capillary force is greatly improved. Although the heat conduction capacity of the soaking plate is efficiently improved, the conventional capillary absorption force and fluid resistance force are two mutually colliding design elements. When considering an increase in capillary absorption, it is necessary to provide a capillary structure with relatively small pores, but these small pores provide a relatively large fluid resistance and impede the circulatory action of the working fluid. When considering the reduction of fluid resistance, the pores provide a relatively large capillary structure, which favors the circulation of the working fluid, but the large pores are not advantageous for increasing the capillary absorbency.

従って、市場において、複合式微小構造を採用したもう1種の均温板があり、それは、第1毛細構造層及び第2毛細構造層を含み、該第1、第2構造層が異なる孔の寸法を有する。前記単層を採用した従来の均温板又は複合式を採用した均温盤は、そのプロセスが何れも複雑で薄型化が容易でなく、且つ品質を制御することが困難であり、製造コスト及び歩留まりが悪化する。   Therefore, there is another kind of soaking plate in the market which employs a composite microstructure, which includes a first capillary layer and a second capillary layer, the first and second structural layers having different pores. Have dimensions. The conventional soaking plate employing the single layer or the soaking plate employing the composite type is complicated in its process, is not easy to reduce in thickness, and is difficult to control the quality, and the production cost and Yield deteriorates.

上記のように、従来技術は、以下の欠陥を有する。
1. コストが比較的高い。
2. 均温性が比較的良好でない。
3. 薄型化が容易でない。
4. 熱抵抗が比較的高い。
As described above, the prior art has the following defects.
1. Cost is relatively high.
2. The temperature uniformity is not relatively good.
3. Thinning is not easy.
4). Thermal resistance is relatively high.

上記従来の問題及び欠陥を如何に解決するかは、本考案者及び関連業者が研究改善の方向を欲するところである。   How to solve the above-mentioned conventional problems and deficiencies is where the inventor and related companies want the direction of research improvement.

そこで、上記の問題を効率的に解決する為、本考案の目的は、コストを大幅に減少する放熱装置を提供することにある。   Therefore, in order to efficiently solve the above problem, an object of the present invention is to provide a heat dissipation device that greatly reduces the cost.

本考案のもう1つの目的は、全体の熱抵抗を低減することができる放熱装置を提供することにある。   Another object of the present invention is to provide a heat dissipation device that can reduce the overall thermal resistance.

本考案のもう1つの目的は、冷凝領域の均温性を良好にすることができる放熱装置を提供することにある。   Another object of the present invention is to provide a heat dissipating device that can improve the temperature uniformity in the cooling region.

上記の目的を達成する為、本考案が提供する放熱装置は、第1板体及び第2板体を含み、該第1板体は、第1側面及び第2側面を有し、該第2側面上に粗構造を形成(又は設置)し、該第2板体は、第3側面及び第4側面を有し、該第2板体の第4側面は、相対する該第1板体の第2側面に被せ合わせられ、共同でチャンバを定義し、作動流体を充填し、前記放熱装置は、更にメッキ膜層を有し、前記第2側面の粗構造上、第4側面上の何れか1側面上に被覆させるか又は第2側面の粗構造上及び第4側面上に被覆させる。   In order to achieve the above object, a heat dissipating device provided by the present invention includes a first plate and a second plate, the first plate having a first side and a second side, and the second plate. A rough structure is formed (or installed) on the side surface, and the second plate body has a third side surface and a fourth side surface, and the fourth side surface of the second plate body is the opposite side of the first plate body. Covered on the second side, jointly defines a chamber, and is filled with a working fluid, and the heat dissipation device further includes a plating film layer, either on the rough structure on the second side or on the fourth side. Either on one side or on the coarse structure on the second side and on the fourth side.

本考案のこの構造の設計により、前記第2側面上に形成する局部又は全部の粗構造を利用するとともに、該粗構造上に被覆するメッキ膜層が二酸化珪素から構成され、且つそれが親水性又は疎水性特性を有し、該第2板体の第3側面が熱を受ける時、液体の作動流体は、熱を受けて液体の作動流体に変換され、前記粗構造の形成により、液体の作動流体が相対する該第2側面の熱源対応位置まで引き戻し、終結された液体作動流体が前記第3側面に流れ戻り、冷凝した作動液体の回流を加速し、全体の放熱装置の熱抵抗の低減を促進し、放熱装置の均温性を向上する。この他、更に、従来の均温板プロセスが複雑かつ品質制御し難く、歩留まり及び生産コストを大幅に低下させる点を改善することができる。   The design of this structure of the present invention makes use of the local structure or the entire rough structure formed on the second side surface, and the plating film layer covering the rough structure is made of silicon dioxide, and is hydrophilic. Or when the third side surface of the second plate body receives heat, the liquid working fluid is converted into liquid working fluid by receiving heat, and the formation of the rough structure causes the liquid to The working fluid is pulled back to the position corresponding to the heat source on the second side faced oppositely, and the terminated liquid working fluid flows back to the third side face, accelerating the recirculation of the cooled working liquid and reducing the thermal resistance of the entire heat radiating device. To improve the temperature uniformity of the heat dissipation device. In addition, the conventional soaking plate process is complicated and difficult to control the quality, and the yield and production cost can be greatly reduced.

本考案の放熱装置の第1実施例の立体分解図である。It is a three-dimensional exploded view of the first embodiment of the heat dissipation device of the present invention. 本考案の放熱装置の第1実施例の立体組み合わせ図である。It is a three-dimensional combination diagram of the first embodiment of the heat dissipation device of the present invention. 本考案の放熱装置の第1実施例の断面図である。It is sectional drawing of 1st Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第1実施例の拡大説明図である。It is expansion explanatory drawing of 1st Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第1実施例のもう1つの断面図である。It is another sectional drawing of 1st Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第1実施例のもう1つの拡大説明図である。It is another expansion explanatory drawing of 1st Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第2実施例の断面図である。It is sectional drawing of 2nd Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第2実施例の拡大説明図である。It is expansion explanatory drawing of 2nd Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第3実施例の断面図である。It is sectional drawing of 3rd Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第3実施例の拡大説明図である。It is expansion explanatory drawing of 3rd Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第4実施例の断面図である。It is sectional drawing of 4th Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第4実施例の拡大説明図である。It is expansion explanatory drawing of 4th Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第5実施例の断面図である。It is sectional drawing of 5th Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第5実施例の拡大説明図である。It is expansion explanatory drawing of 5th Example of the thermal radiation apparatus of this invention. 本考案の放熱装置の第6実施例の立体分解図である。It is a three-dimensional exploded view of a sixth embodiment of the heat dissipation device of the present invention. 本考案の放熱装置の第7実施例の立体分解図である。It is a three-dimensional exploded view of a seventh embodiment of the heat dissipation device of the present invention.

本考案の上記目的及びその構造及び効果における特性について、図面を附した好適実施例を挙げ、以下に説明する。   The above object and the characteristics of the structure and effect of the present invention will be described below with reference to preferred embodiments with drawings.

図1、図2、図3、図4、図5、図6を参照し、それは、本考案の放熱装置の第1実施例の立体分解図及び立体組み合わせ図及び断面図及び拡大説明図であり、放熱装置は、第1板体10及び第2板体11を含み、該第1板体10は、第1側面101及び第2側面102(冷凝領域)を有し、該第2側面102上に局部(図3、図4)及び全部(図5、図6)のうち1つの粗構造1021を形成(又は設置)し、本考案に前記局部の粗構造1021は、熱源2(CPU、トランジスタ又はその他の熱を発生する物体等)の対応する真上に位置し、該第2側面102の粗構造1021上にメッキ膜層102を被覆し、且つ該メッキ膜層102は、二酸化シリコンにより構成され、
前記第2側面102の粗構造1021は、本考案中の微小溝路を敷設した毛細構造であることが好ましい選択であり、それは、機械加工(インプリント及びマーキング及びカービング等であることができる)又はエッチングの何れか1つの方式を利用して形成し、該粗構造1021も凹凸状を呈し、前記メッキ膜層1022は、親水性薄膜及び疎水性薄膜のうち何れか1つであり、本実施例は、親水性薄膜により説明するがこれに限定するものではない。
1, 2, 3, 4, 5, and 6, which are a three-dimensional exploded view, a three-dimensional combination diagram, a cross-sectional view, and an enlarged explanatory view of the first embodiment of the heat dissipation device of the present invention. The heat radiating device includes a first plate body 10 and a second plate body 11, and the first plate body 10 has a first side surface 101 and a second side surface 102 (cooling region), on the second side surface 102. In this invention, the local rough structure 1021 is formed (or installed) one of the local parts (FIGS. 3 and 4) and all (FIGS. 5 and 6). (Or other object that generates heat, etc.) and the plated film layer 102 is coated on the rough structure 1021 of the second side surface 102, and the plated film layer 102 is made of silicon dioxide. And
The rough structure 1021 of the second side surface 102 is preferably a capillary structure laid with a micro-groove in the present invention, which is machined (can be imprinting, marking, carving, etc.) Alternatively, the rough structure 1021 also has an uneven shape, and the plating film layer 1022 is one of a hydrophilic thin film and a hydrophobic thin film. An example will be described using a hydrophilic thin film, but is not limited thereto.

前記第2板体11は、第3側面111及び第4側面112(蒸発領域)を有し、該第2板体11の第4側面112は、相対する該第1板体10第2側面102に被せ合わせ、チャンバ113を共同で定義し、前記第3側面111及び前記熱源2は、互いに接触し、
前記チャンバ113内に作動流体12を充填し、該作動流体12は、純水、メタノール、アセトン、冷媒及びアンモニアの何れか1つであることができる。
The second plate body 11 has a third side surface 111 and a fourth side surface 112 (evaporation region), and the fourth side surface 112 of the second plate body 11 is opposed to the first plate body 10 and the second side surface 102. The chamber 113 is jointly defined, and the third side surface 111 and the heat source 2 are in contact with each other,
The chamber 113 is filled with a working fluid 12, and the working fluid 12 may be any one of pure water, methanol, acetone, a refrigerant, and ammonia.

本考案の放熱装置の設計を介し、前記第2側面102上に形成する局部又は全部の粗構造1021、並びに該粗構造1021上に被覆する親水性又は疎水性特性を有するメッキ膜層1022を利用し、該第3側面1111が熱源2に接触する時、該第2板体11の第3側面111に熱を受けさせる時、液体作動流体12は、熱を受けて気体作動流体12に変換され、続いて、気体の作動流体12は、第1板体10の第2側面102に冷凝を発生して液体の作動流体12に変換し、前記粗構造1012の形成により、液体作動流体12を迅速に引き戻し、該第2側面102に相対する熱源2の対応位置(冷凝領域の最も熱い部分)に集結し、更に、液体作動流体2に集結して前記第2板体11の第3側面111に流し戻し、該粗構造1012を介し、冷凝の作動流体2の回流を加速することができ、放熱装置1全体の熱抵抗の低減を促進し、均温性を向上する。この他、更に、従来の均温板のプロセスが複雑であり且つ品質制御が困難であり、歩留まり及び生産効率を大幅な低下を改善する。   Through the design of the heat dissipating device of the present invention, a local part or all of the rough structure 1021 formed on the second side surface 102 and a plating film layer 1022 having a hydrophilic or hydrophobic characteristic covering the rough structure 1021 are used. When the third side surface 1111 contacts the heat source 2 and the third side surface 111 of the second plate 11 receives heat, the liquid working fluid 12 receives heat and is converted into the gas working fluid 12. Subsequently, the gaseous working fluid 12 is cooled and converted to the liquid working fluid 12 on the second side surface 102 of the first plate body 10, and the formation of the rough structure 1012 rapidly causes the liquid working fluid 12 to be quickly formed. To the corresponding position of the heat source 2 (the hottest portion of the cooling coagulation region) opposite to the second side surface 102 and further to the liquid working fluid 2 to the third side surface 111 of the second plate 11. Flush back and remove the coarse structure 1012 And, it is possible to accelerate the circumfluence of the working fluid 2 cold coagulation, and facilitates reducing thermal resistance of the entire heat dissipation device 1, thereby improving the HitoshiAtsushisei. In addition, the conventional soaking plate process is complicated and quality control is difficult, which improves the yield and production efficiency significantly.

図7、図8は、本考案の放熱装置の第2実施例の断面図及び拡大説明図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記粗構造1021が波状を呈し、該粗構造1021上に前記メッキ膜層1022を被覆することであり、同様に、冷凝した作動流体の回流速度を加速し、均温性を上昇することができ、全体の熱抵抗を大幅に低減し、且つ生産コストを減少する効果を有する。   7 and 8 are a cross-sectional view and an enlarged explanatory view of a second embodiment of the heat dissipating device of the present invention, and the relative relationship between some members of the heat dissipating device is the same as that of the heat dissipating device. Therefore, it is not described here again, and the main difference between the present heat dissipation device and the above is that the rough structure 1021 has a wavy shape and the plated film layer 1022 is coated on the rough structure 1021. In addition, the circulating speed of the cooled working fluid can be accelerated, the temperature uniformity can be increased, and the overall thermal resistance can be greatly reduced and the production cost can be reduced.

図9、図10は、本考案の放熱装置の第3実施例の断面図及び拡大説明図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記粗構造1021が鋸歯状を呈し、該粗構造1021上に前記メッキ膜層1022を被覆することであり、同様に、冷凝した作動流体の回流速度を加速し、均温性を上昇することができ、全体の熱抵抗を大幅に低減し、且つ生産コストを減少する効果を有する。   9 and 10 are a cross-sectional view and an enlarged explanatory view of a third embodiment of the heat dissipation device of the present invention, and the relative relationship between some members of the heat dissipation device is the same as that of the heat dissipation device. Therefore, it is not described here again, and the main difference between the present heat dissipation device and the above is that the rough structure 1021 has a sawtooth shape and the plated film layer 1022 is coated on the rough structure 1021. Similarly, it is possible to accelerate the circulating speed of the cooled working fluid, increase the temperature uniformity, greatly reduce the overall thermal resistance, and reduce the production cost.

図11、図12は、本考案の放熱装置の第4実施例の断面図及び拡大説明図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記メッキ膜層1022が第4側面112上(蒸発領域)を被覆することである。   11 and 12 are a cross-sectional view and an enlarged explanatory view of a fourth embodiment of the heat dissipation device of the present invention, and the relative relationship between some members of the heat dissipation device is the same as that of the heat dissipation device. Therefore, it is not described here again, and the main difference between the present heat dissipation device and the above is that the plating film layer 1022 covers the fourth side surface 112 (evaporation region).

図13、図14は、本考案の放熱装置の第5実施例の断面図及び拡大説明図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記メッキ膜層1022が前記第2側面102の粗構造1021上及び第4側面112上を同時に被覆することであり、同様に、冷凝した作動流体の回流速度を加速し、均温性を上昇することができ、全体の熱抵抗を大幅に低減し、且つ生産コストを減少する効果を有する。   FIGS. 13 and 14 are a sectional view and an enlarged explanatory view of a fifth embodiment of the heat dissipating device of the present invention, and the relative relationship between some members of the heat dissipating device is the same as that of the heat dissipating device. Therefore, it is not described here again. The main difference between the present heat radiating device and the above is that the plated film layer 1022 covers the rough structure 1021 and the fourth side surface 112 of the second side surface 102 at the same time. Similarly, it is possible to accelerate the circulation speed of the cooled working fluid, increase the temperature uniformity, greatly reduce the overall thermal resistance, and reduce the production cost.

図15は、本考案の放熱装置の第6実施例の立体分解図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記第2板体11が更に毛細構造1121を有し、該毛細構造1121が該第4側面112上に形成され、該毛細構造1121は、複数の溝、焼結粉体及びメッシュ体の何れか1つであることができ、本実施例は、焼結粉体により説明するが、これに限定するものではない。   FIG. 15 is a three-dimensional exploded view of a sixth embodiment of the heat dissipating device of the present invention, and the relative relationship between some members of the heat dissipating device is the same as that of the heat dissipating device. Although not described again, the present heat dissipation device and the main difference are that the second plate 11 further has a capillary structure 1121, and the capillary structure 1121 is formed on the fourth side surface 112, and the capillary structure 1121. Can be any one of a plurality of grooves, sintered powder, and mesh body, and this embodiment will be described using sintered powder, but is not limited thereto.

図16及び図5を参照し、それは、本考案の放熱装置の第7実施例の立体分解図であり、前記放熱装置の一部の部材と部材の間の相対関係は、前記放熱装置と同一であるので、ここでは、再度記載せず、本放熱装置及び前記の主要な差異は、前記チャンバ113が更に少なくとも1つの支持柱1131を有し、該支持柱1131両端がそれぞれ前記第2側面120(冷凝領域)及び第4側面112(蒸発領域)に接続し、該支持柱1131外部に毛細構造体1131aを有し、該毛細構造体1131aは、複数の溝、焼結粉体及びメッシュ体の何れか1つであることができ、本実施例は、焼結粉体により説明するが、これに限定するものではない。   Referring to FIGS. 16 and 5, it is a three-dimensional exploded view of a seventh embodiment of the heat dissipation device of the present invention, and the relative relationship between some members of the heat dissipation device is the same as that of the heat dissipation device. Therefore, it is not described again here, and the main difference between the present heat radiating device and the above is that the chamber 113 further has at least one support column 1131, and both ends of the support column 1131 are respectively the second side surface 120. (Cooling region) and the fourth side surface 112 (evaporation region), and has a capillary structure 1131a outside the support column 1131. The capillary structure 1131a includes a plurality of grooves, sintered powder, and mesh bodies. Any one of them can be used, and the present embodiment will be described using sintered powder, but is not limited thereto.

本考案の粗構造1021(図示せず)の高さは、板体中央から板体辺縁に向かって徐々に縮小する状態を呈する。   The height of the rough structure 1021 (not shown) of the present invention is in a state of gradually decreasing from the center of the plate body toward the edge of the plate body.

前記の実施例を介し、前記第2板体11の第3側面111が熱を受ける時、気体の作動流体12は、第1板体10の第2側面102で冷凝を発生して液体の作動流体12に変換され、前記メッキ膜層1022の親水特性により、更に、前記支持柱1131上の毛細構造体1131aの毛細力の牽引により、液体作動流体12を冷凝領域から蒸発領域に引き戻し、このように冷凝した作動流体の回流速度を加速し、均温性を向上させ、放熱装置1全体の熱抵抗を低減する。   When the third side surface 111 of the second plate body 11 receives heat through the above-described embodiment, the gaseous working fluid 12 cools on the second side surface 102 of the first plate body 10 to operate the liquid. The liquid working fluid 12 is converted back into the fluid 12 and pulled back from the cooling region to the evaporation region by the hydrophilic property of the plating film layer 1022 and by the pulling of the capillary force of the capillary structure 1131a on the support column 1131. Accelerate the circulating speed of the working fluid that has been chilled, improve the temperature uniformity, and reduce the overall thermal resistance of the heat dissipation device 1.

上記のように、本考案は、従来技術に比較し、以下の利点を有する。
1. コストを減少させる。
2. 放熱装置の均温性を向上する。
3. 放熱装置の全体の熱抵抗を低下させる。
As described above, the present invention has the following advantages over the prior art.
1. Reduce costs.
2. Improve the temperature uniformity of the heat dissipation device.
3. Reduce the overall thermal resistance of the heat dissipation device.

なお、本考案では好ましい実施例を前述の通り開示したが、これらは決して本考案に限定するものではなく、当該技術を熟知する者なら誰でも、本考案の精神と領域を脱しない均等の範囲内で各種の変動や潤色を加えることができることは勿論である。   In the present invention, preferred embodiments have been disclosed as described above, but these are not intended to limit the present invention in any way, and anyone who is familiar with the technology has an equivalent scope that does not depart from the spirit and scope of the present invention. Of course, various fluctuations and hydration colors can be added.

1 放熱装置
10 第1板体
101 第1側面
102 第2側面
1021 粗構造
1022 メッキ膜層
11 第2板体
111 第3側面
112 第4側面
1121 毛細構造
113 チャンバ
1131 支持柱
1131a 毛細構造体
12 作動流体
2 熱源
DESCRIPTION OF SYMBOLS 1 Heat sink 10 1st plate body 101 1st side surface 102 2nd side surface 1021 Coarse structure 1022 Plating film layer 11 2nd plate body 111 3rd side surface 112 4th side surface 1121 Capillary structure 113 Chamber 1131 Support pillar 1131a Capillary structure body 12 Action | operation Fluid 2 Heat source

Claims (16)

第1側面及び第2側面を有し、該第2側面上に粗構造を有する第1板体と、
第3側面及び第4側面を有する第2板体と、を含み、
該第2板体の第4側面と相対する該第1板体の第2側面とは重ね合わされ、内部にチャンバを形成し、該チャンバ内に作動流体を充填する放熱装置。
A first plate having a first side and a second side and having a rough structure on the second side;
A second plate having a third side surface and a fourth side surface,
A heat dissipating device that is overlapped with the second side surface of the first plate body facing the fourth side surface of the second plate body, forms a chamber therein, and fills the chamber with a working fluid.
前記第3側面は、熱源に貼合される請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the third side surface is bonded to a heat source. 前記第2側面の粗構造上又は第4側面上を被覆するメッキ膜層を有する請求項2に記載の放熱装置。   The heat radiating device according to claim 2, further comprising a plating film layer covering the rough structure of the second side surface or the fourth side surface. 前記第2側面の粗構造上及び第4側面上を被覆するメッキ膜層を有する請求項2に記載の放熱装置。   The heat radiating device according to claim 2, further comprising a plating film layer covering the rough structure of the second side surface and the fourth side surface. 前記粗構造は、前記第2側面上の局部又は全部に形成される請求項4に記載の放熱装置。   The heat dissipation device according to claim 4, wherein the rough structure is formed in a local portion or all over the second side surface. 前記局部の粗構造は、該第2側面の該熱源の真上に対応する箇所に形成される請求項5に記載の放熱装置。   The heat dissipation device according to claim 5, wherein the rough structure of the local portion is formed at a location corresponding to the heat source of the second side surface immediately above the heat source. 前記メッキ膜層は、親水性薄膜又は疎水性薄膜である請求項3に記載の放熱装置。   The heat dissipation device according to claim 3, wherein the plating film layer is a hydrophilic thin film or a hydrophobic thin film. 前記作動流体は、純水、メタノール、アセトン、冷媒、及びアンモニアのうちの何れか1つである請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the working fluid is one of pure water, methanol, acetone, a refrigerant, and ammonia. 前記第2側面の粗構造は、微小溝路を有する毛細構造であり、機械加工又はエッチングにより形成される請求項6に記載の放熱装置。   The heat dissipation device according to claim 6, wherein the rough structure of the second side surface is a capillary structure having a minute groove path, and is formed by machining or etching. 前記機械加工は、インプリント、マーキング及びカービングの何れか1つのである請求項9に記載の放熱装置。   The heat dissipation device according to claim 9, wherein the machining is any one of imprinting, marking, and carving. 前記粗構造は、凹凸状、波状及び鋸歯状の何れか1つである請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the rough structure is any one of an uneven shape, a wave shape, and a sawtooth shape. 前記第2板体は、毛細構造を有し、該毛細構造は、該第4側面上に形成される請求項1に記載の放熱装置。   The heat dissipation device according to claim 1, wherein the second plate body has a capillary structure, and the capillary structure is formed on the fourth side surface. 前記毛細構造は、複数の溝、焼結粉体及びメッシュ体の何れか1つである請求項12に記載の放熱装置。   The heat dissipation device according to claim 12, wherein the capillary structure is one of a plurality of grooves, sintered powder, and a mesh body. 前記チャンバは、少なくとも1つの支持柱を有し、該支持柱の両端は、それぞれ前記第2側面及び第4側面に接続し、該支持柱外部に毛細構造体を有する請求項1に記載の放熱装置。   2. The heat dissipation according to claim 1, wherein the chamber has at least one support column, both ends of the support column are connected to the second side surface and the fourth side surface, respectively, and a capillary structure is provided outside the support column. apparatus. 前記毛細構造体は、複数の溝、焼結粉体及びメッシュ体の何れか1つである請求項14に記載の放熱装置。   The heat dissipation device according to claim 14, wherein the capillary structure is one of a plurality of grooves, sintered powder, and a mesh body. 前記メッキ膜層は、二酸化シリコンにより形成される請求項3に記載の放熱装置。   The heat dissipation device according to claim 3, wherein the plating film layer is formed of silicon dioxide.
JP2012007116U 2012-11-22 2012-11-22 Heat dissipation device Expired - Fee Related JP3181382U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007116U JP3181382U (en) 2012-11-22 2012-11-22 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007116U JP3181382U (en) 2012-11-22 2012-11-22 Heat dissipation device

Publications (1)

Publication Number Publication Date
JP3181382U true JP3181382U (en) 2013-01-31

Family

ID=50425596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007116U Expired - Fee Related JP3181382U (en) 2012-11-22 2012-11-22 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP3181382U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185088A1 (en) * 2013-05-17 2014-11-20 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
CN112635418A (en) * 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 Liquid cooling radiator
CN112996339A (en) * 2019-12-12 2021-06-18 王训忠 Temperature equalizing plate device
CN113218225A (en) * 2020-02-04 2021-08-06 建准电机工业股份有限公司 Temperature equalizing plate
CN113260216A (en) * 2020-02-10 2021-08-13 优材科技有限公司 Heat conduction device and electronic device
CN113453494A (en) * 2021-05-18 2021-09-28 江西展耀微电子有限公司 Preparation method of vapor chamber, vapor chamber and electronic equipment
WO2023024498A1 (en) * 2021-08-25 2023-03-02 中兴通讯股份有限公司 Vapor chamber and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185088A1 (en) * 2013-05-17 2014-11-20 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
CN105210185A (en) * 2013-05-17 2015-12-30 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic apparatus
JPWO2014185088A1 (en) * 2013-05-17 2017-02-23 富士通株式会社 Semiconductor device, method for manufacturing the same, and electronic device
CN112635418A (en) * 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 Liquid cooling radiator
CN112996339A (en) * 2019-12-12 2021-06-18 王训忠 Temperature equalizing plate device
CN112996339B (en) * 2019-12-12 2023-09-26 王训忠 Uniform temperature plate device
CN113218225A (en) * 2020-02-04 2021-08-06 建准电机工业股份有限公司 Temperature equalizing plate
CN113260216A (en) * 2020-02-10 2021-08-13 优材科技有限公司 Heat conduction device and electronic device
CN113453494A (en) * 2021-05-18 2021-09-28 江西展耀微电子有限公司 Preparation method of vapor chamber, vapor chamber and electronic equipment
CN113453494B (en) * 2021-05-18 2023-08-15 江西新菲新材料有限公司 Vapor chamber preparation method, vapor chamber and electronic equipment
WO2023024498A1 (en) * 2021-08-25 2023-03-02 中兴通讯股份有限公司 Vapor chamber and electronic device

Similar Documents

Publication Publication Date Title
JP3181382U (en) Heat dissipation device
TWI443944B (en) Thin hot plate structure
WO2020118629A1 (en) Electronic device
WO2014131269A1 (en) Radiator
WO2008101384A1 (en) Heat transfer device and manufacturing method thereof
JP2007059917A (en) Composite type radiation device
TWI703921B (en) Dissipating heat device
JP2008159995A (en) Heat sink
JP2004518269A (en) Cooling device and its manufacturing process
WO2016084751A1 (en) Heat-dissipating structure and method for manufacturing same
CN111863746A (en) Heat dissipation device, circuit board and electronic equipment
JP3186291U (en) Soaking plate structure
TWM452370U (en) Heat dissipation device
US9470459B2 (en) Support structure for heat dissipation unit
JP4190009B2 (en) Heat sink module with a heat-conducting cover plate
JP3185277U (en) Support structure for heat dissipation unit
US20140174704A1 (en) Heat dissipation device
KR100908333B1 (en) Heat radiation device using foamed metal
JP3196200U (en) Soaking plate support structure
TWM584591U (en) Heat dissipation device
JP2010098204A (en) Cooling structure of light source
JP2007294785A (en) Heat transfer element aggregate member
JP3163996U (en) Thermal convection heat sink plate structure
KR100451916B1 (en) Apparatus for cooling electronic circuits with thin-plate type heat pipe having cooling fin
JP3163998U (en) Heat sink heat dissipation structure

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3181382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees