JP3181206B2 - Fuel electrode of solid electrolyte type electrochemical cell - Google Patents

Fuel electrode of solid electrolyte type electrochemical cell

Info

Publication number
JP3181206B2
JP3181206B2 JP22766895A JP22766895A JP3181206B2 JP 3181206 B2 JP3181206 B2 JP 3181206B2 JP 22766895 A JP22766895 A JP 22766895A JP 22766895 A JP22766895 A JP 22766895A JP 3181206 B2 JP3181206 B2 JP 3181206B2
Authority
JP
Japan
Prior art keywords
fuel electrode
electrochemical cell
solid electrolyte
electrolyte type
type electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22766895A
Other languages
Japanese (ja)
Other versions
JPH0973906A (en
Inventor
潤一 神前
長生 久留
誠治 高月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22766895A priority Critical patent/JP3181206B2/en
Publication of JPH0973906A publication Critical patent/JPH0973906A/en
Application granted granted Critical
Publication of JP3181206B2 publication Critical patent/JP3181206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は平板状又は円筒状の
固体電解質型燃料電池(SOFC)や高温水蒸気電解セ
ル(SOSE)のような固体電解質型電気化学セルの燃
料極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode of a solid electrolyte type electrochemical cell such as a flat or cylindrical solid oxide fuel cell (SOFC) or a high temperature steam electrolysis cell (SOSE).

【0002】[0002]

【従来の技術】従来の円筒焼結型SOFCは図4に示す
ように、母材となる基体管1上に、燃料極2となるNi
OとMgAl2 4 の微粒粉を用いて成膜し、更に、そ
の上に固体電解質3、空気極4、インターコネクタ5及
び保護膜6を成膜していた。
2. Description of the Related Art As shown in FIG. 4, a conventional cylindrical sintered SOFC has a base tube 1 serving as a base material and a Ni electrode serving as a fuel electrode 2 mounted thereon.
A film was formed using fine particles of O and MgAl 2 O 4 , and a solid electrolyte 3, an air electrode 4, an interconnector 5 and a protective film 6 were formed thereon.

【0003】[0003]

【発明が解決しようとする課題】従来の円筒焼結型SO
FCにおける燃料極は図5に示すように符号7で示すN
iOと符号8で示すMgAl2 4 の微粒粉を使用して
燃料極2としていた。このように、微粒粉を使用する
と、燃料極の性能に必要な導電率が700S/cmと低
く、また燃料極の気孔率が小さく、燃料ガスの透過性が
不十分であった。そのため、電気化学セルとしての性能
は低いものとなっていた。本発明は上記技術水準に鑑
み、導電率及び気孔率を向上させた固体電解質型電気化
学セルの燃料極を提供しようとするものである。
SUMMARY OF THE INVENTION A conventional cylindrical sintered SO
As shown in FIG. 5, the fuel electrode in FC is N
The fuel electrode 2 was made of fine powder of MgAl 2 O 4 indicated by reference numeral 8 and iO. As described above, when the fine powder was used, the electric conductivity required for the performance of the anode was as low as 700 S / cm, the porosity of the anode was small, and the fuel gas permeability was insufficient. Therefore, the performance as an electrochemical cell has been low. The present invention has been made in view of the above-mentioned technical level, and has as its object to provide a fuel electrode of a solid oxide electrochemical cell having improved conductivity and porosity.

【0004】[0004]

【課題を解決するための手段】本発明は0.1〜0.3
μmのNiO微粉末:70〜40vol%と4〜6μm
のMgAl2 4 粗粒粉:30〜60vol%の混合物
よりなることを特徴とする固体電解質型電気化学セルの
燃料極である。
According to the present invention, there is provided a method for manufacturing a semiconductor device comprising:
μm NiO fine powder: 70 to 40 vol% and 4 to 6 μm
A fuel electrode of a solid electrolyte type electrochemical cell characterized by comprising a mixture of MgAl 2 O 4 coarse particles of 30 to 60 vol%.

【0005】(作用)本発明の燃料極のMgAl2 4
の粒径を4〜6μmに調製し、NiOの導電率の粒径依
存性を調査したところ、NiOの粒径が0.1〜0.3
μmの場合に高い導電率を示した。この粒径範囲以外、
すなわち、NiO粒径が0.1μm未満では1/2程
度、0.3μmを越える場合には1/3程度と極端に導
電率が低くなるため、NiO微粉末の粒径を0.1〜
0.3μmとした。さらに、NiOの粒径を0.1〜
0.3μmと固定し、MgAl2 4 の粒径を変化させ
たところ、同様にMgAl2 3 の粒径を4〜6μmに
した場合に高い導電率が得られたので、MgAl2 4
の粒径を4〜6μmとした。
(Function) MgAl 2 O 4 of the fuel electrode of the present invention
The particle size of NiO was adjusted to 4 to 6 μm, and the particle size dependence of the conductivity of NiO was investigated.
In the case of μm, high conductivity was exhibited. Outside this particle size range,
That is, when the NiO particle size is less than 0.1 μm, the electric conductivity is extremely low, about 1 /, and when it exceeds 0.3 μm, the electric conductivity is extremely low, about 3.
0.3 μm. Further, the particle size of NiO is 0.1 to
0.3μm and fixed, when changing the particle size of the MgAl 2 O 4, likewise because high conductivity when the particle size of MgAl 2 O 3 in 4~6μm is obtained, MgAl 2 O 4
Was 4 to 6 μm.

【0006】また、上記粒径範囲のNiO微粉末とMg
Al2 4 粗粒粉の混合物は炭素析出を抑えることが可
能であると同時に高導電率(1000S/cm以上)を
確保する必要がある。このため、NiO微粉末の量を多
くすることが望ましいが、あまり多くすると固体電解質
(例えばYSZ)との熱膨張差により破損するのでNi
O微粉末の量比を70〜40vol%(すなわち、Mg
Al2 4 粗粒粉の量比を30〜60vol%)とし
た。また、このような粒径のNiO微粉末とMgAl2
4 粗粒粉をこの量比で混合することにより、燃料極材
中に30%以上の気孔率が生じ、スムーズなガス流れを
維持することができる。
Further, NiO fine powder having the above-mentioned particle size range and Mg
The mixture of Al 2 O 4 coarse particles is required to suppress carbon deposition and at the same time, it is necessary to ensure high conductivity (1000 S / cm or more). For this reason, it is desirable to increase the amount of the NiO fine powder.
O fine powder in a volume ratio of 70 to 40 vol% (that is, Mg
The amount ratio of al 2 O 4 coarse powder was 30~60vol%). Further, NiO fine powder having such a particle size and MgAl 2
By mixing the O 4 coarse powder at this ratio, a porosity of 30% or more is generated in the fuel electrode material, and a smooth gas flow can be maintained.

【0007】従来のように、燃料極材料に図5に示すよ
うな7で示すNiO微粉、8で示すようなMgAl2
4 微粉を使用すると、導電性を与える材料のNiO微粉
同志の連結が困難となり、更に、この燃料極が密に成膜
されるためにガス透過性が不十分となる。一方、本発明
のような手段を施せば、図1に示すように、NiO微粉
同志の連結がスムーズに行われ、導電性が高まるととも
に、更にガス透過性、つまり、気孔率を向上させること
が可能となる。
[0007] As conventional, NiO fines shown in the fuel electrode material 7 as shown in FIG. 5, MgAl 2 O as indicated by 8
When 4 fine powders are used, it is difficult to connect the NiO fine powders, which are materials for imparting conductivity, and furthermore, since the fuel electrode is densely formed, the gas permeability becomes insufficient. On the other hand, if means such as the present invention is applied, as shown in FIG. 1, the connection of the NiO fine particles is smoothly performed, the conductivity is increased, and the gas permeability, that is, the porosity can be further improved. It becomes possible.

【0008】[0008]

【実施例】以下、本発明の燃料極の製法の一例をあげ、
得られた燃料極の効果を併せて説明する。図2に示すよ
うに、20vol%NiO/CSZ(気孔率:40〜5
0%、焼成後の気孔率:30%以上)の基体管1の上
に、成膜不要な部分にパラフィン系テープのマスキング
10をした後に、基体管1の開放部に栓9をし、その反
対側に吸引ポンプ11を取り付ける。そして、予め調整
しておいたNiO微粒粉(0.1〜0.3μm):60
vol%とMgAl2 4 粗粒粉(4〜6μm):40
vol%の混合物よりなる燃料極スラリ(媒体:水、ス
ラリ濃度:8〜10wt%)に、この吸引ポンプ11を
作動させながら基体管1を5秒間浸す。この後、基体管
1の開放部の栓9及び吸引ポンプ11を取りはずし、室
温にて乾燥させて、基体管1上に燃料極2を成膜した。
この状態は前記した図1に示すような構成となる。この
基体管1に成膜した燃料極2の上に順次、図4に示すよ
うに、固体電解質(YSZ)3、空気極(LaMeMn
3 、但しMe:Sr,Ca)4、インターコネクタ
(Ni/Al2 3 サーメット、溶射成膜)5、保護膜
(Al2 3 、インターコネクタ酸化防止のため)6を
成膜してセルとした。
EXAMPLES An example of a method for producing an anode of the present invention will be described below.
The effect of the obtained fuel electrode will also be described. As shown in FIG. 2, 20 vol% NiO / CSZ (porosity: 40 to 5)
(0%, porosity after firing: 30% or more) On the base tube 1, a mask 10 of a paraffin tape is applied to a portion where film formation is not required, and a plug 9 is plugged into an open portion of the base tube 1. Attach suction pump 11 on the opposite side. And NiO fine powder (0.1-0.3 μm) previously adjusted: 60
vol% and MgAl 2 O 4 coarse powder (4 to 6 μm): 40
The base tube 1 is immersed in a fuel electrode slurry (medium: water, slurry concentration: 8 to 10 wt%) composed of a vol% mixture for 5 seconds while operating the suction pump 11. Thereafter, the stopper 9 and the suction pump 11 at the opening of the base tube 1 were removed, and the fuel electrode 2 was formed on the base tube 1 by drying at room temperature.
This state has a configuration as shown in FIG. As shown in FIG. 4, a solid electrolyte (YSZ) 3 and an air electrode (LaMeMn) are sequentially formed on the fuel electrode 2 formed on the base tube 1 as shown in FIG.
O 3 , where Me: Sr, Ca) 4, an interconnector (Ni / Al 2 O 3 cermet, thermal sprayed film) 5, and a protective film (Al 2 O 3 , for preventing the interconnector oxidation) 6 Cell.

【0009】この実施例により得られた燃料極2の導電
率は1500S/cmで従来法で得られた燃料極の導電
率700S/cmの2倍以上であった。また燃料極成膜
時の吸引圧力は該実施例のものは670〜680mmH
gであり、気孔率は37〜40%であったが、従来のも
のは吸引圧力:700〜710mmHg、気孔率:28
〜30%であった。吸引圧力は従来のものに比べ、該実
施例のものが小さいことから、ポアを有していることが
分る。又、気孔率も従来のものに比べ大きいことから、
燃料ガス透過性が良好であることが分る。
The conductivity of the anode 2 obtained in this example was 1500 S / cm, which was more than twice the conductivity of the anode obtained by the conventional method, 700 S / cm. The suction pressure at the time of forming the fuel electrode is 670 to 680 mmH in the embodiment.
g and the porosity was 37 to 40%, whereas the conventional one had a suction pressure of 700 to 710 mmHg and a porosity of 28.
3030%. Since the suction pressure of this embodiment is smaller than that of the conventional one, it can be seen that it has pores. Also, since the porosity is larger than the conventional one,
It can be seen that the fuel gas permeability is good.

【0010】また、図3に、発電試験から得られるセル
抵抗の比較を示す。従来セルのセル抵抗に比べ、本発明
のセル抵抗は1/2程度となり、高い発電性能を有して
いることが分る。以上の結果より、本発明の手段を用い
ることにより、燃料極の導電率及び気孔率が向上したた
め、つまり、燃料極が高性能となったため、固体電解質
型電気化学セルのセル抵抗を減少させることが可能とな
った。
FIG. 3 shows a comparison of cell resistance obtained from a power generation test. Compared with the cell resistance of the conventional cell, the cell resistance of the present invention is about 1/2, indicating that the cell has high power generation performance. From the above results, by using the means of the present invention, since the conductivity and porosity of the anode have been improved, that is, since the anode has become high-performance, the cell resistance of the solid oxide electrochemical cell can be reduced. Became possible.

【0011】[0011]

【発明の効果】本発明により、導電率及び気孔率の高い
固体電解質型電気化学セルの燃料極が提供され、その結
果、セル抵抗を減少させた固体電解質型電気化学セルを
提供することが可能となる。
According to the present invention, a fuel electrode of a solid electrolyte type electrochemical cell having high conductivity and porosity is provided, and as a result, a solid electrolyte type electrochemical cell with reduced cell resistance can be provided. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型電気化学セルの燃料極の
構成の模式図。
FIG. 1 is a schematic diagram of a configuration of a fuel electrode of a solid oxide electrochemical cell of the present invention.

【図2】本発明の燃料極の製法の一態様の説明図。FIG. 2 is an explanatory view of one embodiment of a method for producing an anode according to the present invention.

【図3】本発明の燃料極を用いた固体電解質型電気化学
セルのセル抵抗の有意性を示す図表。
FIG. 3 is a chart showing the significance of the cell resistance of a solid oxide electrochemical cell using the fuel electrode of the present invention.

【図4】一般の固体電解質型電気化学セルの構成を示す
模式図。
FIG. 4 is a schematic diagram showing a configuration of a general solid electrolyte type electrochemical cell.

【図5】従来の燃料極の構成の模式図。FIG. 5 is a schematic view of a configuration of a conventional fuel electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−29574(JP,A) 特開 平7−105956(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 4/90 H01M 8/12 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-29574 (JP, A) JP-A-7-105956 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86 H01M 4/90 H01M 8/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.1〜0.3μmのNiO微粉末:7
0〜40vol%と4〜6μmのMgAl2 4 粗粒
粉:30〜60vol%の混合物よりなることを特徴と
する固体電解質型電気化学セルの燃料極。
1. NiO fine powder of 0.1 to 0.3 μm: 7
A fuel electrode for a solid oxide electrochemical cell, comprising a mixture of 0 to 40 vol% and 4 to 6 μm MgAl 2 O 4 coarse powder: 30 to 60 vol%.
JP22766895A 1995-09-05 1995-09-05 Fuel electrode of solid electrolyte type electrochemical cell Expired - Fee Related JP3181206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22766895A JP3181206B2 (en) 1995-09-05 1995-09-05 Fuel electrode of solid electrolyte type electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22766895A JP3181206B2 (en) 1995-09-05 1995-09-05 Fuel electrode of solid electrolyte type electrochemical cell

Publications (2)

Publication Number Publication Date
JPH0973906A JPH0973906A (en) 1997-03-18
JP3181206B2 true JP3181206B2 (en) 2001-07-03

Family

ID=16864467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22766895A Expired - Fee Related JP3181206B2 (en) 1995-09-05 1995-09-05 Fuel electrode of solid electrolyte type electrochemical cell

Country Status (1)

Country Link
JP (1) JP3181206B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3171399A (en) * 1998-04-21 1999-11-08 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
NL1014284C2 (en) * 2000-02-04 2001-08-13 Stichting Energie A method of manufacturing an assembly comprising an anode-supported electrolyte and a ceramic cell comprising such an assembly.

Also Published As

Publication number Publication date
JPH0973906A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US4767518A (en) Cermet electrode
EP0513982B1 (en) Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
JP5072169B2 (en) Improvements in fuel cells and related equipment
JPH09505684A (en) Electrochemical device
JP3331703B2 (en) Fuel cell
JP2004319491A (en) Fuel cell or electrode having passive support
US7029777B2 (en) Fuel cell and passive support
JP5631625B2 (en) Solid oxide fuel cell
US5141825A (en) Method of making a cermet fuel electrode containing an inert additive
EP1096588A2 (en) Solid oxide fuel cell with sintered air electrode
US4076899A (en) Electrochemical gas electrode
US9796021B2 (en) Method of fabricating a porous metal substrate structure for a solid oxide fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP4524791B2 (en) Solid oxide fuel cell
CN104916857B (en) A kind of flat solid oxide fuel cell
JP2006318769A (en) Electrode material and fuel cell
JP3181206B2 (en) Fuel electrode of solid electrolyte type electrochemical cell
JPH1021935A (en) Solid electrolyte fuel cell
JP3448242B2 (en) Solid electrolyte fuel cell
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
JP4739665B2 (en) Fuel cell and fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JPH06196180A (en) Manufacture of solid electrolyte type fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

LAPS Cancellation because of no payment of annual fees