JP3180891B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment

Info

Publication number
JP3180891B2
JP3180891B2 JP20486695A JP20486695A JP3180891B2 JP 3180891 B2 JP3180891 B2 JP 3180891B2 JP 20486695 A JP20486695 A JP 20486695A JP 20486695 A JP20486695 A JP 20486695A JP 3180891 B2 JP3180891 B2 JP 3180891B2
Authority
JP
Japan
Prior art keywords
concentration
bacteria
ammonia nitrogen
nitrification
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20486695A
Other languages
Japanese (ja)
Other versions
JPH0947787A (en
Inventor
信子 橋本
立夫 角野
正明 白井
正隆 河西
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP20486695A priority Critical patent/JP3180891B2/en
Priority to US08/682,019 priority patent/US5876603A/en
Priority to CA 2181481 priority patent/CA2181481C/en
Priority to EP19960111529 priority patent/EP0761607B1/en
Priority to DE1996616216 priority patent/DE69616216T2/en
Publication of JPH0947787A publication Critical patent/JPH0947787A/en
Priority to US09/046,618 priority patent/US5849180A/en
Priority to US09/161,458 priority patent/US5997736A/en
Priority to US09/205,107 priority patent/US6033569A/en
Application granted granted Critical
Publication of JP3180891B2 publication Critical patent/JP3180891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃水処理装置に係
り、特に下水等のアンモニア性窒素廃水を生物学的に高
速処理する廃水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment apparatus, and more particularly to a wastewater treatment apparatus for biologically high-speed treatment of ammonia nitrogen wastewater such as sewage.

【0002】[0002]

【従来の技術】廃水中に含まれるアンモニア性窒素(N
4 −N)は、放流先の公共用水域の溶存酸素の低下
や、閉鎖性水域における富栄養化の原因物質の一つとな
ることから、その効果的な除去方法が課題になってい
る。廃水中のアンモニア性窒素を生物学的に処理する方
法としては、通常、活性汚泥循環変法を用いた処理方法
が行われ、硝化菌によるアンモニアから硝酸への硝化反
応及び脱窒菌による硝酸から窒素への脱窒反応を利用し
たものである。この方法は、嫌気性状態の脱窒槽と好気
性状態の硝化槽の2つの槽から成り、脱窒槽では脱窒菌
により廃水中の有機物の分解と脱窒処理が行われ、硝化
槽では硝化菌により廃水中のアンモニア性窒素が硝化処
理されて硝酸になる。そして、硝化槽で硝化処理された
硝化液が脱窒槽に循環されることにより廃水中の窒素成
分は窒素ガスとして大気に放出されて除去される。
2. Description of the Related Art Ammoniacal nitrogen (N) contained in wastewater
H 4 -N), the decrease in dissolved oxygen discharge point of water bodies, since it is one of substances causing eutrophication in closed water areas, the effective removal methods has become a challenge. As a method for biologically treating ammoniacal nitrogen in wastewater, a treatment method using a modified activated sludge circulation method is usually performed, and a nitrification reaction of ammonia to nitric acid by nitrifying bacteria and a nitrification reaction of nitric acid by denitrifying bacteria It uses a denitrification reaction to the soil. This method consists of two tanks, a denitrification tank in an anaerobic state and a nitrification tank in an aerobic state. The ammoniacal nitrogen in the wastewater is nitrified to nitric acid. Then, the nitrification solution that has been nitrified in the nitrification tank is circulated to the denitrification tank, whereby nitrogen components in the wastewater are released to the atmosphere as nitrogen gas and removed.

【0003】上記した硝化菌と脱窒菌のうち、硝化菌は
増殖速度が遅いので、活性汚泥中に相当量の菌数を保持
するためには汚泥の滞留時間を長くして充分な増殖時間
を確保しなくてはならない。このことから、活性汚泥循
環変法は、硝化効率を上げるために硝化菌の固定化が検
討されており、固定化硝化菌を硝化槽に投入したプロセ
スが実用化されている。活性汚泥循環変法は主として適
用される下水等の廃水であり、下水中のアンモニア性窒
素濃度は20〜80mg/l程度である。
[0003] Of the nitrifying bacteria and denitrifying bacteria described above, nitrifying bacteria have a slow growth rate. Therefore, in order to maintain a considerable number of bacteria in activated sludge, the residence time of the sludge must be increased to increase the growth time. Must be secured. For this reason, in the modified activated sludge circulation method, immobilization of nitrifying bacteria is being studied in order to increase the nitrification efficiency, and a process in which the immobilized nitrifying bacteria is put into a nitrification tank has been put to practical use. The activated sludge circulation modified method is mainly applied to wastewater such as sewage, and the concentration of ammonia nitrogen in sewage is about 20 to 80 mg / l.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、下水等
の廃水を生物学的に処理する廃水処理装置は、前記滞留
時間等を確保する等の理由から装置に広い敷地面積を必
要とするため、広い敷地面積を確保しにくい都市部での
設置が難しいという問題がある。また、狭い敷地スペー
スに合わせて廃水処理装置を小型化すると処理能力がそ
の分低下してしまう。
However, a wastewater treatment apparatus for biologically treating wastewater such as sewage requires a large site area for the purpose of securing the residence time and the like. There is a problem that it is difficult to install in an urban area where it is difficult to secure a site area. Further, when the size of the wastewater treatment device is reduced in accordance with the small site space, the treatment capacity is reduced correspondingly.

【0005】このような背景から、アンモニア性窒素廃
水の処理能力を低下させずに且つ狭い敷地スペースにも
設置可能な廃水処理装置が要望されていた。本発明は、
このような事情に鑑みてなされたもので、アンモニア性
廃水を高速処理することができるので、処理能力を低下
させずに装置の大幅なコンパクト化を実現することがで
きる生物学的な廃水処理装置を提供することを目的とす
る。
[0005] From such a background, there has been a demand for a wastewater treatment apparatus that can be installed in a small site space without reducing the treatment capacity of ammoniacal nitrogen wastewater. The present invention
In view of such circumstances, a biological wastewater treatment apparatus capable of performing high-speed treatment of ammoniacal wastewater, thereby realizing a significant downsizing of the apparatus without reducing the treatment capacity. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するために、アンモニア性窒素廃水を担体に担持した硝
化菌により生物処理する廃水処理装置に於いて、前記ア
ンモニア性窒素廃水を濃縮してアンモニア性窒素濃度を
高める前処理用の濃縮装置と、前記前処理用の濃縮装置
で濃縮されたアンモニア性窒素濃縮水と、前記硝化菌の
種類のうちの高濃度なアンモニア溶液中で培養して検出
される硝化細菌であって、400mg/l以上のアンモ
ニア性窒素濃度で高活性を発揮するAH菌と、低濃度な
アンモニア溶液中で培養して検出される硝化菌であっ
て、100mg/l近傍のアンモニア性窒素濃度で高活
性を発揮するAL菌が混相状態で繁殖した固定化担体と
を好気性雰囲気で接触させる反応槽と、から成ることを
特徴とする。
In order to achieve the above object, the present invention provides a wastewater treatment apparatus for biologically treating an ammoniacal nitrogenous wastewater with a nitrifying bacterium which is carried on a carrier. A pretreatment concentrator for increasing the concentration of ammonia nitrogen, and an ammoniacal nitrogen concentrated water concentrated by the pretreatment concentrator, and cultured in a high-concentration ammonia solution of the type of nitrifying bacteria. AH bacteria exhibiting high activity at an ammonia nitrogen concentration of 400 mg / l or more, and nitrifying bacteria detected by culturing in a low-concentration ammonia solution; and a reaction tank for contacting, in an aerobic atmosphere, an immobilized carrier in which AL bacteria exhibiting high activity at an ammonia nitrogen concentration near 1 in a mixed phase are grown.

【0007】[0007]

【0008】[0008]

【発明の実施の形態】以下添付図面に従って本発明に係
る廃水処理装置の好ましい実施の形態について詳説す
る。本発明は、硝化菌の種類には後述するAH菌とAL
菌とが生存するという知見に基づいてなされたものであ
り、本発明の廃水処理装置を説明するまえに本発明を理
解する上で必要なAH菌とAL菌について先ず説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a wastewater treatment apparatus according to the present invention will be described below in detail with reference to the accompanying drawings. The present invention relates to the following types of nitrifying bacteria: AH bacteria and AL
The AH bacteria and AL bacteria necessary for understanding the present invention will be described first before explaining the wastewater treatment apparatus of the present invention, based on the knowledge that bacteria survive.

【0009】即ち、本発明者等は、以前、硝化処理の高
速化を図る目的で、硝化菌を担持した担体を3基の槽に
投入し、アンモニア性窒素廃水を3槽に直列に流す3段
処理を行った際に123mg−N/h・l−担体という
高い消化速度が得られた。そこでこの原因を探るため
に、担体に含有する硝化菌を分離し、菌の特性について
検討した。その結果、硝化菌は、大別すると、高濃度の
アンモニア性窒素雰囲気の条件下で高活性を発揮する硝
化菌と、低濃度のアンモニア性窒素雰囲気の条件下で高
活性を発揮する硝化菌とが生存することを見いだした。
In other words, the present inventors previously put a carrier supporting nitrifying bacteria into three tanks and flow ammonia nitrogen wastewater in series into three tanks in order to speed up the nitrification treatment. When the step treatment was performed, a high digestion rate of 123 mg-N / hl-carrier was obtained. Therefore, in order to investigate the cause, nitrifying bacteria contained in the carrier were separated and the characteristics of the bacteria were examined. As a result, nitrifying bacteria can be roughly classified into nitrifying bacteria that exhibit high activity under conditions of high-concentration ammonia nitrogen atmosphere and nitrifying bacteria that exhibit high activity under conditions of low-concentration ammonia nitrogen atmosphere. Found to survive.

【0010】そして、本発明者等は、これら2種類の硝
化菌を特定するために、濃度5000mg/lの高濃度
な硫酸アンモニア溶液中で8週間培養して検出される硝
化菌をAH菌とし、濃度100mg/lの低濃度な硫酸
アンモニア溶液中で8週間培養して検出される硝化菌を
AL菌とした。このように特定されたAH菌とAL菌の
特性を調べる為に、アンモニア性窒素濃度を変えて培養
した時の担体の硝化速度と担体中に生存する細菌濃度を
詳細に測定したところ図1及び図2に示す関係が得られ
た。
In order to identify these two types of nitrifying bacteria, the present inventors defined the nitrifying bacteria detected by culturing in a high-concentration ammonium sulfate solution having a concentration of 5000 mg / l for 8 weeks as AH bacteria. The nitrifying bacteria detected by culturing for 8 weeks in a low-concentration ammonium sulfate solution having a concentration of 100 mg / l were designated as AL bacteria. In order to investigate the characteristics of the AH bacteria and AL bacteria specified in this way, the nitrification rate of the carrier and the concentration of the bacteria surviving in the carrier when the culture was performed while changing the ammonia nitrogen concentration were measured in detail. The relationship shown in FIG. 2 was obtained.

【0011】図1はアンモニア性窒素濃度に対するAH
菌の菌数と硝化速度を示し、図2はアンモニア性窒素濃
度に対するAL菌の菌数と硝化速度を示す。消化速度と
は、曝気槽の必要容量を決定するために、また窒素除去
率を左右する重要な因子であり、消化速度が高ければ高
いほど装置のコンパクト化を図ることができる。図1か
ら分かるように、AH菌は、アンモニア性窒素濃度が2
00mg/l以下では菌数は少なく硝化速度も遅い。し
かし、400mg/l以上では菌数が2桁以上に増え、
担体当たりの硝化速度も300mg−N/h・l−担体
以上と低濃度時の3倍以上高くなった。
FIG. 1 shows AH versus ammonia nitrogen concentration.
FIG. 2 shows the number of bacteria and the nitrification rate, and FIG. 2 shows the number of bacteria and the nitrification rate of the AL bacteria with respect to the concentration of ammonia nitrogen. The digestion rate is an important factor for determining the required volume of the aeration tank and for determining the nitrogen removal rate. The higher the digestion rate, the more compact the device. As can be seen from FIG. 1, the AH bacteria have an ammonia nitrogen concentration of 2
If it is less than 00 mg / l, the number of bacteria is small and the nitrification rate is low. However, at 400 mg / l or more, the number of bacteria increases to 2 digits or more,
The nitrification rate per carrier was more than 300 mg-N / hl·l-carrier, which was at least three times higher than that at low concentration.

【0012】一方、図2から分かるように、AL菌は、
アンモニア性窒素濃度が200mg/l以下で菌数が多
く、100mg/l付近に硝化速度のピークがある。そ
して、100mg/l以下の領域では、アンモニアの拡
散速度が律速になり見掛けの硝化速度が低下している。
また、100mg/l以上の領域で硝化速度が低下する
が、この原因はアンモニアによる菌体の被毒が起こって
いることが推測される。
On the other hand, as can be seen from FIG.
The number of bacteria is large when the ammonia nitrogen concentration is 200 mg / l or less, and the nitrification rate has a peak near 100 mg / l. In the region of 100 mg / l or less, the diffusion rate of ammonia is rate-limiting, and the apparent nitrification rate decreases.
Further, the nitrification rate decreases in the region of 100 mg / l or more, which is presumed to be caused by the poisoning of bacterial cells by ammonia.

【0013】また、アンモニア性窒素濃度が150〜4
00mg/lの範囲で培養したときにはAH菌とAL菌
の混相繁殖が認められ、硝化速度もこの間で300〜4
50mg−N/h・l−担体という高い値になり、2種
類の菌の混在による相乗効果が認められた。また、菌体
の培養・維持条件には、担体当たりのアンモニア性窒素
負荷条件が大切であることから、アンモニア性窒素濃度
を一定に維持した条件下でアンモニア性窒素負荷条件を
変えてAH菌とAL菌の特性を調べた。図3は、アンモ
ニア性窒素濃度を200mg/lに維持しながら担体当
たりのアンモニア性窒素負荷を100〜600mg−N
/h・l−担体の間で変化させた時の菌数を示す。図4
は、アンモニア性窒素濃度を500mg/lに維持しな
がら担体当たりのアンモニア性窒素負荷を100〜60
0mg−N/h・l−担体の間で変化させた時の菌数を
示す。
Further, when the ammonia nitrogen concentration is 150 to 4
When cultivated in the range of 00 mg / l, multiphase propagation of AH bacteria and AL bacteria was observed, and the nitrification rate was 300 to 4
The value was as high as 50 mg-N / hl-carrier, and a synergistic effect due to the mixture of two types of bacteria was observed. In addition, since the ammonia nitrogen loading condition per carrier is important for the culture and maintenance conditions of the cells, the ammonia nitrogen loading condition is changed under the condition that the ammonia nitrogen concentration is kept constant, and the AH bacteria are changed. The characteristics of AL bacteria were examined. FIG. 3 shows that the ammonia nitrogen load per carrier is 100-600 mg-N while the ammonia nitrogen concentration is maintained at 200 mg / l.
/ Hl-carrier number when changed between carriers. FIG.
Reduces the ammoniacal nitrogen load per carrier to 100 to 60 while maintaining the ammoniacal nitrogen concentration at 500 mg / l.
The number of bacteria when the concentration was changed between 0 mg-N / hl-carrier is shown.

【0014】図3から分かるように、アンモニア性窒素
濃度を200mg/lで培養したときは、AH菌とAL
菌の混合生物相になった。そして、担体当たりのアンモ
ニア性窒素負荷が300mg−N/h・l−担体以下で
は菌体数が107 と低かったが担体当たりのアンモニア
性窒素負荷を大きくしていくと菌体数の顕著な増加が認
められた。ちなみに、担体当たりのアンモニア性窒素負
荷を400mg−N/h・l−担体以上にすると、菌体
数は少なくとも108 個以上に、500mg−N/h・
l−担体以上にすると109 以上に維持できることがわ
かった。
As can be seen from FIG. 3, when culturing at an ammonia nitrogen concentration of 200 mg / l, AH bacteria and AL
It became a mixed biota of fungi. When the ammonia nitrogen load per carrier was less than 300 mg-N / hl-carrier, the number of cells was as low as 10 7 , but as the ammonia nitrogen load per carrier was increased, the number of cells became remarkable. An increase was observed. By the way, when the ammonia nitrogen load per carrier is set to 400 mg-N / h · l-carrier or more, the number of bacterial cells is at least 10 8 or more and 500 mg-N / h ·
When the above l- carrier was able to be maintained at 109 or more.

【0015】一方、図4から分かるように、アンモニア
性窒素濃度を500mg/lで培養したときは、AH菌
のみの単一生物相になった。そして、図5の場合と同様
に担体当たりのアンモニア性窒素負荷が300mg−N
/h・l−担体以下では菌体数が107 と低かったが負
荷を大きくしていくと菌体数の顕著な増加が認められ
た。
On the other hand, as can be seen from FIG. 4, when the cells were cultured at an ammonia nitrogen concentration of 500 mg / l, a single biota of only AH bacteria was obtained. Then, similarly to the case of FIG. 5, the ammonia nitrogen load per carrier is 300 mg-N
Below / hl-carrier, the number of cells was as low as 10 7 , but as the load was increased, a remarkable increase in the number of cells was observed.

【0016】従って、図3及び図4から、AH菌とAL
菌の混合生物相或いはAH菌のみの単一生物相に係わら
ず、担体当たりのアンモニア性窒素負荷を大きくするこ
とにより菌体密度が大きくなり、その結果として担体当
たりの硝化速度を増加させることができることが分かっ
た。このことは、包括固定化担体の場合、担体当たりの
アンモニア性窒素負荷を大きくすることにより、菌体の
栄養源であるアンモニア性窒素を担体の内部にまで充分
に供給できるので菌数の増加、担体当たりの硝化速度の
増加につながるものと考えられる。
Therefore, from FIG. 3 and FIG.
Regardless of the mixed biota of bacteria or the single biota of AH bacteria alone, increasing the ammonia nitrogen load per carrier increases the bacterial cell density and consequently increases the nitrification rate per carrier. I knew I could do it. This means that, in the case of the entrapping immobilized carrier, by increasing the ammonia nitrogen load per carrier, it is possible to sufficiently supply the ammonia nitrogen, which is a nutrient source of the cells, to the inside of the carrier, so that the number of bacteria increases. It is thought that this leads to an increase in the nitrification rate per carrier.

【0017】以上の検討結果からAH菌とAL菌の特性
について次のことが言える。 硝化菌を大別すると、高濃度のアンモニア性窒素雰囲
気の条件下で高活性を発揮するAH菌と、低濃度のアン
モニア性窒素雰囲気の条件下で高活性を発揮するAL菌
とがある。 AH菌は、アンモニア性窒素濃度が400mg/l以
上の領域で優先繁殖し、菌数の顕著な増殖が見られ、硝
化速度も顕著に高くなる。しかし、図5に見られるよう
にアンモニア性窒素濃度が低濃度の領域では硝化能力が
ほとんどなくなる。
From the above study results, the following can be said about the characteristics of AH bacteria and AL bacteria. Nitrifying bacteria can be roughly classified into AH bacteria that exhibit high activity under conditions of high-concentration ammonia nitrogen atmosphere and AL bacteria that exhibit high activity under conditions of low-concentration ammonia nitrogen atmosphere. AH bacteria are preferentially propagated in a region where the concentration of ammonia nitrogen is 400 mg / l or more, a remarkable growth of the number of bacteria is observed, and the nitrification rate is significantly increased. However, as shown in FIG. 5, in the region where the concentration of ammonia nitrogen is low, the nitrification ability is almost eliminated.

【0018】AL菌はアンモニア性窒素濃度が200
mg/l以下の領域で優先繁殖し、菌数の顕著な増殖が
見られ、硝化速度は100mg/l付近にピークがある
放物線を示す。 アンモニア性窒素濃度が150〜400mg/lの領
域ではAH菌とAL菌の混相繁殖し、硝化速度は2種類
の菌の混在による相乗効果が生じる。
AL bacteria have an ammonia nitrogen concentration of 200
Proliferates preferentially in the region of not more than mg / l, remarkable growth of the number of bacteria is observed, and the nitrification rate shows a parabola with a peak near 100 mg / l. In the region where the concentration of ammonia nitrogen is 150 to 400 mg / l, AH bacteria and AL bacteria grow in a mixed phase, and the nitrification rate has a synergistic effect due to the mixture of two kinds of bacteria.

【0019】AH菌とAL菌の混合生物相或いはAH
菌のみの単一生物相に係わらず、担体当たりのアンモニ
ア性窒素負荷を大きくすることにより菌体密度が大きく
なり、結果として担体当たりの硝化速度を増加させるこ
とができる。 そして、上記からの知見をまとめると、液中のアン
モニア性窒素濃度が400mg/l以上のアンモニア含
有液と、硝化細菌であるAH菌が優先繁殖した固定化担
体を好気性雰囲気で接触させることにより、高濃度のア
ンモニア性廃水を高濃度のままで処理することができ、
且つ高速処理が可能である。この場合、前記AH菌が優
先繁殖した固定化担体の担体当たりのアンモニア性窒素
負荷が500mg−N/h・l−担体以上、好ましくは
600mg−N/h・l−担体以上になるようにするこ
とにより、硝化速度が一層高くなり更なる高速処理を行
うことができる。
Mixed biota of AH bacteria and AL bacteria or AH
Regardless of the single biota of bacteria alone, increasing the ammonium nitrogen load per carrier increases the cell density and consequently increases the nitrification rate per carrier. Then, to summarize the findings from the above, by contacting an ammonia-containing liquid having an ammonia nitrogen concentration of 400 mg / l or more with an immobilized carrier on which nitrifying bacteria AH bacteria preferentially propagated, in an aerobic atmosphere. , High-concentration ammoniacal wastewater can be treated at high concentration,
In addition, high-speed processing is possible. In this case, the ammonia nitrogen load per carrier of the immobilized carrier on which the AH bacteria preferentially propagated is set to 500 mg-N / hl-carrier or more, preferably 600 mg-N / hl-carrier or more. As a result, the nitrification speed is further increased, and further high-speed processing can be performed.

【0020】また、液中のアンモニア性窒素濃度が10
0〜400mg/l以上のアンモニア含有液と、硝化細
菌であるAH菌とAL菌とが混相して固定化した担体と
が優先繁殖した固定化担体を好気性雰囲気で接触させる
ことにより、中濃度から低濃度にかけてのアンモニア性
廃水の高速処理を行うことができる。この場合も、前記
AH菌とAL菌が混相して固定化した固定化担体の担体
当たりのアンモニア性窒素負荷が500mg−N/h・
l−担体以上、好ましくは600mg−N/h・l−担
体以上になるようにすることにより、硝化速度が一層高
くなり更なる高速処理を行うことができる。
When the concentration of ammonia nitrogen in the liquid is 10
By contacting the immobilized carrier in which the ammonia-containing solution of 0 to 400 mg / l or more and the immobilized carrier in which the nitrifying bacteria AH bacteria and AL bacteria are mixed and immobilized preferentially are brought into contact in an aerobic atmosphere, the medium concentration is increased. High-speed treatment of ammoniacal wastewater from low to low concentrations. Also in this case, the ammonia nitrogen load per carrier of the immobilized carrier on which the AH bacteria and the AL bacteria were mixed and immobilized was 500 mg-N / h ·
By setting the amount to be not less than 1-carrier, preferably not less than 600 mg-N / h.l-carrier, the nitrification rate is further increased and further high-speed treatment can be performed.

【0021】従って、高濃度のアンモニア性窒素廃水に
適したAH菌の特性と、中濃度のアンモニア性窒素廃水
に適したAH菌とAL菌が混相繁殖したAH菌+AL菌
の特性とを上手に利用することにより、下水等のアンモ
ニア性窒素廃水を効率良く且つ高速処理することができ
るので、廃水処理装置のコンパクト化を図ることができ
る。
Therefore, the characteristics of AH bacteria suitable for high-concentration ammonia nitrogen wastewater and the characteristics of AH bacteria and AL bacteria in which AH bacteria and AL bacteria suitable for medium-concentration ammonia nitrogen wastewater are propagated in a mixed phase are well-developed. By using the wastewater, ammonia nitrogen wastewater such as sewage can be treated efficiently and at high speed, so that the wastewater treatment apparatus can be downsized.

【0022】図6は、上記知見に基づいて構成した本発
明の廃水処理装置10の第1の実施の形態である。図6
に示すように、アンモニア性窒素廃水の原水は、図示し
ない固液分離装置により原水中の固形物が予め分離され
てから加圧ポンプ(図示せず)により原水流入管12を
介して第1のアンモニア濃縮装置14に送水される。第
1のアンモニア濃縮装置14は逆浸透膜(RO膜)装置
から構成され、原水中のアンモニア性窒素が所定濃度に
なるように濃縮した濃縮水とアンモニア性窒素を殆ど含
まない透過水に膜分離する。透過水は透過水配管16か
らそのまま放流されると共に、濃縮水は濃縮水供給配管
18を介して硝化装置20に送水される。また、原水流
入管12から第1の濃縮装置14を経由しないで硝化装
置20に到るバイパス配管22が設けられ、バイパス配
管22には開閉バルブ24が設けられる。これにより、
廃水原水のアンモニア性窒素濃度が充分高く濃縮する必
要がない場合には、原水はバイパス配管22により硝化
装置20に直接送水される。
FIG. 6 shows a first embodiment of the wastewater treatment apparatus 10 of the present invention constructed based on the above findings. FIG.
As shown in the figure, the raw water of the ammoniacal nitrogen wastewater is first separated through a raw water inflow pipe 12 by a pressure pump (not shown) after solid matter in the raw water is separated in advance by a solid-liquid separator (not shown). The water is sent to the ammonia concentrator 14. The first ammonia concentrator 14 is composed of a reverse osmosis membrane (RO membrane) device, and performs membrane separation into concentrated water in which the ammonia nitrogen in raw water is concentrated to a predetermined concentration and permeated water containing almost no ammonia nitrogen. I do. The permeated water is discharged from the permeated water pipe 16 as it is, and the concentrated water is sent to the nitrification device 20 via the concentrated water supply pipe 18. Further, a bypass pipe 22 is provided from the raw water inflow pipe 12 to the nitrification apparatus 20 without passing through the first concentrator 14, and an open / close valve 24 is provided in the bypass pipe 22. This allows
When the concentration of ammonia nitrogen in the wastewater raw water is not required to be sufficiently high, the raw water is directly sent to the nitrification device 20 by the bypass pipe 22.

【0023】硝化装置20は、硝化槽26と、硝化槽2
6内に投入される硝化菌の固定化担体28と、硝化槽2
6内に好気性状態を形成するために空気を供給する曝気
配管30、担体28が硝化槽26外に流出するのを防止
するスクリーン32とから構成される。硝化槽26内に
投入される担体28は、AH菌が優先繁殖した固定化担
体28、又はAH菌とAL菌が混相繁殖した固定化担体
28が用いられ、好気性状態で濃縮水の硝化処理が行わ
れる。硝化処理された硝化液は、硝化液配管34を介し
て脱窒装置36に送水される。尚、硝化菌が有効に働く
pHは7〜8程度がよく、硝化処理より生じる硝酸によ
るpH低下に備え硝化装置20にはアルカリ添加が行え
るようになっている。
The nitrification apparatus 20 includes a nitrification tank 26 and a nitrification tank 2
6, a nitrifying bacteria immobilizing carrier 28 to be charged into the
An aeration pipe 30 for supplying air to form an aerobic state in the tube 6, and a screen 32 for preventing the carrier 28 from flowing out of the nitrification tank 26. As the carrier 28 to be charged into the nitrification tank 26, an immobilized carrier 28 in which AH bacteria are preferentially propagated, or an immobilized carrier 28 in which AH bacteria and AL bacteria are propagated in a mixed phase are used. Is performed. The nitrification liquid subjected to the nitrification treatment is sent to a denitrification device 36 via a nitrification liquid pipe 34. The pH at which the nitrifying bacteria works effectively is preferably about 7 to 8, and alkali can be added to the nitrification apparatus 20 in preparation for a pH decrease due to nitric acid generated by the nitrification treatment.

【0024】脱窒装置36は、脱窒槽38と水中攪拌機
40と栄養供給配管42とから構成される。脱窒槽38
内には脱窒菌を含む活性汚泥が浮遊すると共に、栄養供
給配管42により脱窒菌の栄養源、たとえばアルコール
が供給され、硝化水の脱窒処理が行われる。脱窒処理さ
れた脱窒液は、脱窒液配管44を介して固液分離槽46
に送水され固液分離された上澄液が上澄水配管48を介
して第2の濃縮装置50に送水される。
The denitrification device 36 is composed of a denitrification tank 38, a submerged stirrer 40, and a nutrient supply pipe 42. Denitrification tank 38
Activated sludge containing denitrifying bacteria floats in the inside, and a nutrient source of denitrifying bacteria, for example, alcohol is supplied through a nutrient supply pipe 42, and nitrification water is denitrified. The denitrification liquid subjected to the denitrification treatment is supplied to a solid-liquid separation tank 46 through a denitrification liquid pipe 44.
Is sent to the second concentrating device 50 through the supernatant water pipe 48.

【0025】第2の濃縮装置50は、精密濾過膜(MF
膜)装置とツリー構造をした複数段の逆浸透膜(RO
膜)装置から構成され、加圧ポンプ(図示せず)により
第2の濃縮装置50に加圧送水された脱窒液は、該脱窒
液中に残存するアンモニア性窒素が濃縮された濃縮水と
アンモニア性窒素を含まない透過水とに膜分離され、透
過水は処理水として処理水配管52から放流される。一
方、濃縮水は硝化装置20への戻し配管54と該戻し配
管54の途中から分岐した循環配管56を通って上澄水
配管48に至り再び第2の濃縮装置50に循環され、所
定の濃縮倍率になるように濃縮されると共に、循環する
濃縮水の一部は戻し配管54を介して硝化装置20に戻
される。濃縮水の循環量と硝化装置20への戻し量の調
整は循環配管56に設けられた流量調整バルブ58によ
り行われる。
The second concentrating device 50 includes a microfiltration membrane (MF)
Multistage reverse osmosis membrane (RO)
The denitrification liquid, which is constituted by a membrane) device and is pressure-fed to the second concentrator 50 by a pressure pump (not shown), is a concentrated water in which ammonia nitrogen remaining in the denitrification liquid is concentrated. And permeated water not containing ammonia nitrogen. The permeated water is discharged from the treated water pipe 52 as treated water. On the other hand, the concentrated water passes through a return pipe 54 to the nitrification apparatus 20 and a circulation pipe 56 branched from the middle of the return pipe 54, reaches the supernatant water pipe 48, and is circulated again to the second concentrator 50, and has a predetermined concentration ratio. And a part of the circulating concentrated water is returned to the nitrification device 20 via the return pipe 54. The amount of the concentrated water circulated and the amount returned to the nitrification device 20 are adjusted by a flow control valve 58 provided in the circulation pipe 56.

【0026】また、脱窒装置36の液を必要に応じて硝
化装置20に循環できるように、循環液用配管60が戻
し配管54の途中に接続されると共に、循環液用配管6
0には循環ポンプ62が設けられる。次に、上記の如く
構成された本発明の廃水処理装置10の作用を、下水等
の低濃度のアンモニア性窒素廃水(80mg/l程度)
を処理する例で説明する。
A circulating fluid pipe 60 is connected in the middle of the return pipe 54 so that the liquid in the denitrification apparatus 36 can be circulated to the nitrification apparatus 20 if necessary.
At 0, a circulation pump 62 is provided. Next, the operation of the wastewater treatment apparatus 10 of the present invention configured as described above will be described by using low-concentration ammoniacal nitrogen wastewater such as sewage (about 80 mg / l).
An example of processing will be described.

【0027】低濃度のアンモニア性窒素廃水は、先ず第
1の濃縮装置14に送水されて所定濃度までアンモニア
性窒素が濃縮された濃縮水とアンモニア性窒素を殆ど含
まない透過水に膜分離される。透過水はそのまま放流さ
れ、濃縮水のみが硝化装置20に送水される。これによ
り、第1の濃縮装置14から硝化装置20へは濃縮倍率
に応じて減容化された濃縮水が送水される。
The low-concentration ammonia-nitrogen wastewater is first sent to a first concentrator 14 and membrane-separated into concentrated water in which ammonia-nitrogen is concentrated to a predetermined concentration and permeate containing almost no ammonia-nitrogen. . The permeated water is discharged as it is, and only the concentrated water is sent to the nitrification device 20. As a result, the concentrated water whose volume has been reduced according to the concentration ratio is sent from the first concentration device 14 to the nitrification device 20.

【0028】硝化装置20では、第1の濃縮装置14で
濃縮された濃縮水と、硝化菌を固定化した固定化担体2
8とを好気性雰囲気で接触させて硝化処理を行う。この
硝化処理で用いる硝化菌の固定化担体28は、濃縮水の
アンモニア性窒素濃度が400mg/l以上であればA
H菌が優先繁殖した固定化担体28を用い、150〜4
00mg/l程度であれば、AH菌とAL菌が混相繁殖
した固定化担体28を用いると良い。このように、アン
モニア性窒素廃水を、AH菌の固定化担体28、或いは
AH菌とAL菌が混相する固定化担体28に適したアン
モニア性窒素濃度まで高濃度化して硝化処理を行うこと
により担体内の菌数が顕著に増加し、高い硝化速度を得
ることができる。この場合、担体当たりのアンモニア性
窒素負荷が高い方が更に高い硝化速度を得ることができ
るので、処理水のアンモニア性窒素濃度が著しく上昇し
ない限度で担体当たりのアンモニア性窒素負荷を高くす
ることが望ましい。具体的には、アンモニア性窒素負荷
が500mg−N/h・l−担体以上、好ましくは60
0mg−N/h・l−担体以上になるように硝化槽26
に投入する担体の充填量、滞留時間等を設定するのが良
い。
In the nitrification device 20, the concentrated water concentrated in the first concentration device 14 and the immobilized carrier 2 on which the nitrifying bacteria are immobilized.
8 in an aerobic atmosphere to perform nitrification treatment. The immobilizing carrier 28 for nitrifying bacteria used in this nitrification treatment may be A if the concentration of ammonia nitrogen in the concentrated water is 400 mg / l or more.
Using the immobilized carrier 28 on which H bacteria preferentially propagated,
If it is about 00 mg / l, it is preferable to use the immobilized carrier 28 in which AH bacteria and AL bacteria are mixed-phase propagated. As described above, the ammonia nitrogen wastewater is subjected to nitrification treatment by increasing the concentration of ammonia nitrogen to a concentration suitable for the immobilization carrier 28 of the AH bacteria or the immobilization carrier 28 in which the AH bacteria and the AL bacteria are mixed in phase. The number of bacteria in the inside increases remarkably, and a high nitrification rate can be obtained. In this case, the higher the ammonia nitrogen load per carrier, the higher the nitrification rate can be obtained, so that the ammonia nitrogen load per carrier can be increased as long as the ammonia nitrogen concentration of the treated water does not increase significantly. desirable. Specifically, the ammonia nitrogen load is 500 mg-N / hl-carrier or more, preferably 60 mg-N / hl.
Nitrification tank 26 so that the amount becomes 0 mg-N / hl-carrier or more.
It is preferable to set the amount of the carrier to be charged into the container, the residence time, and the like.

【0029】次に、硝化装置20で硝化処理された硝化
液は、脱窒装置36に送水されて脱窒菌を含む活性汚泥
により脱窒処理がなされ窒素ガスとして大気に放出され
る。脱窒装置36で脱窒処理された脱窒液は固液分離槽
46で固液分離され、脱窒液の上澄液は第2の濃縮装置
50に送水されて脱窒液中に残存したアンモニア性窒素
が除去される。一方、固液分離槽46の底部に沈降した
活性汚泥の一部は硝化装置20に戻されると共に、他の
活性汚泥は余剰汚泥として系外に引き抜かれる。
Next, the nitrification liquid that has been nitrified by the nitrification device 20 is sent to a denitrification device 36, subjected to denitrification by activated sludge containing denitrifying bacteria, and released to the atmosphere as nitrogen gas. The denitrification liquid subjected to the denitrification treatment in the denitrification device 36 is subjected to solid-liquid separation in a solid-liquid separation tank 46, and the supernatant of the denitrification solution is sent to the second concentrator 50 and remains in the denitrification solution. The ammonia nitrogen is removed. On the other hand, a part of the activated sludge settled at the bottom of the solid-liquid separation tank 46 is returned to the nitrification device 20, and the other activated sludge is pulled out of the system as surplus sludge.

【0030】次に、第2の濃縮装置50に送水された脱
窒液は、所定の濃縮倍率になるように循環濃縮されるこ
とによりアンモニア性窒素が濃縮された濃縮水とアンモ
ニア性窒素を殆ど含まない透過水に膜分離される。濃縮
水は硝化装置20にもどされて再び硝化処理が行われ
る。一方、透過水は処理水として放流される。これによ
り、脱窒液中に残存したアンモニア性窒素が殆ど完全に
除去されるので、処理水中のアンモニア性窒素濃度を極
力低減させることができる。
Next, the denitrification liquid sent to the second concentrator 50 is circulated and concentrated so as to have a predetermined concentration ratio, so that the concentrated water in which ammonia nitrogen is concentrated and the ammonia nitrogen are almost completely removed. The membrane is separated into permeate that does not contain. The concentrated water is returned to the nitrification device 20 and the nitrification treatment is performed again. On the other hand, the permeated water is discharged as treated water. Thereby, since the ammonia nitrogen remaining in the denitrification liquid is almost completely removed, the ammonia nitrogen concentration in the treated water can be reduced as much as possible.

【0031】このように、硝化菌であるAH菌が優先繁
殖した固定化担体28、又はAH菌とAL菌が混相繁殖
した固定化担体28の特性を利用することにより、低濃
度のアンモニア性窒素廃水を濃縮して硝化処理すること
ができるので、硝化装置20で処理する廃水の水量を大
幅に低減させることができる。更に、従来の活性汚泥法
に比べて高い硝化速度で高速処理することができるの
で、廃水処理装置10を大幅にコンパクト化することが
できる。
As described above, by utilizing the characteristics of the immobilization carrier 28 on which nitrifying AH bacteria are propagated preferentially, or the immobilization carrier 28 on which AH bacteria and AL bacteria are propagated in a mixed phase, low concentrations of ammonia nitrogen Since the wastewater can be concentrated and subjected to the nitrification treatment, the amount of the wastewater treated by the nitrification device 20 can be significantly reduced. Furthermore, since high-speed treatment can be performed at a higher nitrification rate than the conventional activated sludge method, the wastewater treatment apparatus 10 can be significantly reduced in size.

【0032】次に、本発明の廃水処理装置10の第2の
実施の形態について説明する。第2の実施の形態は、第
1の濃縮装置14及び第2の濃縮装置50を第1の実施
の形態での膜分離方式から蒸留分離方式に変更したもの
である。尚、第2実施の形態では硝化系統のみを図示し
た。図7に示すように、アンモニア性窒素廃水は図示し
ない固液分離装置により原水中の固形物が予め分離され
てから原水流入管12を介して第1のアンモニア濃縮装
置14に送水される。第1のアンモニア濃縮装置14は
蒸留装置70と凝縮器72と吸収液(例えば酢酸等の弱
酸)が貯留された吸収槽74とで構成される。蒸留装置
70内の中段位置にはラヒリングが充填された充填層7
6が形成され、アンモニア性窒素廃水は充填層76の上
方に設けられたシャワリング配管78からシャワリング
されると共に、充填層76の下方に設けられた加熱空気
配管80から加熱空気が充填層76に供給される。これ
により、アンモニア性窒素廃水は、アンモニア性窒素が
濃縮された蒸留液とアンモニア性窒素を殆ど含まない蒸
留残液とに蒸留分離される。蒸留液は凝縮器72で凝縮
されてから吸収液に吸収され、蒸留残液はそのまま放流
される。
Next, a second embodiment of the wastewater treatment apparatus 10 of the present invention will be described. In the second embodiment, the first concentrator 14 and the second concentrator 50 are changed from the membrane separation method in the first embodiment to a distillation separation method. In the second embodiment, only the nitrification system is shown. As shown in FIG. 7, the ammoniacal nitrogen wastewater is sent to a first ammonia concentrator 14 via a raw water inflow pipe 12 after solids in the raw water are separated in advance by a solid-liquid separator (not shown). The first ammonia concentrator 14 includes a distillation device 70, a condenser 72, and an absorption tank 74 in which an absorbing liquid (for example, a weak acid such as acetic acid) is stored. In the middle position in the distillation apparatus 70, a packed bed 7 filled with rahiring is provided.
6 is formed, the ammoniacal nitrogen wastewater is showered from a showering pipe 78 provided above the packed bed 76, and heated air is supplied from a heated air pipe 80 provided below the packed bed 76. Supplied to As a result, the ammonia nitrogen wastewater is distilled and separated into a distillate in which ammonia nitrogen is concentrated and a distillation residue containing almost no ammonia nitrogen. The distillate is condensed in the condenser 72 and then absorbed by the absorption liquid, and the distillation residue is discharged as it is.

【0033】吸収液に吸収された蒸留液は蒸留液配管6
4を介して硝化装置20に送水され第1の実施の形態と
同様に、AH菌の固定化担体28、或いはAH菌+AL
菌の固定化担体28と好気性雰囲気で接触して硝化処理
される。また、硝化装置20の上方には、硝化槽26内
のpHを7〜8程度に調整するアルカリ液(例えば炭酸
水素ナトリウム等の弱アルカリ)の貯留槽82が設けら
れ、アルカリ液配管66に設けられた添加量調整バルブ
68により所定量のアルカリ液が添加される。
The distillate absorbed by the absorbing solution is supplied to the distillate piping 6
The water is sent to the nitrification apparatus 20 through the humidifier 4 and the AH bacteria immobilization carrier 28 or the AH bacteria + AL as in the first embodiment.
Nitrification treatment is performed by contacting the bacteria-immobilized carrier 28 in an aerobic atmosphere. Above the nitrification device 20, a storage tank 82 for an alkaline liquid (for example, a weak alkali such as sodium hydrogen carbonate) for adjusting the pH in the nitrification tank 26 to about 7 to 8 is provided. A predetermined amount of the alkaline liquid is added by the added amount adjusting valve 68.

【0034】硝化装置20で硝化処理された硝化液は、
硝化液配管34を介して第2の濃縮装置50に送水さ
れ、この送水途中でアルカリ添加ライン84によりアル
カリが添加されてpHを10付近まで上げる。第2の濃
縮装置50は蒸留装置86で構成され蒸留装置86の構
造は第1の実施の形態で説明した蒸留装置と同様であ
る。硝化液は第2の濃縮装置50で蒸留され、硝化液に
残存するアンモニア性窒素が濃縮された蒸留液とアンモ
ニア性窒素を含まない蒸留残液に蒸留分離される。蒸留
液はアンモニア分離配管88を介して吸収液が貯留され
た第2の吸収槽90に吸収され、吸収槽配管92に設け
られた開閉バルブ94により間欠的に硝化装置20に戻
される。一方、蒸留残液は処理水として放流される。
The nitrification liquid nitrified by the nitrification device 20 is
Water is supplied to the second concentrator 50 through the nitrification liquid pipe 34, and an alkali is added by an alkali addition line 84 during the water supply to raise the pH to around 10. The second concentrating device 50 is composed of a distillation device 86, and the structure of the distillation device 86 is the same as that of the distillation device described in the first embodiment. The nitrification liquid is distilled by the second concentrating device 50, and is separated into a distillate in which the ammonia nitrogen remaining in the nitrification liquid is concentrated and a distillation residue containing no ammonia nitrogen. The distillate is absorbed through the ammonia separation pipe 88 into the second absorption tank 90 in which the absorption liquid is stored, and is intermittently returned to the nitrification device 20 by the on-off valve 94 provided in the absorption tank pipe 92. On the other hand, the distillation residue is discharged as treated water.

【0035】上記の如く構成された第2の実施の形態に
よる廃水処理装置10の場合にも第1の実施の形態と同
様の効果を得ることができる。更には、第1及び第2の
濃縮装置14、50として蒸留装置70、86を用いた
ので、膜分離のように目詰まり等による処理能力ほ低下
がない。また、硝化槽26内のpH調整として前記した
ように炭酸水素ナトリウム等の炭酸塩を一般的に使用す
るが、第2の濃縮装置50を膜分離方式にすると炭酸塩
による目詰まりを防止するための固液分離槽が必須であ
るが、蒸留分離方式ではその必要がなく装置を簡素化で
きる。
The same effect as in the first embodiment can be obtained in the case of the wastewater treatment apparatus 10 according to the second embodiment configured as described above. Furthermore, since the distillation devices 70 and 86 are used as the first and second concentrators 14 and 50, there is no decrease in the processing capacity due to clogging or the like as in membrane separation. As described above, carbonate such as sodium bicarbonate is generally used for pH adjustment in the nitrification tank 26. However, if the second concentrator 50 is a membrane separation method, clogging by carbonate is prevented. Although the solid-liquid separation tank is indispensable, the distillation separation method does not require it and the apparatus can be simplified.

【0036】尚、上記実施の形態において、廃水原水の
アンモニア性窒素濃度をモニターする測定器を設けて、
測定結果に基づいて第1の濃縮装置での濃縮率を決定す
ると、より効率のよい硝化処理を行うことができる。ま
た、第1又は第2の濃縮装置は、同じ方式にする必要は
なく、膜分離方式と蒸留方式を自由に組み合わせること
ができる。
In the above embodiment, a measuring device for monitoring the concentration of ammonia nitrogen in the raw wastewater is provided.
When the concentration ratio in the first concentration device is determined based on the measurement result, more efficient nitrification treatment can be performed. Further, the first or second concentrator does not need to use the same system, and the membrane separation system and the distillation system can be freely combined.

【0037】[0037]

【実施例】以下に上記した廃水処理装置を用いて試験し
た実施例を説明する。 (実施例1)実施例1は図6で説明した廃水処理装置1
0を用いた場合であり、硝化槽26の容量を5リットル
で行った。また、固定化担体28は、3mmφの担体表
面に硝化菌を付着馴養した結合型のPVA担体を使用
し、充填率を20%で行った。
The following is a description of an embodiment which was tested using the above wastewater treatment apparatus. (Embodiment 1) Embodiment 1 is a wastewater treatment apparatus 1 described with reference to FIG.
In this case, the capacity of the nitrification tank 26 was set to 5 liters. As the immobilization carrier 28, a binding type PVA carrier obtained by adhering and nitrifying bacteria to a 3 mmφ carrier surface was used, and the filling rate was 20%.

【0038】また、運転条件はNo.1〜No.3の3通りで
行うと共に、担体当たりのアンモニア性窒素負荷が60
0mg−N/h・l−担体以上になるように硝化槽26
の滞留時間を変えて行った。また、処理水のアンモニア
性窒素濃度、アンモニア除去率(硝化槽26への流入ア
ンモニア性窒素濃度に対する除去率)及び硝化速度の測
定は、60日間連続運転した後の安定した時に測定し
た。
The operation conditions were No. 1 to No. 3 and the ammonia nitrogen load per carrier was 60%.
Nitrification tank 26 so that the amount becomes 0 mg-N / hl-carrier or more.
At different residence times. The ammonia nitrogen concentration, the ammonia removal rate (removal rate with respect to the ammonia nitrogen concentration flowing into the nitrification tank 26) of the treated water, and the nitrification rate were measured when the operation was stabilized after continuous operation for 60 days.

【0039】No.1の運転条件は、アンモニア性窒素濃
度が80mg/lのアンモニア性窒素廃水を第1の濃縮
装置14で3倍濃縮して硝化装置20に供給すると共
に、第2の濃縮装置50では2倍濃縮するように運転
し、硝化槽26内の滞留時間を1時間とした。No.2の
運転条件は、アンモニア性窒素濃度が400mg/lの
アンモニア性窒素廃水を第1の濃縮装置14で1.5倍
濃縮して硝化装置20に供給すると共に第2の濃縮装置
50では3倍濃縮するように運転し、硝化槽26内の滞
留時間を5時間とした。
The No. 1 operating condition is that the ammonia nitrogen wastewater having an ammonia nitrogen concentration of 80 mg / l is concentrated three times by the first concentration device 14 and supplied to the nitrification device 20 while the second concentration device At 50, the operation was performed so that the concentration was doubled, and the residence time in the nitrification tank 26 was set to 1 hour. The No. 2 operating condition is that the ammonia nitrogen wastewater having an ammonia nitrogen concentration of 400 mg / l is concentrated 1.5 times with the first concentration device 14 and supplied to the nitrification device 20 and the second concentration device 50 The operation was performed so that the concentration was tripled, and the residence time in the nitrification tank 26 was set to 5 hours.

【0040】No.3の運転条件は、アンモニア性窒素濃
度が1000mg/lと充分に高いアンモニア性窒素廃
水の場合で、第1の濃縮装置14を使用せずに廃水をそ
のままバイパス配管22で硝化装置20に供給して第2
の濃縮装置50のみを2倍濃縮で使用し、硝化槽26内
の滞留時間を6時間とした。比較例として、アンモニア
性窒素濃度が80mg/lのアンモニア性窒素廃水を濃
縮せずにそのまま硝化装置20に供給し、第2の濃縮装
置のみを2倍濃縮で使用した。
The operation condition of No. 3 is a case of ammonia nitrogen wastewater having a sufficiently high ammonia nitrogen concentration of 1000 mg / l. The wastewater is directly nitrified by the bypass pipe 22 without using the first concentrator 14. To the device 20
Was used in double concentration, and the residence time in the nitrification tank 26 was set to 6 hours. As a comparative example, ammonia nitrogen wastewater having an ammonia nitrogen concentration of 80 mg / l was directly supplied to the nitrification device 20 without being concentrated, and only the second concentration device was used in double concentration.

【0041】上記運転条件及び試験結果を図8に示す。
その結果、No.1〜No.3における各処理水(第2の濃縮
装置50の透過水)のアンモニア性窒素濃度の測定結果
は、No.1で4mg/l(除去率…98.3%)、No.2
で8〜9mg/l(除去率…98.7%)、No.3では
10mg/l(除去率…99.0%)となり、充分低減
させることができた。これに対し、比較例の処理水のア
ンモニア性窒素濃度は10mg/l(87.5%)とな
り、No.1〜No.3に比べて除去率が悪かった。
FIG. 8 shows the above operating conditions and test results.
As a result, the measurement result of the ammonia nitrogen concentration of each treated water (permeated water of the second concentrator 50) in No. 1 to No. 3 was 4 mg / l (removal rate: 98.3%) in No. 1. ), No.2
8 to 9 mg / l (removal rate: 98.7%) and No. 3 to 10 mg / l (removal rate: 99.0%), which was sufficiently reduced. On the other hand, the ammonia nitrogen concentration of the treated water of the comparative example was 10 mg / l (87.5%), and the removal rate was lower than that of No. 1 to No. 3.

【0042】また、No.1〜No.3における硝化速度の測
定結果は、全て400mg−N/h・l−担体以上であ
り、特にNo.3は460mg−N/h・l−担体と極め
て高い値を示した。これに対し、比較例の硝化速度は1
20mg−N/h・l−担体であり、No.1〜No.3の場
合の約1/4であった。また、試験終了後の担体28に
含まれている硝化菌を同定したところ、No.1及びNo.2
の担体28にはAH菌とAL菌の存在が確認され、No.
3の担体28にはAH菌が優先繁殖していることが確認
された。また、比較例の担体28はAL菌が大部分であ
り、菌種の違いが硝化速度に反映したことが考えられ
る。 (実施例2)実施例2は図7で説明した廃水処理装置1
0を用いた場合である。硝化槽26の容量、使用した担
体28、担体28の充填率は実施例1と同様である。ま
た、第2実施例ではアンモニア性窒素廃水として合成し
た尿廃水を希釈して、アンモニア性窒素濃度を80mg
/lとしたものを使用した。また、処理水のアンモニア
性窒素濃度、及び硝化速度の測定は、60日間連続運転
した後の安定した時に測定した。
The measurement results of the nitrification rates in No. 1 to No. 3 were all 400 mg-N / h.l-carrier or more, and in particular, No. 3 was extremely 460 mg-N / h.l-carrier. It showed a high value. In contrast, the nitrification rate of the comparative example was 1
20 mg-N / hl · carrier, which was about 1/4 of No. 1 to No. 3. When the nitrifying bacteria contained in the carrier 28 after the test was completed, No. 1 and No. 2
The presence of AH bacteria and AL bacteria was confirmed in the carrier 28 of No.
It was confirmed that AH bacteria preferentially propagated in the carrier 28 of No. 3. Further, the carrier 28 of the comparative example was mostly composed of AL bacteria, and it is considered that the difference in bacterial species was reflected on the nitrification rate. (Embodiment 2) Embodiment 2 is a wastewater treatment apparatus 1 described with reference to FIG.
This is the case where 0 is used. The capacity of the nitrification tank 26, the used carrier 28, and the filling rate of the carrier 28 are the same as in the first embodiment. In the second embodiment, the urine wastewater synthesized as the ammoniacal nitrogenous wastewater was diluted to reduce the ammoniacal nitrogen concentration to 80 mg.
/ L was used. Further, the measurement of the ammonia nitrogen concentration and the nitrification rate of the treated water were measured when the operation was stabilized after continuous operation for 60 days.

【0043】本実施例の運転条件は、アンモニア性窒素
濃度が80mg/lのアンモニア性窒素廃水を第1の濃
縮装置14で5倍濃縮して硝化装置20に供給すると共
に、第2の濃縮装置50では2倍濃縮するように運転
し、硝化槽26内の滞留時間を4時間とした。比較例と
して、アンモニア性窒素濃度が80mg/lのアンモニ
ア性窒素廃水を濃縮せずにそのまま硝化装置20に供給
し、第2の濃縮装置50のみを2倍濃縮で使用した。ま
た、硝化槽26での滞留時間を20時間とした。
The operating conditions of the present embodiment are as follows. Ammonia nitrogen wastewater having an ammonia nitrogen concentration of 80 mg / l is concentrated 5 times in the first concentrator 14 and supplied to the nitrification apparatus 20, and the second concentrator is used. At 50, the operation was performed so that the concentration was doubled, and the residence time in the nitrification tank 26 was set to 4 hours. As a comparative example, ammonia nitrogen wastewater having an ammonia nitrogen concentration of 80 mg / l was directly supplied to the nitrification device 20 without being concentrated, and only the second concentration device 50 was used for double concentration. The residence time in the nitrification tank 26 was set to 20 hours.

【0044】上記運転条件及び試験結果を図9に示す。
その結果、本実施例の場合は、第1の濃縮装置14から
放流される蒸留残液のアンモニア性窒素濃度は5mg/
l以下になった。また、第2の濃縮装置50から放流さ
れる処理水(蒸留残液)のアンモニア性窒素濃度は、1
0mg/l以下に安定していた。また、硝化速度は29
0mg−N/h・l−担体となり、第2実施例の場合も
高い硝化速度に返られ、第1実施例と同様に高速処理す
ることができた。
FIG. 9 shows the above operating conditions and test results.
As a result, in the case of this embodiment, the ammonia nitrogen concentration of the distillation residue discharged from the first concentrator 14 is 5 mg /
1 or less. The ammonia nitrogen concentration of the treated water (distillate residue) discharged from the second concentrator 50 is 1
It was stable at 0 mg / l or less. The nitrification rate is 29
It became 0 mg-N / hl·l-carrier, and in the case of the second example, the nitrification rate was returned to a high level. Thus, high-speed processing could be performed as in the first example.

【0045】一方、比較例の場合は、硝化槽26内の滞
留時間を本実施例の5倍にしたことにより処理水(蒸留
残液)のアンモニア性窒素濃度は、10mg/l以下に
なっったが、硝化速度は14mg−N/h・l−担と本
実施例に比べて著しく低下しており、高速処理とは程遠
い結果となった。硝化速度の低下は、硝化槽26内のア
ンモニア性窒素濃度に対応して菌体密度が低下したため
と考えられる。
On the other hand, in the case of the comparative example, the ammonia nitrogen concentration of the treated water (distillate residue) was reduced to 10 mg / l or less by making the residence time in the nitrification tank 26 five times that of this embodiment. However, the nitrification rate was 14 mg-N / hl·l-, which was significantly lower than that of the present example, and the result was far from high-speed processing. The decrease in the nitrification rate is considered to be due to a decrease in the cell density corresponding to the concentration of ammonia nitrogen in the nitrification tank 26.

【0046】[0046]

【発明の効果】以上説明したように、本発明の廃水処理
装置によれば、硝化菌であるAH菌が優先繁殖した固定
化担体、又はAH菌とAL菌が混相繁殖した固定化担体
の特性を利用することにより、低濃度のアンモニア性窒
素廃水を濃縮して硝化処理することができるので、反応
槽で処理する廃水の水量を大幅に低減させることができ
る。更に、従来の活性汚泥法に比べて高い硝化速度で高
速処理することができるので、廃水処理装置を大幅にコ
ンパクト化することができる。
As described above, according to the wastewater treatment apparatus of the present invention, the characteristics of the immobilized carrier on which nitrifying AH bacteria are propagated preferentially, or the immobilized carrier on which AH bacteria and AL bacteria are multiphase propagated, Utilization of this method enables low-concentration ammoniacal nitrogen wastewater to be concentrated for nitrification treatment, so that the amount of wastewater treated in the reaction tank can be significantly reduced. Further, since high-speed treatment can be performed at a higher nitrification rate than the conventional activated sludge method, the wastewater treatment apparatus can be significantly reduced in size.

【0047】従って、広い敷地面積を確保しにくい都市
部に設置する生物学的な廃水処理装置としてその有用性
が極めて大きい。
Therefore, it is extremely useful as a biological wastewater treatment apparatus installed in an urban area where it is difficult to secure a large site area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンモニア性窒素濃度に対するAH菌の硝化速
度及び菌数の関係図
FIG. 1 is a diagram showing the relationship between the nitrification rate and the number of AH bacteria relative to the concentration of ammonia nitrogen.

【図2】アンモニア性窒素濃度に対するAL菌の硝化速
度及び菌数の関係図
FIG. 2 is a graph showing the relationship between the nitrification rate and the number of AL bacteria with respect to ammonia nitrogen concentration.

【図3】アンモニア性窒素濃度を200mg/lに一定
にした場合の担体当たりのアンモニア性窒素負荷と菌数
の関係図
FIG. 3 is a diagram showing the relationship between the ammonia nitrogen load per carrier and the number of bacteria when the ammonia nitrogen concentration is kept constant at 200 mg / l.

【図4】アンモニア性窒素濃度を500mg/lに一定
にした場合の担体当たりのアンモニア性窒素負荷と菌数
の関係図
FIG. 4 is a graph showing the relationship between the ammonia nitrogen load per carrier and the number of bacteria when the ammonia nitrogen concentration is kept constant at 500 mg / l.

【図5】アンモニア性窒素濃度に対するAH菌の適正範
囲を示した説明図
FIG. 5 is an explanatory diagram showing an appropriate range of AH bacteria with respect to ammonia nitrogen concentration.

【図6】本発明の廃水処理装置の第1の実施の形態を説
明する構成図
FIG. 6 is a configuration diagram illustrating a first embodiment of the wastewater treatment apparatus of the present invention.

【図7】本発明の廃水処理装置の第2の実施の形態を説
明する構成図
FIG. 7 is a configuration diagram illustrating a wastewater treatment apparatus according to a second embodiment of the present invention.

【図8】本発明の廃水処理装置の第1の実施の形態を用
いて実施した実施例の運転条件と結果を示した説明図
FIG. 8 is an explanatory diagram showing operating conditions and results of an example implemented using the wastewater treatment apparatus according to the first embodiment of the present invention.

【図9】本発明の廃水処理装置の第2の実施の形態を用
いて実施した実施例の運転条件と結果を示した説明図
FIG. 9 is an explanatory diagram showing operating conditions and results of an example implemented using the wastewater treatment apparatus according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…廃水処理装置 14…第1の濃縮装置 20…硝化装置 28…硝化菌を固定化した担体 30…曝気配管 36…脱窒装置 46…固液分離槽 50…第2の濃縮装置 DESCRIPTION OF SYMBOLS 10 ... Wastewater treatment apparatus 14 ... 1st concentrating apparatus 20 ... Nitrification apparatus 28 ... Carrier which fixed nitrifying bacteria 30 ... Aeration piping 36 ... Denitrification apparatus 46 ... Solid-liquid separation tank 50 ... 2nd concentrating apparatus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 正隆 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (56)参考文献 特開 平5−64799(JP,A) 特開 平5−177197(JP,A) 特開 昭63−36898(JP,A) 特開 平5−169091(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 C02F 3/34 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masataka Kasai 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (56) References JP-A-5-64799 (JP, A) JP-A-5-177197 (JP, A) JP-A-63-36898 (JP, A) JP-A-5-169091 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3 / 00 C02F 3/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アンモニア性窒素廃水を担体に担持した硝
化菌により生物処理する廃水処理装置に於いて、 前記アンモニア性窒素廃水を濃縮してアンモニア性窒素
濃度を高める前処理用の濃縮装置と、 前記前処理用の濃縮装置で濃縮されたアンモニア性窒素
濃縮水と、前記硝化菌の種類のうちの高濃度なアンモニ
ア溶液中で培養して検出される硝化細菌であって、40
0mg/l以上のアンモニア性窒素濃度で高活性を発揮
するAH菌と、低濃度なアンモニア溶液中で培養して検
出される硝化菌であって、100mg/l近傍のアンモ
ニア性窒素濃度で高活性を発揮するAL菌が混相状態で
繁殖した固定化担体とを好気性雰囲気で接触させる反応
槽と、から成ることを特徴とする廃水処理装置。
1. A wastewater treatment apparatus for biological treatment with nitrifying bacteria carrying ammonia nitrogen wastewater on a carrier, comprising: a pretreatment concentration apparatus for concentrating the ammonia nitrogen wastewater to increase the concentration of ammonia nitrogen; Ammoniacal nitrogen-enriched water concentrated by the pretreatment concentrator, and nitrifying bacteria detected by culturing in a high-concentration ammonia solution of the nitrifying bacteria type, 40
AH bacteria exhibiting high activity at an ammonia nitrogen concentration of 0 mg / l or more, and nitrifying bacteria detected by culturing in a low-concentration ammonia solution, and have high activity at an ammonia nitrogen concentration of around 100 mg / l A wastewater treatment apparatus, comprising: a reaction tank in which an immobilized carrier in which an AL bacterium exhibiting the above-mentioned conditions is propagated in a mixed phase state is brought into contact with an aerobic atmosphere.
【請求項2】前記反応槽から排出される排出液中のアン
モニア性窒素を濃縮分離すると共に濃縮分離した濃縮水
を前記反応槽に戻す後処理用の濃縮装置を設け、前記排
出液中に残存するアンモニア性窒素を除去することを特
徴とする請求項の廃水処理装置。
2. A concentrating device for post-treatment is provided for concentrating and separating ammoniacal nitrogen in the effluent discharged from the reaction tank and returning the concentrated water separated and concentrated to the reaction tank. The wastewater treatment apparatus according to claim 1 , wherein the ammonia nitrogen is removed.
【請求項3】前記前処理及び後処理用の濃縮装置は、膜
分離装置と蒸留装置から選択されることを特徴とする請
求項1又は2の廃水処理装置。
3. A concentrator for the pretreatment and post-treatment, membrane separation apparatus with distillation unit, characterized in that it is selected from claims 1 or 2 of the waste water treatment apparatus.
JP20486695A 1995-08-10 1995-08-10 Wastewater treatment equipment Expired - Fee Related JP3180891B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP20486695A JP3180891B2 (en) 1995-08-10 1995-08-10 Wastewater treatment equipment
US08/682,019 US5876603A (en) 1995-08-10 1996-07-16 Method of biologically removing nitrogen and system therefor
EP19960111529 EP0761607B1 (en) 1995-08-10 1996-07-17 Method of biologically removing nitrogen and system therefor
DE1996616216 DE69616216T2 (en) 1995-08-10 1996-07-17 Process and plant for the biological removal of nitrogen
CA 2181481 CA2181481C (en) 1995-08-10 1996-07-17 Method of biologically removing nitrogen and system therefor
US09/046,618 US5849180A (en) 1995-08-10 1998-03-24 Method of biologically removing nitrogen and system therefor
US09/161,458 US5997736A (en) 1995-08-10 1998-09-28 Method of biologically removing nitrogen and system therefor
US09/205,107 US6033569A (en) 1995-08-10 1998-12-03 Method of biologically removing nitrogen and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20486695A JP3180891B2 (en) 1995-08-10 1995-08-10 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH0947787A JPH0947787A (en) 1997-02-18
JP3180891B2 true JP3180891B2 (en) 2001-06-25

Family

ID=16497705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20486695A Expired - Fee Related JP3180891B2 (en) 1995-08-10 1995-08-10 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3180891B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007712A (en) * 1997-02-28 1999-12-28 Kuraray Co., Ltd. Waste water treatment apparatus
JP4681576B2 (en) * 2007-04-06 2011-05-11 弘見 池知 Advanced sewage treatment equipment
JP2009072766A (en) * 2007-08-30 2009-04-09 Toray Ind Inc Water treating method
KR20150037909A (en) * 2012-07-26 2015-04-08 각코호진 토요다이가쿠 Method and device for treating ammonia nitrogen-containing water at low temperature
JP6123840B2 (en) * 2015-05-12 2017-05-10 栗田工業株式会社 Organic wastewater treatment method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater

Also Published As

Publication number Publication date
JPH0947787A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
JP3937664B2 (en) Biological nitrogen removal method and apparatus
CA2635278C (en) Method and system for nitrifying and denitrifying wastewater
Arnold et al. Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: a comparison
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CA2181481C (en) Method of biologically removing nitrogen and system therefor
JP4224951B2 (en) Denitrification method
US3300404A (en) Anaerobic treatment of organic industrial wastes in an artificial lagoon
JP3252888B2 (en) Biological nitrogen removal equipment
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP3180891B2 (en) Wastewater treatment equipment
JPH07275887A (en) Purifying tank
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP2004305816A (en) Nitrification method and apparatus, and waste water treatment equipment
Nitisoravut et al. Denitrification of nitrate-rich water using entrapped-mixed-microbial cells immobilization technique
JP3252887B2 (en) Method and apparatus for biological oxidation of ammoniacal nitrogen
JPH0259000B2 (en)
KR100643843B1 (en) B.c.m.f., biological contact media filter
JP3858271B2 (en) Wastewater treatment method and apparatus
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
KR0183461B1 (en) Biological treatment of organic waste water using immobilized carrier
KR950013997A (en) Biological sewage and wastewater treatment device combined with nitrogen and phosphorus removal and its treatment method
Draaijer et al. Full scale experiences with nutrient removal at two wastewater treatment plants in the Netherlands
JPH0929278A (en) Method for treating waste water and device therefor
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPS6324440B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees