JP3177716B2 - Method for manufacturing in-plane recording type magnetic recording medium - Google Patents

Method for manufacturing in-plane recording type magnetic recording medium

Info

Publication number
JP3177716B2
JP3177716B2 JP16938992A JP16938992A JP3177716B2 JP 3177716 B2 JP3177716 B2 JP 3177716B2 JP 16938992 A JP16938992 A JP 16938992A JP 16938992 A JP16938992 A JP 16938992A JP 3177716 B2 JP3177716 B2 JP 3177716B2
Authority
JP
Japan
Prior art keywords
film
alloy
power
target
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16938992A
Other languages
Japanese (ja)
Other versions
JPH0612666A (en
Inventor
典明 谷
久三 中村
郁生 鈴木
道夫 石川
賀文 太田
忠烈 白
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP16938992A priority Critical patent/JP3177716B2/en
Publication of JPH0612666A publication Critical patent/JPH0612666A/en
Application granted granted Critical
Publication of JP3177716B2 publication Critical patent/JP3177716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、面内記録型磁気記録体
の製造方法に関し、更に詳しくは、非磁性基板上に下地
膜を形成し、その上にCo合金膜を形成し、該Co合金
膜をエピタキシャル成長させて成る面内記録型磁器記録
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a longitudinal magnetic recording medium, and more particularly, to a method of forming a base film on a non-magnetic substrate and forming a Co alloy film thereon. The present invention relates to a method of manufacturing an in-plane recording type porcelain recording body formed by epitaxially growing an alloy film.

【0002】[0002]

【従来の技術】面内記録型磁気記録体としては、例えば
アルミニウム材から成る非磁性の基板上に、例えばCr
から成る下地膜を形成し、次いで該下地膜上にCo合金
膜を形成し、該Co合金膜をエピタキシャル成長させ、
更にその上にC保護膜を形成した面内記録型磁気記録体
が知られている。この面内記録型磁気記録体は高い保磁
力を有するので、高密度記録可能なハードディスク媒体
として多用されている。面内記録型磁気記録体のこれら
膜形成には一般的にスパッタ法が知られており、なかで
も成膜速度が大きいことから直流マグネトロンスパッタ
法が広く利用されている。
2. Description of the Related Art As an in-plane recording type magnetic recording material, for example, a nonmagnetic substrate made of aluminum
Forming a base film consisting of, then forming a Co alloy film on the base film, epitaxially growing the Co alloy film,
Further, an in-plane recording type magnetic recording body having a C protective film formed thereon is known. Since the in-plane recording type magnetic recording medium has a high coercive force, it is frequently used as a hard disk medium capable of high-density recording. In general, a sputtering method is known for forming these films on the in-plane recording type magnetic recording medium. Among them, a DC magnetron sputtering method is widely used because of a high film forming rate.

【0003】非磁性基板にこれらCr膜、Co合金膜を
形成するには、基板を各ターゲットの前面に移動させな
がら、直流マグネトロンスパッタ法で夫々のターゲット
のカソードに高電力を印加し、ターゲットをスパッタリ
ングして非磁性基板上にCr膜、Co合金膜を、更にC
保護膜を順次連続して成膜する通過型成膜方式が広く利
用されている。
In order to form these Cr films and Co alloy films on a non-magnetic substrate, high power is applied to the cathodes of the respective targets by DC magnetron sputtering while moving the substrates to the front of each target, and the targets are formed. Sputter to form Cr film and Co alloy film on non-magnetic substrate
2. Description of the Related Art A pass-through film forming method of sequentially forming a protective film sequentially and widely is widely used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記通
過型成膜方式は生産性に優れているが、作製された面内
記録型磁気記録体に磁気的な異方性が生じる。
However, although the pass-through type film forming method is excellent in productivity, magnetic anisotropy occurs in the manufactured in-plane recording type magnetic recording medium.

【0005】この磁気的な異方性は例えば成膜時のスパ
ッタ原子の入射角の不均一性のために面内記録型磁気記
録体内の磁気特性が均一でなくなり、その結果、該面内
記録型磁気記録体で記録再生を行うと図1に示すような
出力電圧のうねり、所謂モジュレーションを生じるとい
う問題がある。
The magnetic anisotropy causes, for example, non-uniform magnetic characteristics in an in-plane recording type magnetic recording medium due to non-uniformity of the incident angle of sputtered atoms during film formation. Performing recording / reproducing with a magnetic recording medium has a problem that the output voltage swells as shown in FIG.

【0006】本発明は、前記問題点を解消し、磁気異方
性、モジュレーションの少ない面内記録型磁気記録体の
製造方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing an in-plane recording type magnetic recording medium having little magnetic anisotropy and modulation.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく鋭意検討した結果、基板上への下地膜およ
びCo合金膜を形成する際、下地膜ターゲットのみに、
或いは下地膜ターゲットおよびCo合金ターゲットの両
ターゲットに印加する直流電力に高周波電力を重畳して
スパッタして成膜すると磁気異方性、モジュレーション
の極めて少ない良好な面内記録型磁気記録体が得られる
ことを知見した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that when forming a base film and a Co alloy film on a substrate, only the base film target is used.
Alternatively, when a high-frequency power is superimposed on a DC power applied to both the base film target and the Co alloy target to form a film by sputtering, a good in-plane recording type magnetic recording medium having very little magnetic anisotropy and modulation can be obtained. I found that.

【0008】本発明は前記知見に基づいてなされたもの
であって、本発明の面内記録型磁気記録体の製造方法
は、スパッタ法で非磁性基板上に下地膜を形成し、次い
で該下地膜上にCo合金膜を形成し、該Co合金膜をエ
ピタキシャル成長させて成る面内記録型の面内記録型磁
気記録体の製造方法において、下地膜を形成する際、下
地膜ターゲットに直流電力と高周波電力を重畳して印加
してスパッタ成膜することを特徴とする。
The present invention has been made on the basis of the above-mentioned findings, and a method of manufacturing an in-plane recording type magnetic recording material according to the present invention comprises forming a base film on a non-magnetic substrate by a sputtering method, In a method of manufacturing a longitudinal recording magnetic recording body of a longitudinal recording type in which a Co alloy film is formed on a ground film and the Co alloy film is epitaxially grown, when an under film is formed, DC power and A high-frequency power is superimposed and applied to form a sputter film.

【0009】また、下地膜ターゲットはCr、Mo、W
の単独ターゲット、或いはこれらを主成分とする合金タ
ーゲットとしてもよい。また、下地膜または/およびC
o合金膜の成膜の際に、基板に負のバイアス電圧を印加
しながら成膜してもよい。また、Co合金膜を形成する
際に、Co合金ターゲットに直流電力と高周波電力を重
畳して印加してスパッタ成膜するようにしてもよい。ま
た、ターゲットに印加する全電力中の高周波電力の割合
を3%以上、85%以下としてもよい。
The underlayer target is Cr, Mo, W
Alone target or an alloy target containing these as a main component. In addition, the base film and / or C
In forming the o-alloy film, the film may be formed while applying a negative bias voltage to the substrate. Further, when forming a Co alloy film, a DC power and a high frequency power may be superimposed and applied to a Co alloy target to form a sputter film. Further, the ratio of the high-frequency power to the total power applied to the target may be 3% or more and 85% or less.

【0010】非磁性基板上に下地膜およびCo合金膜を
成膜する際に、下地膜ターゲットのみ、或いは下地膜タ
ーゲットおよびCo合金ターゲットの両ターゲットに印
加する電力として、直流電力に高周波電力を重畳してス
パッタ成膜すると磁気異方性、モジュレーションの極め
て少ない良好な面内記録型磁気記録体が得られるのは次
のような理由からと考えられる。尚、基板上に形成する
下地膜をCr膜とした場合を例にして説明する。
When a base film and a Co alloy film are formed on a nonmagnetic substrate, high-frequency power is superimposed on DC power as power applied to only the base film target or both the base film target and the Co alloy target. The reason for obtaining a good in-plane recording type magnetic recording medium having extremely small magnetic anisotropy and modulation when formed by sputtering is considered to be as follows. It is to be noted that a case where a base film formed on a substrate is a Cr film will be described as an example.

【0011】即ち、先ず、下地のCr膜層において、C
r膜を成膜する際、基板上の各点にはターゲットから種
々の入射角度でCr原子が飛来する。そして基板上に到
達したCr原子は到達時に有していた入射エネルギーに
より基板表面状で拡散運動をし、やがてエネルギーを失
って基板上のある部分に固着される。その後同様にCr
原子が次々と飛来し、基板上のCr原子に合体し、この
合体を繰り返しながら次第に大きな粒子に成長する。と
ころが粒子がある程度の大きさ以上に成長すると主たる
入射方向に対して該粒子の裏側では影になる部分、所謂
シャドゥイングが出来る。シャドゥイングが起こり始め
ると、ある程度大きくなった粒子の裏側ではCr原子の
飛来確率が小さくなる、所謂シャドゥイングの効果が生
じる。その結果、Cr原子の主たる入射方向に対し、直
角の隣接せる粒子位置ではシャドゥイングの効果が小さ
いため粒子が合体して繋がりやすいが、主たる入射方向
に対し平行方向にはシャドゥイングの効果のため、粒子
同志が互いに分断されたままの状態になりやすい。この
ようにスパッタされ、基板上に飛来するCr原子の主た
る入射方向に対し、既に成長せる基板上のCr粒子の繋
がり方が、ある方向とそれと直交方向では差が生じる。
以上のことはCo合金粒子についても同様のことが生じ
る。
That is, first, in the underlying Cr film layer, C
When the r film is formed, Cr atoms fly from the target at various points on the substrate at various incident angles. The Cr atoms reaching the substrate perform a diffusion motion on the surface of the substrate due to the incident energy at the time of arrival, and eventually lose energy and are fixed to a certain portion on the substrate. After that, similarly
Atoms fly one after another, coalesce with Cr atoms on the substrate, and grow into gradually larger particles while repeating this coalescence. However, when a particle grows to a certain size or more, a shadowed portion on the back side of the particle with respect to the main incident direction, so-called shadowing, is formed. When shadowing starts to occur, a so-called shadowing effect occurs, in which the probability of Cr atoms coming to the back of the particles that have increased to some extent decreases. As a result, the shadowing effect is small at the particle position adjacent to the main direction of the Cr atom at right angles to the adjacent particle position, and the particles are easily united and connected. However, the shadowing effect is parallel to the main incident direction due to the shadowing effect. , Particles are likely to remain separated from each other. As described above, the connection of the Cr particles on the already grown substrate differs from the main direction of incidence of the Cr atoms that are sputtered and fly on the substrate between a certain direction and a direction perpendicular thereto.
The same is true for the Co alloy particles.

【0012】これらのCr粒子やCo合金粒子の繋がり
方の方向による差が、面内記録型磁気記録体の磁気特性
の異方性をもたらし、その結果モジュレーションが生じ
る。換言すればモジュレーションを生じさせないために
は、Cr粒子やCo合金粒子の繋がり方の不均一性を解
消すればよいことになる。
The difference depending on the direction of connection of these Cr particles and Co alloy particles causes anisotropy of the magnetic characteristics of the in-plane recording type magnetic recording medium, resulting in modulation. In other words, in order to prevent the modulation from occurring, it is necessary to eliminate the non-uniformity of the connection of the Cr particles and the Co alloy particles.

【0013】一般的によく知られているように、ひとつ
の真空成膜スパッタ装置内に複数台の高周波電力の印加
されるターゲットのカソード同志が近傍に配設されてい
る場合は、カソードに印加された高周波が互いに干渉を
起こして、膜厚分布が不均一になる可能性がある。ハー
ドディスクの場合、特に下地膜の上に形成されるCo合
金膜の膜厚均一性がその特性上非常に重要である。
As is generally well known, when a plurality of targets to which high-frequency power is applied are arranged close to one another in a single vacuum film-forming sputtering apparatus, the target is applied to the cathode. The high-frequency waves interfere with each other, and the film thickness distribution may become non-uniform. In the case of a hard disk, in particular, the uniformity of the thickness of a Co alloy film formed on a base film is very important in terms of its characteristics.

【0014】従って、生産上はCo合金膜を成膜するC
o合金ターゲットに印加する電力としては直流電力を用
い、Cr膜を成膜するCrターゲットに印加する電力と
して直流電力に高周波電力を重畳する方法を用いる方が
よい。この場合、下地のCr膜、Co合金膜ともに直流
電流に高周波電力を重畳した場合に比べて磁気異方性、
モジュレーションの低減効果はやや小さくなるものの、
両者とも重畳しない従来法に比べると著しく磁気異方
性、モジュレーションは改善される。これはCo合金膜
の成膜中にはCo合金粒子はシャドゥイングを生じる
が、広く知られているようにCo合金膜は下地のCr膜
上にエピタキシャル成長するので、下地のCr粒子が高
周波電力の重畳によりほとんどランダムであれば、その
上にエピタキシャル成長するCo合金粒子もランダムに
なるためである。
Therefore, in production, C to form a Co alloy film is used.
It is better to use DC power as the power to be applied to the o-alloy target and use a method of superimposing high-frequency power on DC power as the power to be applied to the Cr target for forming the Cr film. In this case, the magnetic anisotropy,
Although the effect of reducing the modulation is slightly smaller,
Magnetic anisotropy and modulation are remarkably improved as compared with the conventional method in which both do not overlap. This is because the Co alloy particles generate shadowing during the formation of the Co alloy film, but the Co alloy film is epitaxially grown on the underlying Cr film as widely known, so that the underlying Cr particles are This is because if the superposition is almost random, the Co alloy particles epitaxially grown thereon will also be random.

【0015】[0015]

【作用】基板上に下地膜およびCo合金膜を形成する
際、下地膜ターゲットのカソードのみ、或いは下地膜タ
ーゲットおよびCo合金ターゲットの両ターゲットのカ
ソードに、直流電力に高周波電力を重畳した電力を印加
し、ターゲットをスパッタして成膜すると、直流電力の
み印加したカソードでターゲットをスパッタして成膜し
た場合に比べてターゲットにかかる実効的な自己バイア
ス電位が上昇し、かつプラズマ中のイオン化率が増加し
て基板に到達するスパッタ粒子の平均的な入射エネルギ
ーが大きくなる。そのため、低い入射エネルギーで粒子
が基板に到達した場合に比べ、高いエネルギーで入射し
た場合には基板表面での粒子の拡散運動が活発になり、
シャドゥになる部分にも下地膜の粒子やCo合金膜の粒
子が表面拡散する。従って、下地膜の粒子やCo合金粒
子の繋がり方がランダムになり、ハードディスクの磁気
異方性が発生しにくくなり、モジュレーションの発生を
押さえることが出来る。また、成膜中に基板に負のバイ
アス電圧を印加するとイオン化されたプラズマ中の粒子
がバイアス電位により加速され、より入射エネルギーが
高くなるため、よりモジュレーションの発生を小さくす
ることが出来、また、得られるディスクの保磁力も増加
させることが出来る。
When a base film and a Co alloy film are formed on a substrate, an electric power obtained by superimposing high-frequency power on DC power is applied to only the cathode of the base film target or the cathodes of both the base film target and the Co alloy target. However, when the target is sputtered to form a film, the effective self-bias potential applied to the target increases and the ionization rate in the plasma becomes lower than when the target is sputtered to form a film with a cathode to which only DC power is applied. The average incident energy of the sputtered particles that increase and reach the substrate increases. Therefore, when the particles reach the substrate with low incident energy, the diffusion motion of the particles on the substrate surface becomes active when the particles enter with high energy,
The particles of the base film and the particles of the Co alloy film are also diffused on the surface of the shadowed portion. Therefore, the connection of the particles of the base film and the Co alloy particles becomes random, so that the magnetic anisotropy of the hard disk hardly occurs and the generation of the modulation can be suppressed. In addition, when a negative bias voltage is applied to the substrate during film formation, particles in the ionized plasma are accelerated by the bias potential, and the incident energy becomes higher, so that the occurrence of modulation can be further reduced. The coercive force of the resulting disk can also be increased.

【0016】[0016]

【実施例】本発明の面内記録型磁気記録体の製造方法の
具体的な実施例を比較例と共に説明する。
EXAMPLES Specific examples of the method for manufacturing an in-plane magnetic recording medium of the present invention will be described together with comparative examples.

【0017】実施例1 成膜はターゲットとして大きさ縦18インチ、横5イン
チの長方形のCr(下地膜材)、Co−12at%Cr
−2at%Ta(Co合金膜材)、C(保護膜材)のタ
ーゲットを夫々2台ずつ両側に対向するように取り付け
た合計6台のカソードを備えたインターバック型の縦型
両面成膜スパッタ装置を用いて行った。そして縦型両面
成膜スパッタ装置内の圧力を1×10- 6Torr以下にな
るまで排気した後、Arガスを5×10- 3Torrまで導
入した。Crターゲットを取り付けたカソード(以下C
rカソードという)には1.0KWの直流電力と50W
の高周波電力(13.56MHz)を重畳した電力、C
o合金カソードを取り付けた(以下Co合金カソードと
いう)には0.8KWの直流電力と40Wの高周波電力
(13.56MHz)を重畳した電力、Cターゲットを
取り付けたカソード(以下Cカソードという)には3K
Wの直流電力を夫々印加した。
Example 1 A film was formed by using a rectangular Cr (base film material) having a size of 18 inches in length and 5 inches in width, Co-12 at% Cr as a target.
Inter-back type vertical double-sided film forming sputtering with a total of six cathodes, each of which is provided with two targets of 2 at% Ta (Co alloy film material) and C (protective film material) so as to oppose each other on both sides. This was performed using an apparatus. Then the pressure of the vertical double-sided film-forming the sputtering device 1 × 10 - was evacuated to less than 6 Torr, Ar gas 5 × 10 - was introduced to 3 Torr. Cathode with Cr target attached (hereinafter C
1.0KW DC power and 50W
Power obtained by superimposing the high-frequency power (13.56 MHz), C
An o-alloy cathode is attached (hereinafter referred to as a Co-alloy cathode), a power obtained by superimposing 0.8 KW DC power and a 40 W high-frequency power (13.56 MHz), and a C-target attached cathode (hereinafter referred to as a C cathode). 3K
W DC power was respectively applied.

【0018】放電中は対向するターゲット間を表面がテ
スクチャー処理された非晶質NiPメッキのアルミニウ
ム製の径3.5インチの基板を搬送速度200mm/m
inで通過させ、通過させながら基板両面に夫々Cr
膜、Co−Cr−Ta膜(以下Co合金膜という)、C
膜の順で順次成膜してディスクを作製した。基板上に成
膜した各膜厚はCr膜は1000Å、Co合金膜は50
0Å、C膜は300Åであった。
During discharge, an amorphous NiP-plated aluminum 3.5-inch substrate with a textured surface is transported between opposing targets at a transfer speed of 200 mm / m.
in, and while passing, Cr on both sides of the substrate
Film, Co—Cr—Ta film (hereinafter referred to as Co alloy film), C
A disk was formed by sequentially forming films in the order of films. The thickness of each film formed on the substrate is 1000Å for the Cr film and 50 for the Co alloy film.
0 ° and the C film were 300 °.

【0019】基板上にCr膜、Co合金膜、C膜の順序
で各膜が形成されたディスクを縦型両面成膜装置内より
取り出し、記録再生特性、および磁気特性を測定した。
記録再生特性においてモジュレーションの評価はディス
クの一周における再生出力波形(エンベロープ)から出
力の最大値Emaxと最小値Eminから、次式で求められた
数値を指標とした(図1参照)。
A disk on which a Cr film, a Co alloy film, and a C film were formed in this order on a substrate was taken out of a vertical double-sided film forming apparatus, and recording / reproducing characteristics and magnetic characteristics were measured.
The evaluation of the modulation in the recording / reproducing characteristics was based on the numerical value obtained by the following equation from the maximum value Emax and the minimum value Emin of the output from the reproduction output waveform (envelope) in one round of the disk (see FIG. 1).

【0020】[0020]

【数1】 (Equation 1)

【0021】磁気特性測定はディスクの成膜時の搬送に
おいて先頭位置(0°位置)と、上側位置(90°位
置)の2カ所の夫々において、ディスク半径35mmの
場所から大きさ8×8mmのサンプルを切り出し、いず
れもディスクの円周方向の磁気特性をVSMにより測定
し、0°位置と90°位置での保磁力(Hc)の差ΔH
cと、膜厚と残留磁化の積(TBr)の差ΔTBrから
ディスク内の磁気特性の不均一性を判断した。
In the measurement of magnetic properties, the disk is transported during film formation at the leading position (0 ° position) and at the upper position (90 ° position) at each of the two positions from the disk radius of 35 mm to the size of 8 × 8 mm. Samples were cut out and the magnetic properties in the circumferential direction of each disk were measured by VSM, and the difference ΔH between the coercive force (Hc) at the 0 ° position and the 90 ° position was measured.
The non-uniformity of the magnetic characteristics in the disk was determined from c and the difference ΔTBr between the product of the film thickness and the residual magnetization (TBr).

【0022】作製したディスクの一周におけるエンベロ
ープを磁気ディスク記録再生特性評価装置[ナショナル
コンピュータ株式会社製、モデルRD−008]で測定
し、それを図2に示した。また、試料振動式磁力計[理
研電子社製、モデルBHV−3]で測定した0°位置の
ヒステリシスループを図3(A)に示し、また、90°
位置のヒステリシスループを図3(B)に示した。これ
らの結果、モジュレーション率は5.4 %であり、0°位
置における保磁力(Hc)は1558Oe、残留磁化の積
(TBr)は457G・μmであり、また、90°位置に
おける保磁力(Hc)は1578Oe、残留磁化の積(TB
r)は436G・μmであり、そして、保磁力(Hc)の
差ΔHcは20Oe、残留磁化の積(TBr)の差ΔTB
rは21G・μmであった。
The envelope in one round of the produced disk was measured by a magnetic disk recording / reproducing characteristic evaluation apparatus [Model RD-008, manufactured by National Computer Co., Ltd.], and the result is shown in FIG. FIG. 3A shows a hysteresis loop at a 0 ° position measured by a sample vibration magnetometer [Model BHV-3 manufactured by Riken Denshi Co., Ltd.].
The position hysteresis loop is shown in FIG. As a result, the modulation rate was 5.4%, the coercive force (Hc) at the 0 ° position was 1558 Oe, the product of residual magnetization (TBr) was 457 G · μm, and the coercive force (Hc) at the 90 ° position was 1578 Oe, product of remanent magnetization (TB
r) is 436 G · μm, the difference ΔHc of the coercive force (Hc) is 20 Oe, and the difference ΔTB of the product (TBr) of the remanent magnetization.
r was 21 G · μm.

【0023】実施例2 Crカソードに印加する電力を0.8KWの直流電力と
300Wの高周波電力(13.56MHz)を重畳した
電力とし、Co合金カソードに印加する電力を0.64
KWの直流電力と240Wの高周波電力(13.56M
Hz)を重畳した電力とした以外は前記実施例1と同様
の方法でディスクを作製した。作製したディスクのエン
ベロープを実施例1と同様の方法で測定した結果、モジ
ュレーション率は4.2%であり、また、0°位置および
90°位置の夫々のヒステリシスループを実施例1と同
様の方法で測定した結果、保磁力(Hc)の差ΔHcは
25Oe、残留磁化の積(TBr)の差ΔTBrは16G・
μmであった。 実施例3 Crカソードに印加する電力を0.88KWの直流電力
と330Wの高周波電力(13.56MHz)を重畳し
た電力とし、Co合金カソードに印加する電力を0.7
04KWの直流電力と264Wの高周波電力(13.5
6MHz)を重畳した電力とし、更に、Cr膜およびC
o合金膜の成膜中基板に300Vの負のバイアス電圧を
印加した以外は前記実施例2と同様の方法でディスクを
作製した。作製したディスクのエンベロープを実施例1
と同様の方法で測定した結果、モジュレーション率は2.
5%であり、また、0°位置および90°位置の夫々の
ヒステリシスループを実施例1と同様の方法で測定した
結果、保磁力(Hc)の差ΔHcは18Oe、残留磁化の
積(TBr)の差ΔTBrは10G・μmであった。 比較例1 Crカソードに印加する電力を1.04KWの直流電力
とし、Co合金カソードに印加する電力を0.83KW
の直流電力とした以外は前記実施例2と同様の方法でデ
ィスクを作製した。作製したディスクのエンベロープを
実施例1と同様の方法で測定し、それを図5に示した。
また、0°位置のヒステリシスループを実施例1と同様
の方法で測定し、それを図6(A)に示し、また、90
°位置のヒステリシスループを実施例1と同様の方法で
測定し、それを図6(B)に示した。これらの結果、モ
ジュレーション率は14.6%であり、0°位置における保
磁力(Hc)は1524Oe、残留磁化の積(TBr)は41
6G・μmであり、また、90°位置における保磁力
(Hc)は1770Oe、残留磁化の積(TBr)は451G
・μmであり、そして、保磁力(Hc)の差ΔHcは24
6Oe、残留磁化の積(TBr)の差ΔTBrは35G・
μmであった。
Example 2 The power applied to the Cr cathode was a power obtained by superimposing a DC power of 0.8 KW and a high-frequency power (13.56 MHz) of 300 W, and the power applied to the Co alloy cathode was 0.64.
KW DC power and 240W high frequency power (13.56M
Hz) was used in the same manner as in Example 1 except that the power was superimposed. As a result of measuring the envelope of the produced disk by the same method as in Example 1, the modulation rate was 4.2%, and the hysteresis loops at the 0 ° position and the 90 ° position were measured by the same method as in Example 1. As a result, the difference ΔHc of the coercive force (Hc) is
25 Oe, the difference ΔTBr of the product of remanent magnetization (TBr) is 16 G ·
μm. Example 3 The power applied to the Cr cathode was a power obtained by superimposing a DC power of 0.88 KW and a high-frequency power (13.56 MHz) of 330 W, and the power applied to the Co alloy cathode was 0.7.
04KW DC power and 264W high frequency power (13.5
6 MHz) and a Cr film and C
A disk was manufactured in the same manner as in Example 2 except that a negative bias voltage of 300 V was applied to the substrate during the formation of the o-alloy film. The envelope of the manufactured disk was used in Example 1.
As a result, the modulation rate was 2.
The hysteresis loop at each of the 0 ° position and the 90 ° position was measured by the same method as in Example 1. As a result, the difference ΔHc in the coercive force (Hc) was 18 Oe, and the product of the residual magnetization (TBr). Was 10 G · μm. Comparative Example 1 The power applied to the Cr cathode was 1.04 KW DC power, and the power applied to the Co alloy cathode was 0.83 KW
A disk was manufactured in the same manner as in Example 2 except that the DC power was set as follows. The envelope of the produced disk was measured in the same manner as in Example 1, and the result is shown in FIG.
Further, the hysteresis loop at the 0 ° position was measured by the same method as in Example 1, which was shown in FIG.
The hysteresis loop at the ° position was measured in the same manner as in Example 1 and is shown in FIG. 6 (B). As a result, the modulation rate was 14.6%, the coercive force (Hc) at the 0 ° position was 1,524 Oe, and the product of residual magnetization (TBr) was 41.
The coercive force (Hc) at the 90 ° position is 1770 Oe, and the product of residual magnetization (TBr) is 451 G
Μm, and the difference ΔHc of the coercive force (Hc) is 24
6 Oe, the difference ΔTBr of the product of residual magnetization (TBr) is 35 G ·
μm.

【0024】比較例2 Crカソードに印加する電力を1.7KWの高周波電力
とし、Co合金カソードに印加する電力を1.4KWの
高周波電力とした以外は前記実施例2と同様の方法でデ
ィスクを作製した。作製したディスクのエンベロープを
実施例1と同様の方法で測定し、それを図7に示した。
また、0°位置のヒステリシスループを実施例1と同様
の方法で測定し、それを図8(A)に示し、また、90
°位置のヒステリシスループを実施例1と同様の方法で
測定し、それをを図8(B)に示した。これらの結果、
モジュレーション率は73.4%であり、0°位置における
保磁力(Hc)は1310Oe、残留磁化の積(TBr)は
456G・μmであり、また、90°位置における保磁力
(Hc)は1440Oe、残留磁化の積(TBr)は296G
・μmであり、そして、保磁力(Hc)の差ΔHcは13
0Oe、残留磁化の積(TBr)の差ΔTBrは160G・
μmであった。
Comparative Example 2 A disk was prepared in the same manner as in Example 2 except that the power applied to the Cr cathode was changed to a high frequency power of 1.7 KW and the power applied to the Co alloy cathode was changed to a high frequency power of 1.4 KW. Produced. The envelope of the produced disk was measured in the same manner as in Example 1, and the result is shown in FIG.
Further, the hysteresis loop at the 0 ° position was measured by the same method as in Example 1, and the result was shown in FIG.
The hysteresis loop at the ° position was measured in the same manner as in Example 1, and the result was shown in FIG. 8B. As a result of these,
The modulation rate is 73.4%, the coercive force (Hc) at the 0 ° position is 1310 Oe, and the product of residual magnetization (TBr) is
The coercive force (Hc) at the 90 ° position is 1440 Oe, and the product of residual magnetization (TBr) is 296 G · μm.
Μm, and the difference ΔHc of the coercive force (Hc) is 13
0 Oe, the difference ΔTBr of the product of residual magnetization (TBr) is 160 G ·
μm.

【0025】図2、図5および図7並びに図3、図6お
よび図8から明らかなように、ハードディスクのモジュ
レーションの発生の根拠は膜材の粒子の繋がり方の不均
一性にあることが分かる。特に長方形のターゲットを用
い、通過成膜方式で基板上に成膜してハードディスクを
作製する場合、ターゲットからの粒子の主な入射方向が
基板上の0°位置と90°位置において、夫々のディス
クの円周方向について比較した場合にスパッタ粒子の主
なる入射方向(即ち運動エネルギーを有する方向)が異
なっているため、両位置におけるシャドゥイング効果に
よるCr粒子やCo合金粒子の繋がり方も異なってしま
う。
As is apparent from FIGS. 2, 5 and 7, and FIGS. 3, 6 and 8, it can be seen that the basis of the occurrence of the modulation of the hard disk is the non-uniformity of the connection of the particles of the film material. . In particular, when a hard disk is manufactured by forming a film on a substrate by a pass-through film forming method using a rectangular target, each of the disks is used when the main incident direction of particles from the target is 0 ° position and 90 ° position on the substrate. Since the main incident direction (that is, the direction having kinetic energy) of the sputtered particles is different when compared in the circumferential direction, the connection of Cr particles and Co alloy particles due to the shadowing effect at both positions is also different. .

【0026】従って、モジュレーションを低減させるに
は0°位置と90°位置においてシャドゥイング効果に
よる繋がり方の差が小さくなるよう基板に入射するCr
粒子やCo合金粒子の基板表面での表面運動(表面拡
散)を活発にし、粒子同志が繋がろうとする方向をラン
ダムにするのが効果的である。そのためには基板に入射
するCr、Co合金の入射エネルギーを出来るだけ大き
くしてやればよいことが分かる。
Therefore, in order to reduce the modulation, the Cr incident on the substrate at the 0 ° position and the 90 ° position is so reduced that the difference in connection due to the shadowing effect is small.
It is effective to activate the surface motion (surface diffusion) of the particles or Co alloy particles on the substrate surface, and to randomize the direction in which the particles try to connect. It can be seen that for this purpose, the incident energy of the Cr and Co alloys incident on the substrate should be increased as much as possible.

【0027】本発明の実施例1,2,3はカソードに印
加する電力を直流電力に高周波電力を重畳するようにし
ているため、カソードに印加する電力を直流電力のみと
した比較例1の場合、或いは印加電力を高周波電力のみ
とした比較例2の場合とは異なり、ターゲットにかかる
実効的な自己バイアス電圧が上昇し、かつプラズマ中の
イオン化率が増加して基板に到達するスパッタ粒子の平
均的な入射エネルギーが大きくなる。また、実施例2の
ように実施例1に比して直流電力に重畳する高周波電力
を大きくすると更に基板に到達するスパッタ粒子の平均
的入射エネルギーが大きくなってモジュレーション率が
低減する。また、実施例3のように成膜中に基板に負の
バイアス電圧を印加することを併せて行うと、プラズマ
中のイオン化されたCr粒子やCo合金粒子が基板のバ
イアス電位に引き寄せられるため、基板に入射する各原
子のエネルギーは更に大きくなってモジュレーション率
が更に小さくなることが分かる。
In the first, second, and third embodiments of the present invention, the high-frequency power is superimposed on the DC power as the power applied to the cathode. Alternatively, unlike the case of Comparative Example 2 in which only the high frequency power is applied, the effective self-bias voltage applied to the target is increased, and the ionization rate in the plasma is increased, and the average of the sputtered particles reaching the substrate is increased. Incident energy increases. Further, when the high frequency power superimposed on the DC power is increased as compared with the first embodiment as in the second embodiment, the average incident energy of the sputtered particles reaching the substrate is further increased, and the modulation rate is reduced. Further, when a negative bias voltage is applied to the substrate during film formation as in Example 3, ionized Cr particles and Co alloy particles in the plasma are attracted to the bias potential of the substrate. It can be seen that the energy of each atom incident on the substrate is further increased and the modulation rate is further reduced.

【0028】一般的によく知られているように、1つの
真空成膜スパッタ装置内で複数の高周波スパッタを行う
カソード同志が近傍に配設されている場合、スパッタ時
には互いに高周波が干渉しあって基板上に形成される膜
厚分布に異常が発生する。このことは比較例2の結果、
詳しくは、図7のように対称性のないモジュレーション
が発生していること、および図8(A)および図8
(B)からみて、Co合金膜の膜厚が異なっていること
から明らかである。これは対向した2対のカソードに印
加した高周波が互いに干渉するため、Cr膜上に形成さ
れるCo合金膜の膜厚に異常が生じたためと考えられ
る。
As is generally well known, when a plurality of cathodes for performing high-frequency sputtering in a single vacuum film-forming sputtering apparatus are arranged in the vicinity, high-frequency interferences occur during sputtering. Abnormality occurs in the film thickness distribution formed on the substrate. This is the result of Comparative Example 2,
Specifically, the fact that a modulation having no symmetry occurs as shown in FIG.
It is apparent from (B) that the thickness of the Co alloy film is different. This is presumably because the high frequencies applied to the two pairs of cathodes opposed to each other interfered with each other, resulting in an abnormality in the thickness of the Co alloy film formed on the Cr film.

【0029】面内記録型磁気記録体の場合、下地となる
Cr膜の膜厚変動に対する磁気特性の変動は極めて穏や
かであるが、下地膜の上に形成されるCo合金膜の膜厚
変動に対しては媒体の磁気特性は急激に変化する。この
ようなカソードに印加した高周波が互いに干渉すること
による膜厚分布異常は常に同じように起こるとは限らな
いため、実際に面内記録型磁気記録体を生産する際に
は、このような危険を避けるようにする必要性がある。
In the case of an in-plane recording type magnetic recording medium, the fluctuation of the magnetic characteristics with respect to the fluctuation of the thickness of the underlying Cr film is extremely gentle, but the fluctuation of the thickness of the Co alloy film formed on the underlying film is very small. In contrast, the magnetic properties of the medium change rapidly. Such anomalies in the film thickness distribution due to the interference of the high frequencies applied to the cathode do not always occur in the same manner. There is a need to avoid.

【0030】実施例4 CrカソードおよびCo合金カソードに印加する全電力
に対する高周波電力の割合を種々変化させた以外は前記
実施例2と同様の方法で種々のディスクを作製した。作
製された夫々のディスクのエンベロープを前記実施例1
と同様の方法で測定し、その結果からモジュレーション
率を求め、それを図4に曲線Aとして示した。
Example 4 Various disks were produced in the same manner as in Example 2 except that the ratio of the high frequency power to the total power applied to the Cr cathode and the Co alloy cathode was changed variously. The envelope of each of the manufactured discs was replaced with the first embodiment.
The modulation rate was determined from the result, and the result is shown as a curve A in FIG.

【0031】実施例5 CrカソードおよびCo合金カソードに印加する全電力
に対する高周波電力の割合を種々変化させると共に、C
r膜およびCo合金膜の成膜中基板に300Vの負のバ
イアス電圧を印加した以外は前記実施例2と同様の方法
で種々のディスクを作製した。作製された夫々のディス
クのエンベロープを前記実施例1と同様の方法で測定
し、その結果からモジュレーション率を求め、それを図
4に曲線Bとして示した。
Example 5 The ratio of the high frequency power to the total power applied to the Cr cathode and the Co alloy cathode was changed variously,
Various disks were produced in the same manner as in Example 2 except that a negative bias voltage of 300 V was applied to the substrate during the formation of the r film and the Co alloy film. The envelope of each of the produced disks was measured in the same manner as in Example 1, and the modulation rate was determined from the result. The result is shown as a curve B in FIG.

【0032】実施例6 Crカソードに印加する全電力に対する高周波電力の割
合を種々変化させ、Co合金カソードには直流電力を印
加させた以外は前記実施例2と同様の方法で種々のディ
スクを作製した。作製された夫々のディスクのエンベロ
ープを前記実施例1と同様の方法で測定し、その結果か
らモジュレーション率を求め、それを図4に曲線Cとし
て示した。
Example 6 Various disks were produced in the same manner as in Example 2 except that the ratio of the high-frequency power to the total power applied to the Cr cathode was changed variously, and DC power was applied to the Co alloy cathode. did. The envelope of each of the produced disks was measured in the same manner as in Example 1, and the modulation rate was determined from the result. The result is shown as a curve C in FIG.

【0033】実施例7 Crカソードに印加する全電力に対する高周波電力の割
合を種々変化させ、Co合金カソードには直流電力を印
加させると共に、Cr膜およびCo合金膜の成膜中基板
に300Vの負のバイアス電圧を印加した以外は前記実
施例2と同様の方法で種々のディスクを作製した。作製
された夫々のディスクのエンベロープを前記実施例1と
同様の方法で測定し、その結果からモジュレーション率
を求め、それを図4に曲線Dとして示した。
Example 7 The ratio of the high-frequency power to the total power applied to the Cr cathode was varied, DC power was applied to the Co alloy cathode, and a negative voltage of 300 V was applied to the substrate during the formation of the Cr film and the Co alloy film. Various discs were manufactured in the same manner as in Example 2 except that the bias voltage was applied. The envelope of each of the produced disks was measured in the same manner as in Example 1, and the modulation rate was determined from the result. The result is shown as a curve D in FIG.

【0034】図4から明らかなように、直流電力への高
周波電力の重畳を適用するカソード、および基板への負
のバイアス電圧の印加の有無により多少の差はあるが、
カソードに印加する全電力中の高周波電力の割合が3%
より85%の範囲内でモジュレーション率を低減させ得
ることが分かる。また、モジュレーション率を低減させ
る効果はやや少ないが、生産性、作業性等を考慮すれ
ば、Crターゲットへのスパッタ時に印加する電力のみ
に高周波電力を重畳し、Co合金ターゲットへのスパッ
タ時に印加する電力は直流電力のみとしてもよいことが
分かる。
As is apparent from FIG. 4, although there is a slight difference depending on whether a negative bias voltage is applied to the cathode and the substrate in which high-frequency power is superimposed on DC power, and whether or not a negative bias voltage is applied to the substrate.
The ratio of high-frequency power in the total power applied to the cathode is 3%
It can be seen that the modulation rate can be reduced within the range of 85%. In addition, although the effect of reducing the modulation rate is somewhat small, in consideration of productivity, workability, etc., high-frequency power is superimposed only on the power applied at the time of sputtering on the Cr target, and applied at the time of sputtering on the Co alloy target. It can be seen that the power may be only DC power.

【0035】実施例8 Co合金カソードに印加する電力を0.83KWの直流
電力のみとし、更にCr膜の成膜中のみに基板に300
Vの負のバイアス電圧を印加した以外は前記実施例2と
同様の方法でディスクを作製した。作製されたディスク
のエンベロープを実施例1と同様の方法で測定した結
果、モジュレーション率は4.0%であり、また、0°位
置および90°位置の夫々のヒステリシスループを実施
例1と同様の方法でを測定した結果、保磁力(Hc)の
差ΔHcは65Oe、残留磁化の積(TBr)の差ΔTB
rは41G・μmであった。
Example 8 The electric power applied to the Co alloy cathode was only DC power of 0.83 KW, and the power was applied to the substrate only during the formation of the Cr film.
A disk was manufactured in the same manner as in Example 2 except that a negative bias voltage of V was applied. As a result of measuring the envelope of the produced disk by the same method as in Example 1, the modulation rate was 4.0%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result, the difference ΔHc of the coercive force (Hc) was 65 Oe, and the difference ΔTB of the product (TBr) of the remanent magnetization.
r was 41 G · μm.

【0036】実施例9 Co合金カソードに印加する電力を0.91KWの直流
電力のみとし、更に下地膜の上に形成するCo合金膜の
成膜中のみに基板に300Vの負のバイアス電圧を印加
した以外は前記実施例2と同様の方法でディスクを作製
した。作製されたディスクのエンベロープを実施例1と
同様の方法で測定した結果、モジュレーション率は5.8
%であり、また、0°位置および90°位置の夫々のヒ
ステリシスループを実施例1と同様の方法でを測定した
結果、保磁力(Hc)の差ΔHcは63Oe、残留磁化の
積(TBr)の差ΔTBrは28G・μmであった。
Example 9 The power applied to the Co alloy cathode was only DC power of 0.91 KW, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Co alloy film formed on the base film. A disc was produced in the same manner as in Example 2 except that the above procedure was performed. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 5.8.
%, And the hysteresis loop at each of the 0 ° position and the 90 ° position was measured by the same method as in Example 1. As a result, the difference ΔHc in coercive force (Hc) was 63 Oe, and the product of residual magnetization (TBr) Was ΔGBr of 28 G · μm.

【0037】実施例10 Crカソードに印加する電力を0.88KWの直流電力
と330Wの高周波電力を重畳して印加し、Cr膜の成
膜中のみに基板に300Vの負のバイアス電圧を印加し
た以外は前記実施例2と同様の方法でディスクを作製し
た。作製されたディスクのエンベロープを実施例1と同
様の方法で測定した結果、モジュレーション率は3.9%
であり、また、0°位置および90°位置の夫々のヒス
テリシスループを実施例1と同様の方法でを測定した結
果、保磁力(Hc)の差ΔHcは55Oe、残留磁化の積
(TBr)の差ΔTBrは20G・μmであった。
Example 10 A power applied to the Cr cathode was superimposed with a DC power of 0.88 KW and a high frequency power of 330 W, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Cr film. A disk was manufactured in the same manner as in Example 2 except for the above. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 3.9%.
The hysteresis loop at each of the 0 ° position and the 90 ° position was measured in the same manner as in Example 1. As a result, the difference ΔHc in coercive force (Hc) was 55 Oe, and the product of the residual magnetization (TBr) was 55 Oe. The difference ΔTBr was 20 G · μm.

【0038】実施例11 Cr膜の上に形成するCo合金カソードに印加する電力
を0.704KWの直流電力と264Wの高周波電力を
重畳して印加し、Co合金膜の成膜中のみに基板に30
0Vの負のバイアス電圧を印加した以外は前記実施例2
と同様の方法でディスクを作製した。作製されたディス
クのエンベロープを実施例1と同様の方法で測定した結
果、モジュレーション率は3.5%であり、また、0°位
置および90°位置の夫々のヒステリシスループを実施
例1と同様の方法でを測定した結果、保磁力(Hc)の
差ΔHcは70Oe、残留磁化の積(TBr)の差ΔTB
rは34G・μmであった。
Example 11 A power applied to a Co alloy cathode formed on a Cr film was applied by superimposing a DC power of 0.704 KW and a high frequency power of 264 W, and was applied to the substrate only during the formation of the Co alloy film. 30
Example 2 except that a negative bias voltage of 0 V was applied.
A disk was produced in the same manner as in the above. As a result of measuring the envelope of the manufactured disk in the same manner as in Example 1, the modulation rate was 3.5%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed in the same manner as in Example 1. As a result, the difference ΔHc of coercive force (Hc) was 70 Oe, and the difference ΔTB of product (TBr) of remanent magnetization.
r was 34 G · μm.

【0039】実施例12 下地膜のターゲットとしてMoターゲットを用いた以外
は前記実施例2と同様の方法でディスクを作製した。作
製されたディスクのエンベロープを実施例1と同様の方
法で測定した結果、モジュレーション率は5.1%であ
り、また、0°位置および90°位置の夫々のヒステリ
シスループを実施例1と同様の方法でを測定した結果、
保磁力(Hc)の差ΔHcは69Oe、残留磁化の積(T
Br)の差ΔTBrは22G・μmであった。
Example 12 A disk was manufactured in the same manner as in Example 2 except that a Mo target was used as a target for the underlayer. As a result of measuring the envelope of the manufactured disk by the same method as in Example 1, the modulation rate was 5.1%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result of measuring
The difference ΔHc in coercive force (Hc) is 69 Oe, and the product of residual magnetization (T
The difference ΔTBr of Br) was 22 G · μm.

【0040】実施例13 下地膜のターゲットとしてWターゲットを用いた以外は
前記実施例2と同様の方法でディスクを作製した。作製
されたディスクのエンベロープを実施例1と同様の方法
で測定した結果、モジュレーション率は5.8%であり、
また、0°位置および90°位置の夫々のヒステリシス
ループを実施例1と同様の方法でを測定した結果、保磁
力(Hc)の差ΔHcは88Oe、残留磁化の積(TB
r)の差ΔTBrは30G・μmであった。
Example 13 A disk was manufactured in the same manner as in Example 2 except that a W target was used as a target of the underlayer. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 5.8%,
The hysteresis loop at each of the 0 ° position and the 90 ° position was measured in the same manner as in Example 1. As a result, the difference ΔHc in the coercive force (Hc) was 88 Oe, and the product of the residual magnetization (TB
r) The difference ΔTBr was 30 G · μm.

【0041】実施例14 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用いた以外は前記実施例2と同様
の方法でディスクを作製した。作製されたディスクのエ
ンベロープを実施例1と同様の方法で測定した結果、モ
ジュレーション率は4.9%であり、また、0°位置およ
び90°位置の夫々のヒステリシスループを実施例1と
同様の方法でを測定した結果、保磁力(Hc)の差ΔH
cは77Oe、残留磁化の積(TBr)の差ΔTBrは27
G・μmであった。
Example 14 A disk was manufactured in the same manner as in Example 2 except that a Cr alloy target composed of Cr-2 at% Si was used as a target of the underlayer. As a result of measuring the envelope of the manufactured disk by the same method as in Example 1, the modulation rate was 4.9%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. Was measured, the difference ΔH of the coercive force (Hc)
c is 77 Oe, and the difference ΔTBr of the product of remanent magnetization (TBr) is 27
G · μm.

【0042】実施例15 下地膜のターゲットとしてMo−20at%Cr−2a
t%Siから成るMo合金ターゲットを用いた以外は前
記実施例2と同様の方法でディスクを作製した。作製さ
れたディスクのエンベロープを実施例1と同様の方法で
測定した結果、モジュレーション率は5.1%であり、ま
た、0°位置および90°位置の夫々のヒステリシスル
ープを実施例1と同様の方法でを測定した結果、保磁力
(Hc)の差ΔHcは90Oe、残留磁化の積(TBr)
の差ΔTBrは31G・μmであった。
Example 15 Mo-20 at% Cr-2a was used as a target for the underlayer.
A disk was manufactured in the same manner as in Example 2 except that a Mo alloy target composed of t% Si was used. As a result of measuring the envelope of the manufactured disk by the same method as in Example 1, the modulation rate was 5.1%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result, the difference ΔHc in coercive force (Hc) is 90 Oe, and the product of remanent magnetization (TBr)
Was 31 G · μm.

【0043】実施例16 下地膜のターゲットとしてW−20at%Cr−2at
%Siから成るW合金ターゲットを用いた以外は前記実
施例2と同様の方法でディスクを作製した。作製された
ディスクのエンベロープを実施例1と同様の方法で測定
した結果、モジュレーション率は5.0%であり、また、
0°位置および90°位置の夫々のヒステリシスループ
を実施例1と同様の方法でを測定した結果、保磁力(H
c)の差ΔHcは79Oe、残留磁化の積(TBr)の差
ΔTBrは27G・μmであった。
Example 16 W-20 at% Cr-2 at as a target of the underlayer
A disk was produced in the same manner as in Example 2 except that a W alloy target composed of% Si was used. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 5.0%, and
As a result of measuring the hysteresis loop at each of the 0 ° position and the 90 ° position in the same manner as in Example 1, the coercive force (H
The difference ΔHc of c) was 79 Oe, and the difference ΔTBr of the product of residual magnetization (TBr) was 27 G · μm.

【0044】実施例17 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、Crカソードに0.88K
Wの直流電力と330Wの高周波電力を重畳して印加
し、Cr合金膜の成膜中のみに基板に300Vの負のバ
イアス電圧を印加した以外は前記実施例2と同様の方法
でディスクを作製した。作製されたディスクのエンベロ
ープを実施例1と同様の方法で測定した結果、モジュレ
ーション率は4.0%であり、また、0°位置および90
°位置の夫々のヒステリシスループを実施例1と同様の
方法でを測定した結果、保磁力(Hc)の差ΔHcは37
Oe、残留磁化の積(TBr)の差ΔTBrは31G・μ
mであった。
Example 17 A Cr alloy target composed of Cr-2 at% Si was used as a target of the underlayer, and a 0.88K Cr cathode was used as the Cr cathode.
A disk was fabricated in the same manner as in Example 2 except that a DC power of W and a high frequency power of 330 W were superimposed and applied, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Cr alloy film. did. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 4.0%, and the 0 ° position and 90%
As a result of measuring the hysteresis loop at each position in the same manner as in Example 1, the difference ΔHc in coercive force (Hc) was 37.
The difference ΔTBr between the product of Oe and the residual magnetization (TBr) is 31 G · μ
m.

【0045】実施例18 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、下地膜の上に形成するCo
合金カソードに0.704KWの直流電力と264Wの
高周波電力を重畳して印加し、Co合金膜の成膜中のみ
に基板に300Vの負のバイアス電圧を印加した以外は
前記実施例2と同様の方法でディスクを作製した。作製
されたディスクのエンベロープを実施例1と同様の方法
で測定した結果、モジュレーション率は5.5%であり、
また、0°位置および90°位置の夫々のヒステリシス
ループを実施例1と同様の方法でを測定した結果、保磁
力(Hc)の差ΔHcは80Oe、残留磁化の積(TB
r)の差ΔTBrは35G・μmであった。
Example 18 A Cr alloy target composed of Cr-2 at% Si was used as a target for the underlayer, and a Co alloy formed on the underlayer was used.
The same as Example 2 except that a DC power of 0.704 KW and a high-frequency power of 264 W were superimposed and applied to the alloy cathode, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Co alloy film. A disk was prepared by the method. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 5.5%,
The hysteresis loop at each of the 0 ° position and the 90 ° position was measured by the same method as in Example 1. As a result, the difference ΔHc in coercive force (Hc) was 80 Oe, and the product of the residual magnetization (TB
The difference ΔTBr in r) was 35 G · μm.

【0046】実施例19 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、Crカソードに0.88K
Wの直流電力と330Wの高周波電力を重畳して印加
し、Co合金カソードに0.704KWの直流電力と2
64Wの高周波電力を重畳して印加し、かつCr合金膜
およびCo合金膜の成膜中に基板に300Vの負のバイ
アス電圧を印加した以外は前記実施例2と同様の方法で
ディスクを作製した。作製されたディスクのエンベロー
プを実施例1と同様の方法で測定した結果、モジュレー
ション率は2.8%であり、また、0°位置および90°
位置の夫々のヒステリシスループを実施例1と同様の方
法でを測定した結果、保磁力(Hc)の差ΔHcは21O
e、残留磁化の積(TBr)の差ΔTBrは13G・μm
であった。
Example 19 A Cr alloy target composed of Cr-2 at% Si was used as a target for the underlayer, and a 0.88K Cr cathode was used as the Cr cathode.
W power and 330 W high frequency power are superimposed and applied, and 0.704 KW DC power and 2 W are applied to the Co alloy cathode.
A disk was prepared in the same manner as in Example 2 except that a high-frequency power of 64 W was superimposed and applied, and a negative bias voltage of 300 V was applied to the substrate during the formation of the Cr alloy film and the Co alloy film. . As a result of measuring the envelope of the manufactured disk in the same manner as in Example 1, the modulation rate was 2.8%, and the 0 ° position and 90 °
As a result of measuring the hysteresis loop of each position in the same manner as in Example 1, the difference ΔHc of the coercive force (Hc) was 210
e, the difference ΔTBr of the product of residual magnetization (TBr) is 13 G · μm
Met.

【0047】実施例20 上膜のCo合金ターゲットとしてCo−30at%Ni−
7.5at%Crから成るCo合金ターゲットを用いた以
外は前記実施例2と同様の方法でディスクを作製した。
作製されたディスクのエンベロープを実施例1と同様の
方法で測定した結果、モジュレーション率は4.0%であ
り、また、0°位置および90°位置の夫々のヒステリ
シスループを実施例1と同様の方法でを測定した結果、
保磁力(Hc)の差ΔHcは38Oe、残留磁化の積(T
Br)の差ΔTBrは20G・μmであった。
Example 20 As a Co alloy target for the upper film, Co-30 at% Ni-
A disk was manufactured in the same manner as in Example 2 except that a Co alloy target composed of 7.5 at% Cr was used.
As a result of measuring the envelope of the produced disk by the same method as in Example 1, the modulation rate was 4.0%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result of measuring
The difference ΔHc in coercive force (Hc) is 38 Oe, and the product of residual magnetization (T
The difference ΔTBr of Br) was 20 G · μm.

【0048】実施例21 上膜のCo合金ターゲットとしてCo−10at%Cr−
12at%Ptから成るCo合金ターゲットを用いた以外
は前記実施例2と同様の方法でディスクを作製した。作
製されたディスクのエンベロープを実施例1と同様の方
法で測定した結果、モジュレーション率は4.8%であ
り、また、0°位置および90°位置の夫々のヒステリ
シスループを実施例1と同様の方法でを測定した結果、
保磁力(Hc)の差ΔHcは81Oe、残留磁化の積(T
Br)の差ΔTBrは18G・μmであった。
Example 21 As a Co alloy target for the upper film, Co-10 at% Cr-
A disk was produced in the same manner as in Example 2 except that a Co alloy target composed of 12 at% Pt was used. As a result of measuring the envelope of the manufactured disk by the same method as in Example 1, the modulation rate was 4.8%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result of measuring
The difference ΔHc in coercive force (Hc) is 81 Oe, and the product of residual magnetization (T
The difference ΔTBr of Br) was 18 G · μm.

【0049】実施例22 上膜のCo合金ターゲットとしてCo−30at%Ni−
7.5at%Crから成るCo合金ターゲットを用い、該
Co合金カソードに印加する電力を0.83KWの直流
電力とした以外は前記実施例2と同様の方法でディスク
を作製した。作製されたディスクのエンベロープを実施
例1と同様の方法で測定した結果、モジュレーション率
は4.1%であり、また、0°位置および90°位置の夫
々のヒステリシスループを実施例1と同様の方法でを測
定した結果、保磁力(Hc)の差ΔHcは29Oe、残留
磁化の積(TBr)の差ΔTBrは30G・μmであっ
た。
Example 22 Co-30 at% Ni-
A disk was manufactured in the same manner as in Example 2 except that a Co alloy target composed of 7.5 at% Cr was used, and the power applied to the Co alloy cathode was DC power of 0.83 KW. As a result of measuring the envelope of the manufactured disk in the same manner as in Example 1, the modulation rate was 4.1%, and the respective hysteresis loops at the 0 ° position and the 90 ° position were formed in the same manner as in Example 1. As a result, the difference ΔHc in coercive force (Hc) was 29 Oe, and the difference ΔTBr in product (TBr) of residual magnetization was 30 G · μm.

【0050】実施例23 上膜のCo合金ターゲットとしてCo−30at%Ni−
7.5at%Crから成るCo合金ターゲットを用い、該
Co合金カソードに印加する電力を0.83KWの直流
電力とし、Crカソードに0.88KWの直流電力と3
30Wの高周波電力を重畳して印加し、更にCr膜の成
膜中のみに基板に300Vの負のバイアス電圧を印加し
た以外は前記実施例2と同様の方法でディスクを作製し
た。作製されたディスクのエンベロープを実施例1と同
様の方法で測定した結果、モジュレーション率は4.3%
であり、また、0°位置および90°位置の夫々のヒス
テリシスループを実施例1と同様の方法でを測定した結
果、保磁力(Hc)の差ΔHcは50Oe、残留磁化の積
(TBr)の差ΔTBrは23G・μmであった。
Example 23 Co-30 at% Ni-
Using a Co alloy target consisting of 7.5 at% Cr, the power applied to the Co alloy cathode was set to 0.83 KW DC power, and the DC power of 0.88 KW was applied to the Cr cathode.
A disc was produced in the same manner as in Example 2 except that a high-frequency power of 30 W was superimposed and applied, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Cr film. As a result of measuring the envelope of the produced disk in the same manner as in Example 1, the modulation rate was 4.3%.
The hysteresis loop at each of the 0 ° position and the 90 ° position was measured by the same method as in Example 1. As a result, the difference ΔHc in the coercive force (Hc) was 50 Oe, and the product of the residual magnetization (TBr) was 50 Oe. The difference ΔTBr was 23 G · μm.

【0051】実施例24 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、上膜のCo合金ターゲット
としてCo−30at%Ni−7.5at%Crから成るC
o合金ターゲットを用いた以外は前記実施例2と同様の
方法でディスクを作製した。作製されたディスクのエン
ベロープを実施例1と同様の方法で測定した結果、モジ
ュレーション率は4.3%であり、また、0°位置および
90°位置の夫々のヒステリシスループを実施例1と同
様の方法でを測定した結果、保磁力(Hc)の差ΔHc
は54Oe、残留磁化の積(TBr)の差ΔTBrは33G
・μmであった。
Example 24 A Cr alloy target composed of Cr-2 at% Si was used as a target of the underlayer, and a C alloy composed of Co-30 at% Ni-7.5 at% Cr was used as the Co alloy target of the upper film.
A disk was produced in the same manner as in Example 2 except that an o-alloy target was used. As a result of measuring the envelope of the manufactured disk in the same manner as in Example 1, the modulation rate was 4.3%, and the respective hysteresis loops at the 0 ° position and the 90 ° position were formed in the same manner as in Example 1. Was measured, the difference ΔHc in coercive force (Hc) was obtained.
Is 54 Oe, and the difference ΔTBr of the product of remanent magnetization (TBr) is 33 G
-It was μm.

【0052】実施例25 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、上膜のCo合金ターゲット
としてCo−30at%Ni−7.5at%Crから成るC
o合金ターゲットを用い、該Co合金カソードに印加す
る電力を0.83KWの直流電力とし、Crカソードに
0.88KWの直流電力と330Wの高周波電力を重畳
して印加し、更にCr合金膜の成膜中のみに基板に30
0Vの負のバイアス電圧を印加した以外は前記実施例2
と同様の方法でディスクを作製した。作製されたディス
クのエンベロープを実施例1と同様の方法で測定した結
果、モジュレーション率は4.0%であり、また、0°位
置および90°位置の夫々のヒステリシスループを実施
例1と同様の方法でを測定した結果、保磁力(Hc)の
差ΔHcは90Oe、残留磁化の積(TBr)の差ΔTB
rは16G・μmであった。
EXAMPLE 25 A Cr alloy target composed of Cr-2 at% Si was used as a target of the underlayer, and a C alloy composed of Co-30 at% Ni-7.5 at% Cr was used as the Co alloy target of the upper film.
Using an o-alloy target, the power applied to the Co alloy cathode was set to 0.83 KW DC power, the DC power of 0.88 KW and the high-frequency power of 330 W were superimposed and applied to the Cr cathode, and the Cr alloy film was formed. 30 on substrate only in film
Example 2 except that a negative bias voltage of 0 V was applied.
A disk was produced in the same manner as in the above. As a result of measuring the envelope of the produced disk by the same method as in Example 1, the modulation rate was 4.0%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. As a result, the difference ΔHc of the coercive force (Hc) is 90 Oe, and the difference ΔTB of the product (TBr) of the remanent magnetization.
r was 16 Gm.

【0053】実施例26 下地膜のターゲットとしてCr−2at%Siから成る
Cr合金ターゲットを用い、上膜のCo合金ターゲット
としてCo−30at%Ni−7.5at%Crから成るC
o合金ターゲットを用い、該Co合金カソードに印加す
る電力を0.91KWの直流電力とし、更に下地膜の上
に形成するCo合金膜の成膜中のみに基板に300Vの
負のバイアス電圧を印加した以外は前記実施例2と同様
の方法でディスクを作製した。作製されたディスクのエ
ンベロープを実施例1と同様の方法で測定した結果、モ
ジュレーション率は5.7%であり、また、0°位置およ
び90°位置の夫々のヒステリシスループを実施例1と
同様の方法でを測定した結果、保磁力(Hc)の差ΔH
cは67Oe、残留磁化の積(TBr)の差ΔTBrは31
G・μmであった。
Example 26 A Cr alloy target composed of Cr-2 at% Si was used as a target of the underlayer, and a C alloy composed of Co-30 at% Ni-7.5 at% Cr was used as the Co alloy target of the upper film.
Using an o-alloy target, the power applied to the Co alloy cathode was set to a DC power of 0.91 KW, and a negative bias voltage of 300 V was applied to the substrate only during the formation of the Co alloy film formed on the base film. A disc was produced in the same manner as in Example 2 except that the above procedure was performed. As a result of measuring the envelope of the manufactured disk by the same method as in Example 1, the modulation rate was 5.7%, and the hysteresis loops at the 0 ° position and the 90 ° position were formed by the same method as in Example 1. Was measured, the difference ΔH of the coercive force (Hc)
c is 67 Oe, and the difference ΔTBr of the product of remanent magnetization (TBr) is 31
G · μm.

【0054】前記実施例では下地膜ターゲットのみに、
或いは下地膜ターゲットおよびCo合金ターゲットの両
ターゲットに印加する直流電力に重畳する高周波電力の
周波数を13.56MHzとしたが、本発明はこれに限
定されるものではなく、数キロヘルツから数百メガヘル
ツの高周波電力を直流電力に重畳することにより、カソ
ードの自己バイアス電圧を増加させる周波数か、或いは
プラズマ中のイオン化効率を高く出来る周波数であれば
よい。
In the above embodiment, only the underlayer target was used.
Alternatively, the frequency of the high-frequency power superimposed on the DC power applied to both the base film target and the Co alloy target is set to 13.56 MHz. However, the present invention is not limited to this, and the frequency is from several kilohertz to several hundred megahertz. Any frequency that can increase the self-bias voltage of the cathode by superimposing the high-frequency power on the DC power or a frequency that can increase the ionization efficiency in the plasma may be used.

【0055】[0055]

【発明の効果】本発明法によるときは、基板上に形成す
る下地膜のターゲットに印加する電力として直流電力に
高周波電力を重畳した電力を用いるようにしたので、基
板上に入射する下地膜粒子のエネルギーを高めて、基板
上での下地膜粒子の表面拡散を促進させることが出来
て、下地膜粒子の繋がり方の不均一性を低減することが
出来るため、ディスクの磁気異方性、モジュレーション
の少ない面内記録型磁気記録体を容易に製造することが
出来る効果がある。
According to the method of the present invention, the power applied to the target of the underlying film formed on the substrate is a power obtained by superimposing a high frequency power on a DC power. Energy of the underlayer particles on the substrate to promote the surface diffusion of the underlayer particles and reduce the non-uniformity of the connection of the underlayer particles. There is an effect that an in-plane recording type magnetic recording medium having a small number of recordings can be easily manufactured.

【0056】また、下地膜または/Co合金膜の成膜中
に基板に負のバイアス電圧を印加しながら成膜すれば、
基板上に入射する粒子のエネルギーが更に高くなり、表
面拡散をより促進出来るのでモジュレーションを小さく
する効果がある。
Further, if a film is formed while applying a negative bias voltage to the substrate during the formation of the base film or the / Co alloy film,
The energy of the particles incident on the substrate is further increased, and the surface diffusion can be further promoted, so that there is an effect of reducing the modulation.

【0057】また、下地膜上にCo合金膜を形成する
際、Co合金ターゲットに直流電力と高周波電力を重畳
して印加すれば、下地膜の粒子の繋がり方をランダムに
するだけではなく、Co粒子の繋がり方もランダムに出
来るので、粒子の繋がり方が非常に均一になり、モジュ
レーションを低くする効果がある。
When a DC power and a high frequency power are superimposed and applied to the Co alloy target when forming the Co alloy film on the under film, not only the connection of the particles of the under film is made random but also the Co Since the connection of the particles can be made at random, the connection of the particles becomes very uniform, which has the effect of reducing the modulation.

【0058】また、ターゲットに印加する全電力中の高
周波電力の割合を3〜85%とすれば、安定してモジュ
レーションを低下出来る効果がある。
If the ratio of the high frequency power to the total power applied to the target is 3 to 85%, there is an effect that the modulation can be stably reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 モジュレーションが発生した面内記録型磁気
記録体のエンベロープの1例、
FIG. 1 shows an example of an envelope of an in-plane recording type magnetic recording medium in which modulation has occurred.

【図2】 本発明の1実施例で作成した面内記録型磁気
記録体のエンベロープ、
FIG. 2 shows an envelope of an in-plane recording type magnetic recording medium prepared in one embodiment of the present invention;

【図3】 本発明の1実施例で作成した面内記録型磁気
記録体のヒステリシスループ、(A)はディスクの0°
位置で測定したヒステリシスループ、(B)はディスク
の90°位置で測定したヒステリシスループ、
FIG. 3 shows a hysteresis loop of an in-plane recording type magnetic recording medium prepared according to an embodiment of the present invention.
The hysteresis loop measured at the position, (B) the hysteresis loop measured at the 90 ° position of the disc,

【図4】 本発明の他の実施例で作成した面内記録型磁
気記録体のモジュレーション率と全電力中の高周波電力
の割合との関係を示す特性線図、
FIG. 4 is a characteristic diagram showing a relationship between a modulation rate of a longitudinal recording magnetic recording medium and a ratio of a high-frequency power to a total power, according to another embodiment of the present invention.

【図5】 従来法で作成した面内記録型磁気記録体のエ
ンベロープ、
FIG. 5 shows an envelope of an in-plane recording type magnetic recording medium prepared by a conventional method,

【図6】 従来法で作成した面内記録型磁気記録体のヒ
ステリシスループ、(A)はディスクの0°位置で測定
したヒステリシスループ、(B)はディスクの90°位
置で測定したヒステリシスループ、
6A and 6B show a hysteresis loop of a longitudinal recording magnetic recording medium prepared by a conventional method, FIG. 6A shows a hysteresis loop measured at a 0 ° position on a disk, FIG. 6B shows a hysteresis loop measured at a 90 ° position on a disk,

【図7】 従来法の他の方法で作成した面内記録型磁気
記録体のエンベロープ、
FIG. 7 shows an envelope of an in-plane recording type magnetic recording medium prepared by another method according to the related art;

【図8】 従来法の他の方法で作成した面内記録型磁気
記録体のヒステリシスループ、(A)はディスクの0°
位置で測定したヒステリシスループ、(B)はディスク
の90°位置で測定したヒステリシスループ。
FIG. 8 shows a hysteresis loop of an in-plane recording type magnetic recording medium prepared by another method according to the related art.
Hysteresis loop measured at position, (B) Hysteresis loop measured at 90 ° position on disk.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 道夫 千葉県山武郡山武町横田523 日本真空 技術株式会社千葉超材料研究所内 (72)発明者 太田 賀文 千葉県山武郡山武町横田523 日本真空 技術株式会社千葉超材料研究所内 (72)発明者 白 忠烈 千葉県山武郡山武町横田523 日本真空 技術株式会社千葉超材料研究所内 (56)参考文献 特開 平2−161617(JP,A) 特開 平2−162526(JP,A) 特開 昭63−300430(JP,A) 特開 平3−249171(JP,A) 特開 平2−54764(JP,A) 特開 昭63−140077(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/851 C23C 14/00 - 14/58 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michio Ishikawa 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Nippon Vacuum Engineering Co., Ltd. (72) Inventor Kafumi Ota 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Technology Co., Ltd. Chiba Super Materials Research Laboratory (72) Inventor Tadahiro Shiro 523 Yamatake-cho, Yamatake-gun, Chiba Prefecture Japan Vacuum Technology Co., Ltd. Chiba Super Materials Research Laboratory (56) References JP-A-2-161617 (JP, A) JP-A-2-162526 (JP, A) JP-A-63-300430 (JP, A) JP-A-3-249171 (JP, A) JP-A-2-574764 (JP, A) JP-A-63-140077 (JP) JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/851 C23C 14/00-14/58

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スパッタ法で非磁性基板上に下地膜を形
成し、次いで該下地膜上にCo合金膜を形成し、該Co
合金膜をエピタキシャル成長させて成る面内記録型磁気
記録体の製造方法において、下地膜を形成する際、下地
膜ターゲットに直流電力と高周波電力を重畳して印加し
てスパッタ成膜することを特徴とする面内記録型磁気記
録体の製造方法。
An undercoat film is formed on a non-magnetic substrate by a sputtering method, and then a Co alloy film is formed on the undercoat film.
In the method of manufacturing an in-plane recording type magnetic recording medium formed by epitaxially growing an alloy film, a sputter film is formed by applying a DC power and a high frequency power to a base film target in a superimposed manner when forming a base film. Of manufacturing an in-plane recording type magnetic recording medium.
【請求項2】 下地膜ターゲットはCr、Mo、Wの単
独ターゲット、或いはこれらを主成分とする合金ターゲ
ットであることを特徴とする請求項第1項に記載の面内
記録型磁器記録体の製造方法。
2. The in-plane recording type porcelain recording body according to claim 1, wherein the underlayer target is a single target of Cr, Mo, or W, or an alloy target containing these as main components. Production method.
【請求項3】 下地膜または/およびCo合金膜の成膜
中に基板に負のバイアス電圧を印加しながら成膜するこ
とを特徴とする請求項第1項または第2項に記載の面内
記録型磁気記録体の製造方法。
3. The in-plane film according to claim 1, wherein the film is formed while applying a negative bias voltage to the substrate during formation of the base film and / or the Co alloy film. A method for manufacturing a recordable magnetic recording medium.
【請求項4】 Co合金膜を形成する際、Co合金ター
ゲットに直流電力と高周波電力を重畳して印加してスパ
ッタ成膜することを特徴とする請求項第1項ないし第3
項のいずれか1項に記載の面内記録型磁気記録体の製造
方法。
4. The method according to claim 1, wherein when forming the Co alloy film, a DC power and a high-frequency power are applied to the Co alloy target in a superimposed manner to form a sputter film.
Item 13. The method for producing an in-plane recording magnetic recording medium according to any one of the above items.
【請求項5】 ターゲットに印加する全電力中の高周波
電力の割合が3%以上、85%以下であることを特徴と
する請求項第1項ないし第4項のいずれか1項に記載の
面内記録型磁気記録体の製造方法。
5. The surface according to claim 1, wherein the ratio of the high-frequency power to the total power applied to the target is not less than 3% and not more than 85%. Method for manufacturing an inner recording type magnetic recording medium.
JP16938992A 1992-06-26 1992-06-26 Method for manufacturing in-plane recording type magnetic recording medium Expired - Fee Related JP3177716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16938992A JP3177716B2 (en) 1992-06-26 1992-06-26 Method for manufacturing in-plane recording type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16938992A JP3177716B2 (en) 1992-06-26 1992-06-26 Method for manufacturing in-plane recording type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0612666A JPH0612666A (en) 1994-01-21
JP3177716B2 true JP3177716B2 (en) 2001-06-18

Family

ID=15885695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16938992A Expired - Fee Related JP3177716B2 (en) 1992-06-26 1992-06-26 Method for manufacturing in-plane recording type magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3177716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390197B2 (en) * 2014-06-20 2018-09-19 日産自動車株式会社 Apparatus and method for coating conductive DLC layer on insulating substrate

Also Published As

Publication number Publication date
JPH0612666A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US5616218A (en) Modification and selection of the magnetic properties of magnetic recording media through selective control of the crystal texture of the recording layer
JPH04228105A (en) High-coercive-force thin-film recording medium and its production
US5147734A (en) Magnetic recording media manufactured by a process in which a negative bias voltage is applied to the substrate during sputtering
JP3177716B2 (en) Method for manufacturing in-plane recording type magnetic recording medium
Kawanabe et al. Effects of Ta addition in CoNi/Cr double layer film sputtered in low Ar gas pressure
JPH0268716A (en) Production of magnetic disk medium
JPH10241935A (en) Magnetic recording medium and its manufacture
JPS6363969B2 (en)
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JPS59157833A (en) Magnetic recording medium
JPH04356728A (en) Production of magnetic recording medium
JPH0572015B2 (en)
Lodder Preparation, Microstructure and Magnetic Properties of Co-Cr Thin Films
JPH1166533A (en) Magnetic recording medium
JPH0969460A (en) Manufacture of magnetic recording medium
JPH04188430A (en) Magnetic recording tape having excellent abrasion resistance and corrosion resistance and manufacture thereof
JPH01227224A (en) Target for producing sputtered magnetic disk medium and production of sputtered magnetic disk medium
JPH0512765B2 (en)
JPH09265621A (en) Magnetic recording medium and its production
JPH0740362B2 (en) Method of manufacturing magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS6235605A (en) Magnetically soft thin film
JPS59157832A (en) Magnetic recording medium
JP2000057569A (en) Production of magnetic recording medium and magnetic recording medium
JPH0572016B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees