JP3174694B2 - Grinding method with horizontal mill - Google Patents

Grinding method with horizontal mill

Info

Publication number
JP3174694B2
JP3174694B2 JP23299494A JP23299494A JP3174694B2 JP 3174694 B2 JP3174694 B2 JP 3174694B2 JP 23299494 A JP23299494 A JP 23299494A JP 23299494 A JP23299494 A JP 23299494A JP 3174694 B2 JP3174694 B2 JP 3174694B2
Authority
JP
Japan
Prior art keywords
media
diameter
grinding
inner cylinder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23299494A
Other languages
Japanese (ja)
Other versions
JPH0889832A (en
Inventor
博久 吉田
勝征 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23299494A priority Critical patent/JP3174694B2/en
Priority to ZA956072A priority patent/ZA956072B/en
Priority to US08/505,636 priority patent/US5544818A/en
Priority to AU27130/95A priority patent/AU669835B2/en
Priority to EP95111607A priority patent/EP0704245B1/en
Priority to DE69512596T priority patent/DE69512596T2/en
Priority to ES95111607T priority patent/ES2136776T3/en
Priority to FI954168A priority patent/FI110847B/en
Publication of JPH0889832A publication Critical patent/JPH0889832A/en
Application granted granted Critical
Publication of JP3174694B2 publication Critical patent/JP3174694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • B02C17/166Mills in which a fixed container houses stirring means tumbling the charge of the annular gap type

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度コンクリートや
高性能触媒等で必要となる数ミクロン以下というような
超微粒子を得る超微粉砕方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine pulverization method for obtaining ultrafine particles of several microns or less required for high-strength concrete and high-performance catalysts.

【0002】[0002]

【従来の技術】最近の公知技術として特公平5−873
07号「遠心処理方法およびその装置」がある。その発
明の概要は、図15に示すような竪型ミルで中空回転体
(01)内に攪拌軸(02)を設け、それらの間の間隙
Sに粉砕メディア(03)を介在させている。そして、
この間隙Sに被処理物Mが存在する状態で、中空回転体
(01)を回転させるとともに攪拌軸(02)を逆方向
に回転させて、被処理物Mを粉砕する。その場合回転速
度は、粉砕メディア(03)に1Gを超える加速度が作
用する状態とし、好ましい粉砕領域は 10Gないし20
0Gであると説明されている。
2. Description of the Related Art As a recent known technique, Japanese Patent Publication No. 5-873 is known.
No. 07 "Centrifugation method and device". The outline of the invention is that a stirring shaft (02) is provided in a hollow rotating body (01) by a vertical mill as shown in FIG. 15, and a pulverizing medium (03) is interposed in a gap S between them. And
In a state where the processing object M is present in the gap S, the processing object M is pulverized by rotating the hollow rotating body (01) and rotating the stirring shaft (02) in the opposite direction. In this case, the rotation speed is set so that an acceleration exceeding 1 G acts on the grinding media (03), and the preferred grinding region is 10 G to 20 G.
It is described as 0G.

【0003】また前記間隙Sは、中空回転体(1)の内
半径をRとしたとき、0.50≦S/R≦0.95の条件を
満たし、特にS/R=0.80〜0.95が好ましいと説明
されている。すなわち、間隙Sを小さくしてS/R<
0.50とした場合には、遠心力が均一化され粉砕効果が
均一化される点では好ましいが、処理能力が小さくなっ
てしまうし、またS/R>0.95となる場合には、攪拌
軸(02)による攪拌効果が小さくなってしまう、とい
うのである。
The gap S satisfies the condition of 0.50 ≦ S / R ≦ 0.95, where R is the inner radius of the hollow rotating body (1), and in particular, S / R = 0.80 to 0.8. 95 is described as being preferred. That is, S / R <
When it is set to 0.50, it is preferable in that the centrifugal force is made uniform and the pulverizing effect is made uniform, but when the processing capacity is reduced, and when S / R> 0.95, That is, the stirring effect by the stirring shaft (02) is reduced.

【0004】[0004]

【発明が解決しようとする課題】従来、超微粉砕には
「高速回転でかつ小径の粉砕メディアが適切」というの
が定説となっており、そのために前記のように 10Gな
いし200Gという高速回転が提唱され、また粉砕メデ
ィアも直径3mm以下という小径のものが使用されるの
が一般的であった。
Conventionally, it has been established that ultra-fine grinding requires a high-speed and small-diameter grinding medium. Therefore, as described above, a high-speed rotation of 10 G to 200 G is required. It has been proposed that grinding media having a small diameter of 3 mm or less is generally used.

【0005】ところが、この高速回転かつ小径メディア
型のミルには次の問題点があった。 (1)粉砕メディアの摩耗が大きい。粉砕メディアの摩
耗速度は、ミルの回転数と粉砕メディアの比表面積に比
例するので、図5に示すように加速度が大きい程、また
粉砕メディアが小さい程、大きくなる。 (2)粉砕メディアの破損率が高い。メディアの圧壊強
度は粉砕メディアの直径が大きいほど大きいので、小径
の粉砕メディアの場合、粉砕メディアの破損率が高くな
る。 (3)消費動力が大きく、被砕物温度が高い。ミル動力
は回転数に比例し、ミル内発熱量はその動力に比例する
ので、高速回転だと被砕物温度が高くなる。この温度高
は被砕物品質劣化やスケールアップ等の障害因子となる
ことが多い。
However, the high-speed rotating and small-diameter media type mill has the following problems. (1) The wear of the grinding media is large. Since the abrasion speed of the grinding media is proportional to the number of revolutions of the mill and the specific surface area of the grinding media, it increases as the acceleration increases and as the grinding media decreases as shown in FIG. (2) The breakage rate of the pulverized media is high. Since the crushing strength of the media increases as the diameter of the crushed media increases, the breakage rate of the crushed media increases in the case of the crushed media having a small diameter. (3) High power consumption and high crushed material temperature. The power of the mill is proportional to the number of revolutions, and the calorific value in the mill is proportional to the power of the mill. This high temperature often becomes a hindrance factor such as deterioration of crushed material quality and scale-up.

【0006】[0006]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、内面に複数の攪拌翼が装着され
たほぼ水平な外筒と同外筒と同軸で外面に複数の攪拌翼
が装着された内筒との間の環状断面空間に粉砕メディア
を収容するとともに、上記外筒と上記内筒の両方または
上記内筒のみを回転させ、上記環状断面空間に供給され
る原料を粉砕する方法において、下記〜の条件を満
たすことを特徴とする横型ミルによる粉砕方法を提案す
るものである。 上記粉砕メディアに作用する最大加速度が重力加速
度の3倍を超えないような回転数で上記内筒または外筒
が回転すること。 上記粉砕メディアの直径が5mmないし 15mmで
あること。 上記外筒の内面と上記内筒の外面との間隔が上記粉
砕メディアの直径の3倍以上であること。 上記攪拌翼の軸方向間隔が上記粉砕メディアの直径
の3倍ないし 60倍であること。 上記外筒の内径と上記内筒の外径との比が0.5 以
上であること。
In order to solve the above-mentioned conventional problems, the present inventor has proposed a substantially horizontal outer cylinder having a plurality of stirring blades mounted on the inner surface, and a plurality of outer cylinders coaxial with the outer cylinder. While accommodating the grinding media in the annular cross-sectional space between the inner cylinder on which the stirring blade is mounted, and rotating both the outer cylinder and the inner cylinder or only the inner cylinder, the raw material supplied to the annular cross-sectional space In the method of pulverizing, there is proposed a pulverizing method by a horizontal mill, which satisfies the following conditions. The inner cylinder or the outer cylinder rotates at a rotation speed such that the maximum acceleration acting on the crushing media does not exceed three times the gravitational acceleration. The diameter of the grinding media is 5 mm to 15 mm. The distance between the inner surface of the outer cylinder and the outer surface of the inner cylinder is at least three times the diameter of the grinding media. The axial distance between the stirring blades is 3 to 60 times the diameter of the grinding media. The ratio of the inner diameter of the outer cylinder to the outer diameter of the inner cylinder is 0.5 or more.

【0007】[0007]

【作用】本発明方法によれば次の作用を生じる。 粉砕メディアに作用する最大加速度が重力加速度の
3倍を超えないような低回転数で内筒または外筒が回転
するので、粉砕メディアの摩耗が抑制される。 粉砕メディアの直径が5mmないし 15mmと大径
なので、上記のような低回転による粉砕力の低下がカバ
ーされる。 外筒の内面と内筒の外面との間隔が粉砕メディアの
直径の3倍以上、すなわち粉砕メディアが3個以上入る
間隔になっているので、粉砕メディアのブリッジ現象に
よる運転不良(動力異常高)が防止される。 攪拌翼の軸方向間隔が粉砕メディアの直径の3倍以
上かつ 60倍以下であるので、粉砕メディアのブリッジ
現象と粉砕力伝播不良が防止される。 外筒の内径と内筒の外径との比が0.5 以上と大き
いので、同じメディア充填率でメディア充填量(重量)
が小さくなり、消費動力が低減される。
According to the method of the present invention, the following effects are obtained. Since the inner cylinder or the outer cylinder rotates at such a low rotational speed that the maximum acceleration acting on the crushed media does not exceed three times the gravitational acceleration, wear of the crushed media is suppressed. Since the diameter of the crushing media is as large as 5 mm to 15 mm, the decrease in crushing force due to the low rotation described above is covered. Since the distance between the inner surface of the outer cylinder and the outer surface of the inner cylinder is at least three times the diameter of the pulverized media, that is, the distance at which three or more pulverized media enter, operation failure due to the bridging phenomenon of the pulverized media (power abnormally high) Is prevented. Since the axial distance between the stirring blades is not less than 3 times and not more than 60 times the diameter of the crushing media, the bridging phenomenon of the crushing media and the poor propagation of the crushing force are prevented. Since the ratio of the inner diameter of the outer cylinder to the outer diameter of the inner cylinder is as large as 0.5 or more, the media filling rate (weight) at the same media filling rate
And power consumption is reduced.

【0008】[0008]

【実施例】図1は本発明方法を実施する横型ミルの一例
を示す縦断面図、図2は同じく他の例を示す縦断面図で
ある。図中(1)は外筒、(2)は内筒、(3a),
(3b)はモータ、(4a),(4b)は減速機、(5
a),(5b),(6a),(6b)はギヤ、(7)は
フランジ、(8)は軸受、(9)は固定金具、(10)
は中空回転軸、(11)はグランドパッキン、(12)
はスラリ供給管、(13)はスラリ供給孔、(14)は
粉砕室、(15)は粉砕メディア、(16)は目板、
(17)はスリット、(18)は貯蔵室、(19)は排
出孔、(20)は排出ガイド板、(21)は排出管、
(22),(23)は攪拌翼、(24)は被砕物投入口
をそれぞれ示す。図1に示されたミルは、外筒(1)と
内筒(2)が逆方向に回転する相互回転方式のミルで、
被砕物はスラリーとしてスラリ供給管(12)から供給
され、粉砕物は排出管(21)から排出される。また図
2に示されたミルは内筒単独回転方式のミルで、被砕物
はスラリーまたは乾粉として被砕物投入口(24)から
供給され、排出管(21)から排出される。
FIG. 1 is a longitudinal sectional view showing an example of a horizontal mill for carrying out the method of the present invention, and FIG. 2 is a longitudinal sectional view showing another example of the same. In the figure, (1) is an outer cylinder, (2) is an inner cylinder, (3a),
(3b) is a motor, (4a) and (4b) are reduction gears, (5
a), (5b), (6a), and (6b) are gears, (7) is a flange, (8) is a bearing, (9) is a fixture, (10)
Is a hollow rotary shaft, (11) is a gland packing, (12)
Is a slurry supply pipe, (13) is a slurry supply hole, (14) is a grinding chamber, (15) is a grinding media, (16) is a mesh plate,
(17) is a slit, (18) is a storage room, (19) is a discharge hole, (20) is a discharge guide plate, (21) is a discharge pipe,
(22) and (23) indicate stirring blades, and (24) indicates a crushed material input port. The mill shown in FIG. 1 is a mutual rotation type mill in which the outer cylinder (1) and the inner cylinder (2) rotate in opposite directions.
The crushed material is supplied as a slurry from a slurry supply pipe (12), and the crushed material is discharged from a discharge pipe (21). Further, the mill shown in FIG. 2 is a mill of the inner cylinder single rotation type, and the crushed material is supplied as slurry or dry powder from the crushed material input port (24) and discharged from the discharge pipe (21).

【0009】[加速度と粉砕メディアの大きさ]直径d
の粉砕メディア1個が被砕物に与える粉砕エネルギーE
は次式で表わされる。 E ∝ γ×d3×v2 ∝ γ×d3×A ここでγはメディア密度、vはメディア回転速度、Aは
最大加速度である。
[Acceleration and Size of Grinding Media] Diameter d
Energy E given by one crushing medium to the crushed material
Is represented by the following equation. E α γ × d 3 × v 2 α γ × d 3 × A where gamma media density, v is medium speed, A is the maximum acceleration.

【0010】したがって、例えばd= 10mm、A=3
Gの場合とd=3mm、A= 20Gの場合を比較する
と、粉砕エネルギーの比率は( 103×3)/(33×2
0)=5.6 となる。すなわち本発明方法のように低回転
で大径メディアを用いる粉砕方法は、従来の高回転かつ
小径メディアの場合よりも、はるかに大きな粉砕エネル
ギーを与えうる。
Therefore, for example, d = 10 mm, A = 3
When the case of G is compared with the case of d = 3 mm and A = 20G, the ratio of the grinding energy is (10 3 × 3) / (3 3 × 2
0) = 5.6. That is, a pulverization method using a large-diameter medium at a low rotation like the method of the present invention can give a much larger pulverization energy than the conventional high-rotation and small-diameter medium.

【0011】この粉砕性について、前記図1および図2
に示される横型ミル(外筒(1)の内半径R=250m
m一定)を用い、内筒(2)の外半径r=150mm
(S/R=0.4)、翼ピッチP=100mmの条件で、
加速度Aと粉砕メディア径dを変化させて、珪石粉砕テ
ストを行なった結果を図3に例示する。この図では、従
来ミルのd=3mm、A= 20Gの時の粉砕性(比表面
積増加率で比較)を1.0として表示しているが、図か
ら明らかなように、d=5〜 15mmの大径メディアを
使用すると、3Gの低回転数でもd=3mm、A= 20
Gの時以上の粉砕性が得られた。
Regarding the pulverizability, FIG. 1 and FIG.
(Inner radius R of outer cylinder (1) = 250 m)
m constant), and the outer radius r of the inner cylinder (2) is 150 mm.
(S / R = 0.4), under the condition of blade pitch P = 100 mm,
FIG. 3 shows an example of the result of performing a silica stone pulverization test while changing the acceleration A and the diameter d of the pulverization medium. In this figure, the grindability (compared by the specific surface area increase rate) of the conventional mill when d = 3 mm and A = 20 G is shown as 1.0, but as is clear from the figure, d = 5 to 15 mm Using a large-diameter medium, d = 3 mm and A = 20 even at a low rotation speed of 3G
The grindability more than that of G was obtained.

【0012】また、低回転数における特性を把握するた
めに、A= 1.5G(一定)にしてプラスチックの一種で
あるFRPの粉砕テストを実施し、その結果を図4に示
す。この図は粉砕効率(ここでは一定エネルギーを付加
した時に1μm以下となった割合で示した)と粉砕メデ
ィア直径dとの関係を示すが、このような低回転域でも
d=5〜15 mの大径メディアを用いれば高い粉砕性が
得られることが、このテストの結果からもわかった。
Further, in order to grasp the characteristics at a low rotational speed, a grinding test of FRP, which is a kind of plastic, was carried out with A = 1.5 G (constant), and the results are shown in FIG. This figure shows the relationship between the grinding efficiency (in this case, the ratio becomes 1 μm or less when a constant energy is applied) and the grinding media diameter d. Even in such a low rotation range, d = 5 to 15 m It was also found from the results of this test that high grindability can be obtained by using a large-diameter medium.

【0013】一方、粉砕メディアの摩耗速度は、低回転
とすることにより大幅に低減する。図5は珪石を 50時
間連続粉砕した時の粉砕メディアの摩耗状況を比較した
テスト結果を示すものである。縦軸のメディア摩耗比
は、テスト前後のメディア重量減比で示した。これから
明らかなように、低回転でかつ大径メディアを使用した
時は摩耗が小さく、例えば従来ミルのA= 20G、d=
3mmの場合に比較して、A=1.5G、d=10 mm
では摩耗量は約1/10に低減できた。
On the other hand, the wear speed of the pulverized media is greatly reduced by reducing the rotation. FIG. 5 shows a test result comparing the abrasion state of the grinding media when silica stone is continuously ground for 50 hours. The media wear ratio on the vertical axis is shown by the media weight reduction ratio before and after the test. As is clear from this, when a medium having a low rotation speed and a large diameter is used, the wear is small. For example, A = 20G and d =
A = 1.5 G, d = 10 mm compared to the case of 3 mm
As a result, the wear amount could be reduced to about 1/10.

【0014】[内外筒間の間隔と粉砕メディアの大き
さ]内筒と外筒との間隔Sが過小になると、粉砕メディ
アのブリッジ現象が生じて運動が阻害され、動力が異常
に高くなってミルがトリップすることがある。発明者等
は数多くの実験から、S/dとミル動力との間に図6の
関係があり、内筒と外筒との間に粉砕メディアが3個以
上入る間隔があれば、すなわちS/d≧3ならば、ブリ
ッジ現象が生じないことを見い出した。
[Spacing between Inner and Outer Cylinders and Size of Grinding Media] When the spacing S between the inner and outer cylinders is too small, a bridging phenomenon of the crushing media occurs, the movement is hindered, and the power becomes abnormally high. The mill may trip. The inventors have found from a number of experiments that the relationship between S / d and the mill power is as shown in FIG. 6, and that if there is an interval where three or more grinding media enter between the inner cylinder and the outer cylinder, that is, S / d If d ≧ 3, it was found that no bridging phenomenon occurred.

【0015】[攪拌翼の軸方向間隔と粉砕メディアの大
きさ]本発明の方法を実施する横型ミルでは、外筒の内
面と内筒の内面にいずれも複数の攪拌翼が設けられてい
るが、それら攪拌翼の軸方向間隔(ピッチ)Pがミルの
粉砕性能と運転性に大きく影響する。本発明者らは数多
くの実験から、そのピッチPは粉砕メディア直径dとの
比で図7に示すように整理でき、3G以下の低回転でか
つ直径5mmないし 15mmの大径メディア使用時は3
≦P/d≦60が最適であることを発見した。P/d<
3では前項で述べた粉砕メディアのブリッジ現象が軸方
向で生じるし、またP/d>60 では1ピッチ間に介在
する粉砕メディアの数が多くなり過ぎて攪拌力が伝達不
良となり、粉砕動力が不足して粉砕性能が低下するから
である。
[Axial Spacing of Stirring Blades and Size of Grinding Media] In the horizontal mill for carrying out the method of the present invention, a plurality of stirring blades are provided on both the inner surface of the outer cylinder and the inner surface of the inner cylinder. The axial spacing (pitch) P of the stirring blades greatly affects the milling performance and operability of the mill. The present inventors have obtained a number of experiments, and the pitch P can be arranged as shown in FIG. 7 in terms of the ratio to the grinding media diameter d. When using a large-diameter medium having a low rotation of 3 G or less and a diameter of 5 mm to 15 mm, the pitch P becomes 3.
≤P / d≤60 was found to be optimal. P / d <
In No. 3, the bridging media bridging phenomenon described in the preceding paragraph occurs in the axial direction, and when P / d> 60, the number of the crushing media interposed in one pitch becomes too large and the stirring force is poorly transmitted, and the crushing power is reduced. This is because crushing performance is reduced due to shortage.

【0016】[内筒・外筒の寸法比]同じ外筒内径で大
きな内筒外径にする、すなわちr/Rを大きく、S/R
を小さくすると、図8に示すように粉砕室(14)容積
(図中斜線部)が小さくなり、同じメディア充填率(メ
ディア充填高さh/粉砕室高さH)(図9参照)を得る
のに少ないメディア重量で済む。ミル消費動力はメディ
ア重量の増加に伴って増えるので、メディア重量が少な
くて済めば動力低減に大きな効果がある。また最もメデ
ィア回転速度が高い外側環状部で粉砕するので、後述す
るように粉砕効率も向上する。
[Dimension ratio of inner cylinder and outer cylinder] The inner cylinder has the same outer cylinder inner diameter and a large inner cylinder outer diameter, that is, r / R is large and S / R is large.
As shown in FIG. 8, the capacity of the crushing chamber (14) (shaded area in the figure) is reduced as shown in FIG. 8, and the same media filling ratio (media filling height h / crushing chamber height H) (see FIG. 9) is obtained. Low media weight. Since the power consumed by the mill increases with an increase in the weight of the media, a small effect on the weight of the media is effective in reducing the power. In addition, since the pulverization is performed at the outer annular portion having the highest media rotation speed, the pulverization efficiency is improved as described later.

【0017】図10は、メディア充填率 85%,A=
1.5G、d=10mm(いずれも一定)という条件
で、S/Rを0.1から0.9まで変化させた場合のテス
ト結果を示す。曲線〔I〕は粉砕メディア重量の変化を
示しているが、S/Rが大きくなる程(内筒が小さくな
る程)粉砕室容積が大きくなるので粉砕メディア重量が
大きくなり、その結果としてミル消費動力はS/Rの増
加とともに曲線〔II〕に示すように増加した。またS/
Rが0.1で動力が急増しているのは、S=250mm×
0.1=25mm、すなわち前記S/d≧3の適正条件
から外れてS/d=25mm/10mm=2.5となった
ためである。
FIG. 10 shows that the media filling rate is 85% and A =
The test results when the S / R is changed from 0.1 to 0.9 under the conditions of 1.5 G and d = 10 mm (all are constant) are shown. Curve [I] shows the change in the weight of the grinding media. The greater the S / R (the smaller the inner cylinder), the larger the volume of the grinding chamber, and the greater the weight of the grinding media. The power increased with increasing S / R as shown in curve [II]. Also S /
When R is 0.1 and the power is increasing rapidly, S = 250mm ×
0.1 = 25 mm, that is, S / d = 25 mm / 10 mm = 2.5, which is outside the appropriate condition of S / d ≧ 3.

【0018】一方、曲線〔III〕は粉砕動力原単位比
(同じ粒径まで粉砕する場合の1トン粉砕当りの消費動
力)を示したものであるが、これより最も低動力で粉砕
できるのは0.12≦S/R≦0.5の範囲であることが
この曲線から分る。S/R=0.12では S=250mm
×0.12=30mmであるからS/d=30mm/10
mm=3であり、S/R<0.12では前記S/d≧3の
適正条件から外れると見るべきである。また S/R>
0.5で動力原単位が増加するのは曲線〔II〕で示され
る動力の増加割合に対して粉砕処理能力の増加割合が小
さいからである。
On the other hand, the curve [III] shows the unit power ratio of grinding power (power consumption per ton of grinding when grinding to the same particle size). It can be seen from this curve that the range of 0.12 ≦ S / R ≦ 0.5. S / R = 0.12 S = 250mm
× 0.12 = 30 mm, so S / d = 30 mm / 10
mm = 3, and when S / R <0.12, it should be seen that the above condition of S / d ≧ 3 is not satisfied. Also S / R>
The reason why the power consumption unit increases at 0.5 is that the increase rate of the pulverization processing capacity is smaller than the increase rate of the power shown by the curve [II].

【0019】S/Rが大きい場合に粉砕処理能力が小さ
いのは、図11(b)の速度分布曲線に示されるよう
に、内筒付近の粉砕メディアの回転速度が非常に小さ
く、粉砕に殆んど寄与しないためだと考えられる。それ
に対して本発明ではr/R≧0.5(S/R<0.5)と
したので、図11(a)に示されるように、粉砕メディ
アの回転速度が大きく粉砕に適した外側環状部のみを粉
砕室としており、そのため低動力原単位で高効率粉砕が
可能となった。
As shown in the velocity distribution curve of FIG. 11 (b), when the S / R is large, the grinding processing ability is small because the rotation speed of the grinding media near the inner cylinder is very low, and This is probably because they do not contribute much. On the other hand, in the present invention, since r / R ≧ 0.5 (S / R <0.5), as shown in FIG. Only the part is a pulverizing chamber, which enables highly efficient pulverization with low power consumption.

【0020】[連続粉砕試験]前記した本発明方法の範
囲内の条件、具体的にはA=1.5G、d=10mm、S
/R=0.4、S/d=10、P/d=10 で炭酸カルシ
ウムの50時間連続粉砕テストを実施した結果を図12
に示す。本発明の方法により非常に安定した優れた連続
粉砕性が得られることがこの図から分る。
[Continuous grinding test] Conditions within the range of the method of the present invention described above, specifically, A = 1.5 G, d = 10 mm, S
FIG. 12 shows the results of a 50-hour continuous grinding test of calcium carbonate at /R=0.4, S / d = 10, and P / d = 10.
Shown in It can be seen from this figure that a very stable and excellent continuous grindability can be obtained by the method of the present invention.

【0021】[0021]

【発明の効果】本発明の方法によれば次の効果が得られ
る。 1)スケールアップした場合にミル内の被砕物温度上昇
が小さいので大容量化が容易である。これは大径内筒の
採用により大きな内筒冷却面積が確保できるようになっ
たことと、粉砕メディアの充填率は一定でも充填量が低
減され、更に低回転、SやPの最適化等により粉砕動力
が低減されたこととによる効果である。図13は本発明
の方法により珪石を湿式粉砕した時のミル出口スラリー
温度を従来の方法による場合と比較した試験結果を示す
ものであるが、本発明の方法が大容量化に非常に適して
いることが分る。実際に本発明方法を実施する世界最大
と言われている4t/h珪石用超微粒ミルが順調に運転
されている。
According to the method of the present invention, the following effects can be obtained. 1) When the scale is increased, the temperature rise of the crushed material in the mill is small, so that the capacity can be easily increased. This is because a large inner cylinder cooling area can be secured by adopting a large-diameter inner cylinder, and the filling amount is reduced even if the filling rate of the crushed media is constant, and further low rotation, optimization of S and P, etc. This is an effect due to the reduction in grinding power. FIG. 13 shows a test result obtained by comparing the mill outlet slurry temperature when the silica stone is wet-pulverized by the method of the present invention with the conventional method, and the method of the present invention is very suitable for increasing the capacity. I know you are. The 4t / h ultrafine mill for silica, which is said to be the largest in the world, for actually carrying out the method of the present invention, is operating smoothly.

【0022】2)粉砕に伴うメカノケミカル効果が発現
しやすい。これは5mmないし 15mmという大径の粉
砕メディアを使用することによる効果である。メカノケ
ミストリーとは、粉砕作用により機械的エネルギーが固
体物質に加わり、格子欠陥の増加、結晶粒子の大きさの
減少や無定形化が起こる現象であって、この時、固体物
質(粒子)は反応性、吸着性、触媒活性などが大幅に向
上する場合が多く、最近これらの特性を利用して粉体の
付加価値や品質を高めることが行なわれている。
2) The mechanochemical effect accompanying the pulverization is easily exhibited. This is an effect of using a grinding media having a large diameter of 5 mm to 15 mm. Mechanochemistry is a phenomenon in which mechanical energy is applied to a solid substance by a pulverizing action, causing an increase in lattice defects, a decrease in the size of crystal grains, and an amorphization. At this time, the solid substance (particles) reacts. In many cases, the properties, adsorptivity, catalytic activity and the like are greatly improved, and recently these properties have been used to enhance the added value and quality of the powder.

【0023】図14は鉄系触媒のメカノケミストリー発
現の試験結果を例示するものであるが、同じエネルギー
(E×t)を加えても小径メディア型ミル(図中のE2
型)ではメカノケミストリーは発現せず、本発明の5m
mないし15mmの大径メディア(図中のE1 型)での
みメカノケミストリーが発現することが明らかになっ
た。これは、メカノケミストリー発現のためには限界エ
ネルギーEcrが存在し、粉砕メディアが被砕物に与える
瞬間エネルギーEがEcrよりも大きいの時に初めてメカ
ノケミストリーが起るためと推定される。すなわち、小
径メディアで小さなエネルギーを数多く与えるよりも、
数は少くても大きなエネルギーを大径メディアで与える
方が、メカノケミストリーは発現し易いことと理解され
る。
FIG. 14 exemplifies a test result of mechanochemistry development of an iron-based catalyst. Even when the same energy (E × t) is applied, a small-diameter media type mill (E 2 in the figure)
Type), no mechanochemistry is exhibited, and 5 m
m to Mechanochemistry only large diameter media 15 mm (E 1 type in the figure) was found to be expressed. This is presumed to be because the critical energy E cr exists for the expression of mechanochemistry, and the mechanochemistry occurs only when the instantaneous energy E given to the crushed object by the grinding media is larger than E cr . In other words, rather than giving a lot of small energy with small diameter media,
It is understood that mechanochemistry is more likely to occur when a large amount of energy is applied by a large-diameter medium even if the number is small.

【0024】3)以上詳細に述べたとおり本発明は、超
微粉砕には小径メディアで高速回転させるのが良いとい
う従来の定説とまったく逆指向して、大径メディアで低
速回転させる方法であり、これにより従来の方法では困
難と言われていた4t/hの大容量超微粒ミルの実用化
や、メカノケミストリーによる高付加価値粉体製造に成
功したものである。
3) As described in detail above, the present invention is a method of rotating at a low speed with a large-diameter medium, which is completely opposite to the conventional theory that high-speed rotation with a small-diameter medium is preferable for ultrafine grinding. As a result, a 4 t / h large-capacity ultrafine mill, which is said to be difficult with the conventional method, has been put to practical use, and high value-added powder has been successfully produced by mechanochemistry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の方法を実施する横型ミルの一例
を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a horizontal mill for carrying out the method of the present invention.

【図2】図2は本発明の方法を実施する横型ミルの他の
例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing another example of a horizontal mill for carrying out the method of the present invention.

【図3】図3は加速度および粉砕メディア径と粉砕性と
の関係について試験した結果を例示する図である。
FIG. 3 is a diagram exemplifying a result of a test on a relationship between an acceleration, a diameter of a crushing medium, and crushability.

【図4】図4は粉砕メディア径と粉砕効率との関係につ
いて試験した結果を例示する図である。
FIG. 4 is a diagram exemplifying a test result of a relationship between a grinding media diameter and a grinding efficiency.

【図5】図5は加速度および粉砕メディア径と粉砕メデ
ィアの摩耗状況との関係について試験した結果を例示す
る図である。
FIG. 5 is a diagram exemplifying a result of a test on a relationship between an acceleration, a diameter of a grinding media, and a wear state of the grinding media.

【図6】図6は内外筒間の間隔および粉砕メディアの大
きさとミル動力との関係について試験した結果を例示す
る図である。
FIG. 6 is a diagram exemplifying a test result of a relationship between a gap between inner and outer cylinders, a size of a pulverizing medium, and mill power.

【図7】図7は攪拌翼の軸方向間隔および粉砕メディア
の大きさとミル動力との関係について試験した結果を例
示する図である。
FIG. 7 is a diagram exemplifying a test result of a relationship between an axial distance of a stirring blade, a size of a grinding medium, and a mill power.

【図8】図8は内筒・外筒の寸法比と粉砕室容積との関
係を示す図である。
FIG. 8 is a diagram showing a relationship between a dimensional ratio of an inner cylinder and an outer cylinder and a volume of a crushing chamber.

【図9】図9はメディア充填率を説明する図である。FIG. 9 is a diagram illustrating a media filling rate.

【図10】図10は内筒・外筒の寸法比と粉砕メディア
重量、ミル消費動力および粉砕動力原単位との関係につ
いて試験した結果を例示する図である。
FIG. 10 is a diagram illustrating an example of a test result of a relationship between a dimensional ratio of an inner cylinder and an outer cylinder and a grinding media weight, a power consumed by a mill, and a basic unit of grinding power.

【図11】図11は内筒・外筒の寸法比と粉砕メディア
の回転速度との関係を示す図である。
FIG. 11 is a diagram showing a relationship between a dimensional ratio of an inner cylinder and an outer cylinder and a rotation speed of a crushing medium.

【図12】図12は炭酸カルシウムを連続粉砕試験した
結果を例示する図である。
FIG. 12 is a diagram illustrating the results of a continuous grinding test of calcium carbonate.

【図13】図13は珪石を湿式粉砕した時のミル出口温
度を比較した試験結果を例示する図である。
FIG. 13 is a diagram exemplifying a test result comparing mill exit temperatures when silica stone is wet-pulverized.

【図14】図14は鉄系触媒のメカノケミストリー発現
の試験結果を例示する図である。
FIG. 14 is a diagram exemplifying a test result of mechanochemistry manifestation of an iron-based catalyst.

【図15】図15は従来のミルの一例を示す縦断面図で
ある。
FIG. 15 is a longitudinal sectional view showing an example of a conventional mill.

【符号の説明】[Explanation of symbols]

(01) 中空回転体 (02) 攪拌軸 (03) 粉砕メディ
ア (1) 外筒 (2) 内筒 (3a),(3b) モータ (4a),(4b) 減速機 (5a),(5b),(6a),(6b) ギヤ (7) フランジ (8) 軸受 (9) 固定金具 (10) 中空回転軸 (11) グランドパ
ッキン (12) スラリ供給
管 (13) スラリ供給
孔 (14) 粉砕室 (15) 粉砕メディ
ア (16) 目板 (17) スリット (18) 貯蔵室 (19) 排出孔 (20) 排出ガイド
板 (21) 排出管 (22),(23) 攪拌翼 (24) 被砕物投入
(01) Hollow rotating body (02) Stirring shaft (03) Crushing media (1) Outer cylinder (2) Inner cylinder (3a), (3b) Motor (4a), (4b) Reduction gear (5a), (5b) , (6a), (6b) Gear (7) Flange (8) Bearing (9) Fixing bracket (10) Hollow rotating shaft (11) Gland packing (12) Slurry supply pipe (13) Slurry supply hole (14) Crushing chamber (15) Crush media (16) Eye plate (17) Slit (18) Storage room (19) Drain hole (20) Drain guide plate (21) Drain pipe (22), (23) Stirrer blade (24) Input of crushed material mouth

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B02C 17/00 - 17/24 B01F 7/00 - 7/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B02C 17/00-17/24 B01F 7/ 00-7/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内面に複数の攪拌翼が装着されたほぼ水
平な外筒と同外筒と同軸で外面に複数の攪拌翼が装着さ
れた内筒との間の環状断面空間に粉砕メディアを収容す
るとともに、上記外筒と上記内筒の両方または上記内筒
のみを回転させ、上記環状断面空間に供給される原料を
粉砕する方法において、下記〜の条件を満たすこと
を特徴とする横型ミルによる粉砕方法。 上記粉砕メディアに作用する最大加速度が重力加速
度の3倍を超えないような回転数で上記内筒または外筒
が回転すること。 上記粉砕メディアの直径が5mmないし 15mmで
あること。 上記外筒の内面と上記内筒の外面との間隔が上記粉
砕メディアの直径の3倍以上であること。 上記攪拌翼の軸方向間隔が上記粉砕メディアの直径
の3倍ないし 60倍であること。 上記外筒の内径と上記内筒の外径との比が 0.5 以
上であること。
A grinding media is provided in an annular cross-sectional space between a substantially horizontal outer cylinder having a plurality of stirring blades mounted on an inner surface thereof and an inner cylinder coaxial with the outer cylinder and having a plurality of stirring blades mounted on the outer surface. A method of accommodating and rotating both the outer cylinder and the inner cylinder or only the inner cylinder to pulverize the raw material supplied to the annular sectional space, wherein a horizontal mill characterized by satisfying the following conditions: Grinding method. The inner cylinder or the outer cylinder rotates at a rotation speed such that the maximum acceleration acting on the crushing media does not exceed three times the gravitational acceleration. The diameter of the grinding media is 5 mm to 15 mm. The distance between the inner surface of the outer cylinder and the outer surface of the inner cylinder is at least three times the diameter of the grinding media. The axial distance between the stirring blades is 3 to 60 times the diameter of the grinding media. The ratio of the inner diameter of the outer cylinder to the outer diameter of the inner cylinder is 0.5 or more.
JP23299494A 1994-09-28 1994-09-28 Grinding method with horizontal mill Expired - Fee Related JP3174694B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23299494A JP3174694B2 (en) 1994-09-28 1994-09-28 Grinding method with horizontal mill
ZA956072A ZA956072B (en) 1994-09-28 1995-07-20 Pulverizing method with a horizontal mill and horizontal mill therefor
AU27130/95A AU669835B2 (en) 1994-09-28 1995-07-21 A horizontal mill and a method for pulverizing a material
US08/505,636 US5544818A (en) 1994-09-28 1995-07-21 Pulverizing method and horizontal mill
EP95111607A EP0704245B1 (en) 1994-09-28 1995-07-24 Pulverizing method with a horizontal mill and horizontal mill
DE69512596T DE69512596T2 (en) 1994-09-28 1995-07-24 Fine grinding process using a horizontal grinder and horizontal grinder
ES95111607T ES2136776T3 (en) 1994-09-28 1995-07-24 SPRAYING PROCEDURE WITH HORIZONTAL MILL AND HORIZONTAL MILL.
FI954168A FI110847B (en) 1994-09-28 1995-09-06 Grinding method with horizontal mill and horizontal mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23299494A JP3174694B2 (en) 1994-09-28 1994-09-28 Grinding method with horizontal mill

Publications (2)

Publication Number Publication Date
JPH0889832A JPH0889832A (en) 1996-04-09
JP3174694B2 true JP3174694B2 (en) 2001-06-11

Family

ID=16948141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23299494A Expired - Fee Related JP3174694B2 (en) 1994-09-28 1994-09-28 Grinding method with horizontal mill

Country Status (8)

Country Link
US (1) US5544818A (en)
EP (1) EP0704245B1 (en)
JP (1) JP3174694B2 (en)
AU (1) AU669835B2 (en)
DE (1) DE69512596T2 (en)
ES (1) ES2136776T3 (en)
FI (1) FI110847B (en)
ZA (1) ZA956072B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028687A (en) * 2007-07-30 2009-02-12 Chuo Kakoki Kk Method of mechanochemistry treatment

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905370C1 (en) * 1999-02-10 2000-10-19 Leschonski K Pin mill
KR19990073270A (en) * 1999-06-29 1999-10-05 정상옥 A ball mill
KR20030025649A (en) * 2001-09-21 2003-03-29 조현정 Media agitated grinding device for nanosize grinding and dispersing
DE60315540T2 (en) * 2002-04-30 2008-04-30 Dainippon Ink And Chemicals, Inc. Apparatus and method for dispersing
KR100643654B1 (en) * 2005-10-20 2006-11-10 태성개발(주) Manufacturing method of aggregate and its apparatus for recycling construction waste material
KR100643655B1 (en) * 2005-10-20 2006-11-10 태성개발(주) Manufacturing method of aggregate and its apparatus for recycling construction waste material
JP5173238B2 (en) * 2007-04-13 2013-04-03 日本コークス工業株式会社 Crushing method
EP2403647A1 (en) * 2009-03-06 2012-01-11 Progressive IP Limited Improvements in&relating to the comminution of waste & other materials
CL2009001886A1 (en) 2009-09-23 2010-04-09 Mesic Hamza Delic Set of mineral spray mills connected to each other where each one comprises a static housing and vanes moved by at least one engine and the set includes at least two sprayers with a loading chamber having a hopper for the loading chamber to feed a single space common central.
WO2011130805A1 (en) * 2010-04-22 2011-10-27 A New Way Of Living Pty Ltd Material treatment and apparatus
JP5921172B2 (en) * 2011-12-09 2016-05-24 アシザワ・ファインテック株式会社 Horizontal dry crusher
CN104668029B (en) * 2015-02-12 2017-05-24 惠安集睿信息科技有限公司 Chemical material grinding device and using method thereof
CN104668031B (en) * 2015-02-12 2017-07-21 潮州市联亿智能科技有限公司 A kind of ceramics manufacture powder preparation facilities and its application method
CN106732976A (en) * 2017-01-16 2017-05-31 成都佳欣诚信科技有限公司 A kind of device for producing fine powder coating
CN108905947B (en) * 2018-04-13 2020-12-18 浙江昌新生物纤维股份有限公司 Hierarchical formula activation machine
CN108993681B (en) * 2018-04-13 2020-11-27 嘉兴极客旅游用品有限公司 Vertical activation machine
CN110369054A (en) * 2019-08-23 2019-10-25 扬州自丰机械制造有限公司 A kind of vertical ball grinder
CN112337590B (en) * 2020-10-22 2022-02-08 西藏昌都高争建材股份有限公司 Ball loading device for cement production
CN112169924A (en) * 2020-10-23 2021-01-05 张家妹 Wet overflow ball mill for ore dressing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE624266A (en) * 1961-11-03
DE2047244B2 (en) * 1970-09-25 1981-03-26 Gebrüder Netzsch, Maschinenfabrik GmbH & Co, 95100 Selb Agitator mill for continuous fine grinding and dispersing of flowable grist
CH618893A5 (en) * 1977-04-29 1980-08-29 Buehler Ag Geb
SU686759A1 (en) * 1978-03-28 1979-09-28 Dolgopolov Vyacheslav Grinding mill
US4206879A (en) * 1978-08-10 1980-06-10 Gebrueder Buehler Ag Agitator mill
FR2510908A1 (en) * 1981-08-04 1983-02-11 Euro Machines Ball grinder for fine suspensions - employs water-cooled rotor and stator with balls of 1 mm. dia.
US4651935A (en) * 1984-10-19 1987-03-24 Morehouse Industries, Inc. Horizontal media mill
CN85106019B (en) * 1985-08-27 1987-10-28 赖博尔德-斯特里克股份公司 Annular gap type ball grinder
DD290317A7 (en) * 1988-11-02 1991-05-29 Adw,Fi Fuer Aufbereitung,De DEVICE FOR CONTINUOUS WET FINE REMOVAL OF SOLIDS
US5246173A (en) * 1989-10-04 1993-09-21 Hoechst Aktiengesellschaft Vibrating stirred ball mill
DE4128074C2 (en) * 1991-08-23 1995-06-29 Omya Gmbh Agitator ball mill
JP2955728B2 (en) 1991-09-30 1999-10-04 株式会社日立製作所 Boiler main steam temperature control method and apparatus
CH688849A5 (en) * 1993-02-25 1998-04-30 Buehler Ag Agitator mill.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028687A (en) * 2007-07-30 2009-02-12 Chuo Kakoki Kk Method of mechanochemistry treatment

Also Published As

Publication number Publication date
FI954168A (en) 1996-03-29
US5544818A (en) 1996-08-13
EP0704245B1 (en) 1999-10-06
DE69512596D1 (en) 1999-11-11
EP0704245A1 (en) 1996-04-03
AU669835B2 (en) 1996-06-20
ES2136776T3 (en) 1999-12-01
JPH0889832A (en) 1996-04-09
AU2713095A (en) 1996-04-18
FI954168A0 (en) 1995-09-06
DE69512596T2 (en) 2000-03-30
FI110847B (en) 2003-04-15
ZA956072B (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP3174694B2 (en) Grinding method with horizontal mill
JP2889340B2 (en) High-speed dry mill
JP2576930B2 (en) Stirred ball mill and operating method thereof
JP2006212489A (en) Grinding method using medium stirring type grinder
JPH04166246A (en) Medium agitating mill and grinding method
JPH0152062B2 (en)
JPH05253509A (en) Flowing type medium agitating ultra-fine crusher
JPH089016B2 (en) Grinding device and grinding method by vertical roller mill
JP4409759B2 (en) Grinding mill
JP2000271503A (en) Method for operating vertical crusher
JP2003181316A (en) Medium agitation and crushing device and crushing treatment system having the device
JP3138115B2 (en) Wet grinding method
JPH01501848A (en) ball tube mill
JPH09173883A (en) Horizontal superfine grinding mill
JPH0587307B2 (en)
CN218945244U (en) Pulverizer capable of reducing micro powder content
JP2695733B2 (en) Operating method of horizontal dry mill
CN212069047U (en) Double-impeller reverse crushing device
CN220443967U (en) Pulverizer and rice milling and pulverizing integrated machine
JPH1190255A (en) Method for manufacturing crushed sand using wet ball mill and wet ball mill
JP2790227B2 (en) Centrifugal flow crusher
JP2790229B2 (en) Operation method of centrifugal fluidized crusher
JP2790228B2 (en) Batch operation method of centrifugal fluidized crusher
JP2787967B2 (en) Centrifugal flow crusher
JP2637707B2 (en) Glass crusher

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

LAPS Cancellation because of no payment of annual fees