JP2695733B2 - Operating method of horizontal dry mill - Google Patents

Operating method of horizontal dry mill

Info

Publication number
JP2695733B2
JP2695733B2 JP16757392A JP16757392A JP2695733B2 JP 2695733 B2 JP2695733 B2 JP 2695733B2 JP 16757392 A JP16757392 A JP 16757392A JP 16757392 A JP16757392 A JP 16757392A JP 2695733 B2 JP2695733 B2 JP 2695733B2
Authority
JP
Japan
Prior art keywords
mill
outer cylinder
ball
inner cylinder
horizontal dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16757392A
Other languages
Japanese (ja)
Other versions
JPH067699A (en
Inventor
慎治 松本
博久 吉田
賢二 西沢
勝征 植田
五輪麿 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16757392A priority Critical patent/JP2695733B2/en
Publication of JPH067699A publication Critical patent/JPH067699A/en
Application granted granted Critical
Publication of JP2695733B2 publication Critical patent/JP2695733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超微粉体を製造する横
型乾式連続粉砕装置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a horizontal dry continuous pulverizer for producing ultrafine powder.

【0002】[0002]

【従来の技術】図10は、連続排出可能な従来の乾式超
微粉砕ミル運転方法の一例を示す系統図である。被砕物
(原料)は、原料ホッパ(11)から供給機(12)を
経て、ミル(13)へ連続供給される。粉砕物は、送風
機(14)でミル(13)へ送入された搬送空気によ
り、ミル外へ排出され、分級機(サイクロン等)(1
5)により選別される。そして粗粒子は製品タンク(1
6)に回収され、微粒子は集塵機(バグフィルタ等)
(17)を経て製品タンク(16)に回収される。
2. Description of the Related Art FIG. 10 is a system diagram showing an example of a conventional method for operating a dry ultrafine grinding mill capable of continuous discharge. The crushed material (raw material) is continuously supplied from a raw material hopper (11) to a mill (13) via a feeder (12). The pulverized material is discharged out of the mill by the carrier air sent into the mill (13) by the blower (14), and is then discharged to a classifier (cyclone or the like) (1).
It is sorted by 5). The coarse particles are stored in the product tank (1
6) The fine particles are collected in a dust collector (eg, bag filter).
After (17) , it is collected in the product tank (16) .

【0003】[0003]

【発明が解決しようとする課題】前記従来のミル運転方
法においては、粉砕物をミル外に排出するために多量の
搬送空気が必要であった。したがって送風機(14)
や、空気中から粉体を回収するためのサイクロン(1
5)、バグフィルタ(17)等が必要であった。すなわ
ち、ミル以外に多くの付随設備とその据付スペースを必
要とし、またそれら設備を運転する動力も必要であっ
た。
In the above-mentioned conventional mill operation method, a large amount of conveying air is required to discharge the pulverized material out of the mill. Therefore the blower (14)
And a cyclone for collecting powder from the air (1
5), a bag filter (17) and the like were required. That is, in addition to the mill, many additional facilities and their installation space were required, and power for operating these facilities was also required.

【0004】[0004]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、内壁面に複数の攪拌翼が突設され
た外筒と外側面に複数の攪拌翼が突設され上記外筒内に
同軸に配されて軸周りに回転する内筒とを用い、上記外
筒と内筒との間に形成され内部に粉砕ボールが充填され
た環状断面の粉砕室の一端部に原料を導入して他端部か
ら微粉砕物を排出する方法において、上記外筒の内径が
D(m)であるとき、上記内筒の回転数を42.3D
-1/2(rpm )(すなわち臨界回転数)以上とするととも
に、上記粉砕室の内容積に占める上記粉砕ボールのかさ
体積の比率(すなわちボール充填率)を30%以上90
%未満とすることを特徴とする横型乾式ミルの運転方法
を提案するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an outer cylinder having a plurality of agitating blades projecting from an inner wall surface and a plurality of agitating blades projecting from an outer surface. Using an inner cylinder arranged coaxially in the outer cylinder and rotating around an axis, the raw material is placed at one end of a crushing chamber having an annular cross section formed between the outer cylinder and the inner cylinder and filled with crushing balls therein. And discharging the finely pulverized material from the other end, when the inner diameter of the outer cylinder is D (m), the rotation speed of the inner cylinder is 42.3D.
-1/2 (rpm) (i.e., critical rotation speed) or more, and the ratio of the bulk volume of the crushed balls to the internal volume of the crushing chamber (i.e., ball filling ratio) is 30% or more and 90% or more.
% Of the dry type dry mill is proposed.

【0005】[0005]

【作用】本発明方法においては、横型乾式ミルの回転数
とボール充填率の範囲を適正に選ぶので、ミルの内筒お
よび外筒に取付けられた攪拌翼と、それにより強制運動
する粉砕ボールとにより、周期的に圧縮流が発生する。
この圧縮流により微粉砕物は連続的にミル外へ排出され
る。このようにミル自体が連続排出機能を持つので、搬
送空気を必要としない。
In the method of the present invention, the range of the number of rotations and the ball filling rate of the horizontal dry mill is appropriately selected, so that the stirring blades attached to the inner and outer cylinders of the mill and the crushing balls forcedly moved by the stirring blades are used. As a result, a compressed flow is periodically generated.
The pulverized material is continuously discharged outside the mill by this compressed flow. Since the mill itself has a continuous discharge function, no conveying air is required.

【0006】[0006]

【実施例】図1は本発明方法に用いられる横型乾式ミル
の一実施例を示す縦断面図、図2は図1の II − II 横
断面図である。本実施例の横型乾式ミル(10)は、図
1に示されるとおり、内壁面に複数の攪拌翼(3)が突
設された外筒(1)と外側面に複数の攪拌翼(4)が突
設され上記外筒(1)内に同軸に配されて軸周りに回転
する内筒(2)とを具えている。そして、それら外筒
(1)と内筒(2)との間に形成された環状断面の粉砕
室(5)の内部に粉砕ボール(6)が充填されている。
粉砕室(5)の一端部の外筒(1)に原料投入口(7)
が設けられ、他端部は、図2に示されるとおり、スリッ
ト(8a)付きの目開板(8)を介して排出口(9)に
連通している。
1 is a longitudinal sectional view showing one embodiment of a horizontal dry mill used in the method of the present invention, and FIG. 2 is a sectional view taken along the line II-II of FIG. As shown in FIG. 1, the horizontal dry mill (10) of the present embodiment has an outer cylinder (1) having a plurality of stirring blades (3) protruding on an inner wall surface and a plurality of stirring blades (4) on an outer surface. And an inner cylinder (2) arranged coaxially in the outer cylinder (1) and rotating around an axis. A grinding ball (6) is filled in a grinding chamber (5) having an annular cross section formed between the outer cylinder (1) and the inner cylinder (2).
Raw material input port (7) in outer cylinder (1) at one end of crushing chamber (5)
As shown in FIG. 2, the other end communicates with the discharge port (9) through an aperture plate (8) with a slit (8a).

【0007】原料投入口(7)から連続供給される被砕
物は、内筒(2)の回転に伴い、粉砕室(5)内で粉砕
される。図3および図4は、固定された外筒(1)内で
内筒(2)を回転させた場合の、粉砕ボール(6)の動
きを示す図である。まず図3(a),(b)に示される
ように、回転する内筒(2)に固着された攪拌翼(4)
と外筒(1)に固着された攪拌翼(3)との接近・離間
に伴って、粉砕ボール(6)が回転軸方向に圧縮・弛緩
を繰り返す。その粉砕ボール(6)の動きにより圧縮流
が発生する。次に図4において、内筒(2)に固着され
た攪拌翼(4)により、粉砕ボール(6)は回転方向に
徐々に掻き上げられてゆく。これに伴って、粉砕ボール
(6)の堆積の稜線(図中点線)は、図4(a)から図
4(b)のように傾斜が急になってゆく。傾斜が臨界に
達したとき、図4(c)のように粉砕ボール(6)の堆
積が崩壊し、図4(d)の状態になるまで粉砕ボール
(6)が落下する。その落下により圧縮流が発生する。
このような2つの作用で発生する圧縮流により、粉体は
搬送され、外筒(1)の他端に設けられた排出口(9)
から連続的に排出される。
The crushed material continuously supplied from the raw material inlet (7) is crushed in the crushing chamber (5) with the rotation of the inner cylinder (2). FIGS. 3 and 4 are views showing the movement of the grinding ball (6) when the inner cylinder (2) is rotated within the fixed outer cylinder (1). First, as shown in FIGS. 3A and 3B, a stirring blade (4) fixed to a rotating inner cylinder (2).
The crushing ball (6) repeatedly compresses and relaxes in the direction of the rotation axis with the approach and separation of the stirring blade (3) fixed to the outer cylinder (1). The movement of the grinding ball (6) generates a compressed flow. Next, in FIG. 4, the crushing ball (6) is gradually scraped up in the rotation direction by the stirring blade (4) fixed to the inner cylinder (2). Along with this, the ridge line (dotted line in the figure) of the accumulation of the crushed balls (6) becomes steeper as shown in FIG. 4 (a) to FIG. 4 (b). When the inclination reaches the criticality, the accumulation of the crushed ball (6) collapses as shown in FIG. 4 (c), and the crushed ball (6) falls until the state shown in FIG. 4 (d) is reached. The falling causes a compressed flow.
The powder is conveyed by the compressed flow generated by these two actions, and the outlet (9) provided at the other end of the outer cylinder (1)
Is continuously discharged from

【0008】図5は本実施例の横型乾式ミルを組込んだ
システムを示す系統図である。原料ホッパー(11)か
ら供給機(12)により横型乾式ミル(10)に原料が
供給され、粉砕される。そして横型乾式ミル(10)か
ら連続排出された粉体は、振動ふるい(18)により粗
粒と微粒とに分級され、微粒は製品タンク(16)へ導
かれる。粗粒はベルトコンベアー(19)によって再び
横型乾式ミル(10)へ投入・粉砕される。したがっ
て、このシステムには送風・集塵系が一切不要となる。
FIG. 5 is a system diagram showing a system incorporating the horizontal dry mill of this embodiment. The raw material is supplied from the raw material hopper (11) to the horizontal dry mill (10) by the feeder (12), and is pulverized. The powder continuously discharged from the horizontal dry mill (10) is classified into coarse particles and fine particles by a vibrating sieve (18), and the fine particles are guided to a product tank (16). The coarse particles are again fed into the horizontal dry mill (10) and pulverized by the belt conveyor (19). Therefore, this system does not require any ventilation / dust collection system.

【0009】粉砕室(5)の内容積に対する粉砕ボール
(6)のかさ体積の比率(すなわちボール充填率)は3
0%以上、90%未満にしてある。また内筒(2)は、
次式で定義される臨界回転数NC よりも小さくない回転
数で回転させる。
The ratio of the bulk volume of the crushing ball (6) to the internal volume of the crushing chamber (5) (that is, the ball filling ratio) is 3
0% or more and less than 90%. The inner cylinder (2)
The rotation is performed at a rotation speed not less than the critical rotation speed N C defined by the following equation.

【0010】[0010]

【数1】 (Equation 1)

【0011】このように限定する根拠について、次に詳
述する。横型乾式ミルにより粉砕する場合、粉砕室
(5)内に充填された粉砕ボール(6)は、内筒(2)
の回転に伴って前記図4(a)に示されるように、回転
方向に徐々に掻き上げられ、図4(b)の状態から図4
(c)のように崩壊して落下する。その落下衝撃によ
り、原料が粉砕されるとともに圧縮力が発生して、粉体
を搬送・排出するのである。ところが内筒(2)の回転
数が小さ過ぎる場合、粉砕ボール(6)は殆ど掻き上げ
られない。すなわち、図4中に点線で示された稜線が殆
ど傾斜せず、粉砕ボール(6)は小範囲の上下動を繰返
すだけである。したがってこの場合は、粉砕性能が著し
く低下するばかりでなく、圧力も発生しない。
The grounds for such limitation will be described in detail below. In the case of pulverizing by a horizontal dry mill, the pulverizing balls (6) filled in the pulverizing chamber (5) are filled in the inner cylinder (2).
As shown in FIG. 4 (a), the liquid is gradually scraped up in the rotating direction as shown in FIG.
It collapses and falls as shown in (c). Due to the drop impact, the raw material is crushed and a compressive force is generated, thereby conveying and discharging the powder. However, when the rotation speed of the inner cylinder (2) is too low, the crushed ball (6) is hardly lifted. That is, the ridgeline shown by the dotted line in FIG. 4 hardly tilts, and the grinding ball (6) repeats only a small range of vertical movement. Therefore, in this case, not only the pulverizing performance is significantly reduced, but also no pressure is generated.

【0012】図6はミル内圧力の変動を示す図である。
また図7は図6中に示す内圧変動幅と臨界回転数比(上
記臨界回転数NC に対する実際の回転数Nの比率。以
下、回転数比とのみ記す)との関係を示す図である。更
に図8は回転数比と排出特性との関係を示す図である。
これらの図から、回転数比1.0以上において、内圧変
動幅が充分に大きくなるとともに良好な排出が可能とな
ることが判る。
FIG. 6 is a diagram showing the fluctuation of the pressure in the mill.
FIG. 7 is a diagram showing the relationship between the internal pressure fluctuation width and the critical rotational speed ratio (the ratio of the actual rotational speed N to the critical rotational speed N C. Hereinafter, only the rotational speed ratio) shown in FIG. . FIG. 8 is a graph showing the relationship between the rotation speed ratio and the discharge characteristics.
From these figures, it can be seen that, at a rotational speed ratio of 1.0 or more, the internal pressure fluctuation width becomes sufficiently large and good discharge becomes possible.

【0013】次に図9はボール充填率と粉砕可能粒径と
の関係を示す図である。この図9と前記図8を見ると、
ボール充填率には上限値と下限値が存在することが判
る。すなわち図8において、ボール充填率を90%以上
に上げると、供給量に対する排出量が極度に減少してい
る。これは、ボール充填率が大き過ぎると、ミル内の自
由空間が少なくなるため、前述した粉砕ボールの崩壊運
動が生じず、圧縮流が発生しなくなって、そのために排
出が不可能となるからである。また図9において、ボー
ル充填率が30%未満になると、材料に与えられる粉砕
エネルギーが不足するとともにショートパスが多くな
り、平均粒径(図中D50)が大きくなったり、粗大粒子
量(図中D90)が多くなる等、いわゆる粉砕性が不良と
なることが判る。したがって、ボール充填率の適正範囲
を30%以上、90%未満と限定するのである。
FIG. 9 is a graph showing the relationship between the ball filling ratio and the crushable particle size. Looking at FIG. 9 and FIG.
It can be seen that the ball filling ratio has an upper limit and a lower limit. That is, in FIG. 8, when the ball filling rate is increased to 90% or more, the discharge amount with respect to the supply amount is extremely reduced. This is because if the ball filling ratio is too large, the free space in the mill is reduced, so that the above-mentioned collapse movement of the crushed balls does not occur, and no compressed flow is generated, so that discharge becomes impossible. is there. In FIG. 9, when the ball filling rate is less than 30%, the pulverizing energy given to the material becomes insufficient and the number of short passes increases, so that the average particle diameter (D 50 in the figure) increases and the amount of coarse particles (FIG. 9) increases. It can be seen that the so-called pulverizability becomes poor, for example, the medium D 90 ) increases. Therefore, the appropriate range of the ball filling rate is limited to 30% or more and less than 90%.

【0014】次に本発明方法の具体的実施例について述
べる。外筒内径800 mm のミルで球径10 mm の鋼製
ボールを用い、内筒を約70rpm の絶対回転数で回転さ
せ、被粉砕原料として50%平均粒径1.5 mm 、粉砕
性指数HGI35の珪石を粉砕したところ、50%平均
粒径1.8μm の超微粉珪石が得られ、しかも連続的に
排出された。
Next, specific examples of the method of the present invention will be described. The inner cylinder was rotated at an absolute rotation speed of about 70 rpm using a steel ball having a ball diameter of 10 mm in a mill having an outer cylinder inner diameter of 800 mm, and as a raw material to be pulverized, a 50% average particle size of 1.5 mm and a grindability index of HGI35. Was crushed to obtain ultrafine silica having a 50% average particle size of 1.8 μm, and was continuously discharged.

【0015】[0015]

【発明の効果】本発明の方法においては、ミル内の攪拌
翼の運動とそれに伴うボールの運動により、被砕物とボ
ールの滞留層に圧縮流を発生させる。その圧縮流を用い
た排出作用により、ミル自体で微粉砕物の連続排出がで
きる。したがって、搬送空気用の設備や動力を必要とし
ないため、従来の乾式連続粉砕システムに比べ大幅なコ
スト減となり、また設備の設置スペースも大幅に縮少で
きる。
In the method of the present invention, a compressed flow is generated in the crushed material and the stagnant layer of the ball by the movement of the stirring blade in the mill and the accompanying movement of the ball. By the discharging action using the compressed flow, the mill itself can continuously discharge the finely pulverized material. Therefore, since no equipment or power for conveying air is required, the cost is greatly reduced as compared with the conventional dry-type continuous pulverization system, and the installation space for the equipment can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明方法に用いられる横型乾式ミルの
一実施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a horizontal dry mill used in the method of the present invention.

【図2】図2は図1の II − II 横断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG.

【図3】図3はミル内の粉砕ボールの回転軸方向の動き
を示す図である。
FIG. 3 is a view showing movement of a grinding ball in a mill in a rotation axis direction.

【図4】図4はミル内の粉砕ボールの円周方向の動きを
示す図である。
FIG. 4 is a view showing a circumferential movement of a crushed ball in a mill.

【図5】図5は図1の横型乾式ミルを組込んだシステム
を示す系統図である。
FIG. 5 is a system diagram showing a system incorporating the horizontal dry mill of FIG. 1;

【図6】図6はミル内の圧力変動状況を示す図である。FIG. 6 is a diagram showing a pressure fluctuation state in a mill.

【図7】図7はミル内の圧力変動幅と回転数比との関係
を示す図である。
FIG. 7 is a diagram showing a relationship between a pressure fluctuation width in a mill and a rotation speed ratio.

【図8】図8はミルの排出特性と回転数比との関係を示
す図である。
FIG. 8 is a diagram showing a relationship between a discharge characteristic of a mill and a rotation speed ratio.

【図9】図9は粉砕可能粒径とボール充填率との関係を
示す図である。
FIG. 9 is a diagram showing a relationship between a crushable particle size and a ball filling rate.

【図10】図10は従来の乾式超微粉砕ミルの運転方法
の一例を示す図である。
FIG. 10 is a diagram showing an example of an operation method of a conventional dry ultrafine grinding mill.

【符号の説明】[Explanation of symbols]

(1) 外筒 (2) 内筒 (3),(4) 攪拌翼 (5) 粉砕室 (6) 粉砕ボール (7) 原料投入口 (8) 目開板 (8a) スリット (9) 排出口 (10) 横型乾式ミル (11) 原料ホッパ (12) 供給機 (13) ミル (14) 送風機 (15) 分級機(サイクロン) (16) 製品タンク (17) 集塵機(バグフィルタ) (18) 振動ふるい (19) ベルトコンベア (1) Outer cylinder (2) Inner cylinder (3), (4) Stirring blade (5) Crushing chamber (6) Crushing ball (7) Raw material input port (8) Opening plate (8a) Slit (9) Discharge port ( 10) Horizontal dry mill (11) Raw material hopper (12) Feeder (13) Mill (14) Blower (15) Classifier (cyclone) (16) Product tank (17) Dust collector (bag filter) (18) Vibrating sieve ( 19) Belt conveyor

フロントページの続き (72)発明者 植田 勝征 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (72)発明者 天野 五輪麿 長崎市飽の浦町1番1号 三菱重工業株 式会社長崎造船所内 (56)参考文献 特開 平2−99151(JP,A)Continued on the front page (72) Inventor Katsuyuki Ueda 1-1, Akunoura-cho, Nagasaki-shi Inside Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Amano Olympic Circle 1-1, Akunoura-cho, Nagasaki-shi Mitsubishi Heavy Industries, Ltd. (56) References JP-A-2-99151 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内壁面に複数の攪拌翼が突設された外筒
と外側面に複数の攪拌翼が突設され上記外筒内に同軸に
配されて軸周りに回転する内筒とを用い、上記外筒と内
筒との間に形成され内部に粉砕ボールが充填された環状
断面の粉砕室の一端部に原料を導入して他端部から微粉
砕物を排出する方法において、上記外筒の内径がD
(m)であるとき、上記内筒の回転数を42.3D-1/2
(rpm )以上とするとともに、上記粉砕室の内容積に占
める上記粉砕ボールのかさ体積の比率を30%以上90
%未満とすることを特徴とする横型乾式ミルの運転方
法。
1. An outer cylinder having a plurality of agitating blades protruding from an inner wall surface and an inner cylinder having a plurality of agitating blades protruding from an outer surface and disposed coaxially within the outer cylinder and rotating about an axis. Use, in the method of introducing a raw material into one end of a grinding chamber having an annular cross section filled with grinding balls formed between the outer cylinder and the inner cylinder and discharging finely pulverized material from the other end, The inner diameter of the outer cylinder is D
(M), the rotation speed of the inner cylinder is set to 42.3D -1/2
(Rpm) or more, and the ratio of the bulk volume of the grinding balls to the internal volume of the grinding chamber is 30% or more and 90% or more.
%, And a method for operating a horizontal dry mill.
JP16757392A 1992-06-25 1992-06-25 Operating method of horizontal dry mill Expired - Fee Related JP2695733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16757392A JP2695733B2 (en) 1992-06-25 1992-06-25 Operating method of horizontal dry mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16757392A JP2695733B2 (en) 1992-06-25 1992-06-25 Operating method of horizontal dry mill

Publications (2)

Publication Number Publication Date
JPH067699A JPH067699A (en) 1994-01-18
JP2695733B2 true JP2695733B2 (en) 1998-01-14

Family

ID=15852250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16757392A Expired - Fee Related JP2695733B2 (en) 1992-06-25 1992-06-25 Operating method of horizontal dry mill

Country Status (1)

Country Link
JP (1) JP2695733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107362880A (en) * 2017-07-31 2017-11-21 张志通 A kind of food processing prilling granulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001607B (en) * 2014-06-23 2016-09-07 广东先导稀材股份有限公司 A kind of airflow comminution system and technique
JP2016035913A (en) * 2014-07-31 2016-03-17 富士フイルム株式会社 All-solid type secondary battery, inorganic solid electrolyte particle, solid electrolyte composition, battery electrode sheet and all-solid type secondary battery manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107362880A (en) * 2017-07-31 2017-11-21 张志通 A kind of food processing prilling granulator

Also Published As

Publication number Publication date
JPH067699A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
JP2579885B2 (en) Pulverizing method, pulverizing device and classifier for powder material
JP4811713B2 (en) Cement clinker grinding equipment
JPH089016B2 (en) Grinding device and grinding method by vertical roller mill
JP2007136299A (en) Cement clinker grinding facility
JP2695733B2 (en) Operating method of horizontal dry mill
EP0140613A2 (en) Apparatus for and method of obtaining a comminuted product from a solid feed material
JP2005279489A (en) Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device
JP2955389B2 (en) Crusher
JP2000210587A (en) Crusher
JPH074556B2 (en) Air flow type pulverizing and classifying device for fine powder
JPH0210787B2 (en)
KR970006854Y1 (en) Selective separation of solid materials for pulverizer
JP2518982B2 (en) Vertical mill crusher
CN220238647U (en) Superfine camphor powder apparatus for producing
JP2000237626A (en) Milling and sieving apparatus
CN218190109U (en) Pesticide is with pneumatic grinder
CN219631527U (en) Continuous vibration crushing classifier capable of classifying online
JPH0653234B2 (en) Method for producing fine powder
JPH0593558U (en) Preliminary crusher
KR0167010B1 (en) Method and apparatus for reducing fine grain particles by means of compressed fluid
JPH057349U (en) Preliminary crusher
KR100493944B1 (en) The method and apparatus for manufacturing of toner polyester resin
JPH0636870B2 (en) Rolla Mill
JPH0639799Y2 (en) Medium stirring type crusher
JPH07848A (en) Crushing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

LAPS Cancellation because of no payment of annual fees