JPH074556B2 - Air flow type pulverizing and classifying device for fine powder - Google Patents

Air flow type pulverizing and classifying device for fine powder

Info

Publication number
JPH074556B2
JPH074556B2 JP25655389A JP25655389A JPH074556B2 JP H074556 B2 JPH074556 B2 JP H074556B2 JP 25655389 A JP25655389 A JP 25655389A JP 25655389 A JP25655389 A JP 25655389A JP H074556 B2 JPH074556 B2 JP H074556B2
Authority
JP
Japan
Prior art keywords
fine powder
air flow
static pressure
flow type
particle concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25655389A
Other languages
Japanese (ja)
Other versions
JPH03118850A (en
Inventor
光雄 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP25655389A priority Critical patent/JPH074556B2/en
Publication of JPH03118850A publication Critical patent/JPH03118850A/en
Publication of JPH074556B2 publication Critical patent/JPH074556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子部品材料などに使用される微粉体を解砕
するための気流式粉砕分級装置に関するものである。
TECHNICAL FIELD The present invention relates to an air flow type crushing and classifying device for crushing fine powder used in electronic component materials and the like.

[従来の技術] 従来、気相法や液相法等で生産されるセラミックスや合
成シリカ等は1ミクロン以下の超微粉体であるが、ケミ
・メカ的な結合により種々の大きさの凝集二次粒子(以
下凝集体という)となる。この微粉体はその大きさや結
合力が千差万別であるため、これをこのまま電子部品材
料などに使用すると品質上の問題を起こす。
[Prior Art] Conventionally, ceramics and synthetic silica produced by a vapor phase method, a liquid phase method, etc. are ultrafine powders of 1 micron or less, but due to chemi-mechanical coupling, agglomeration of various sizes It becomes a secondary particle (hereinafter referred to as an aggregate). Since the size and the binding force of this fine powder are various, the use of this fine powder as it is in electronic component materials causes quality problems.

そこで、この凝集体をサブミクロンの一次粒子に解砕す
る装置の開発が切望されている。
Therefore, the development of an apparatus for disintegrating this aggregate into submicron primary particles has been earnestly desired.

この種の装置として、本考案者らによって、先に提案し
た固体粒子を流体エネルギーを利用して粉砕し、粉砕し
たものを気流式分級機により捕集する気流式粉砕分級装
置を挙げることができる(実開昭61−164942号公報参
照)。
An example of this type of device is the airflow type pulverization and classification device proposed by the present inventors, in which solid particles are pulverized by utilizing fluid energy and the pulverized product is collected by an airflow type classification device. (See Japanese Utility Model Publication No. 61-164942).

これを第2図〜第3図に基づいて説明すると、固体粒子
を原料供給機aを介して粉砕室bに投入し、所定量の貯
溜層cを形成した状態で、その表面近傍に位置する流体
ノズルdからのジエット噴流により加速せしめ、速度エ
ネルギーをもった固体粒子同士を相互に衝突せしめ、微
粉砕する。
This will be described with reference to FIGS. 2 to 3. Solid particles are placed in the crushing chamber b via the raw material supply device a, and a predetermined amount of the storage layer c is formed, and the solid particles are positioned near the surface thereof. The jet jet from the fluid nozzle d accelerates the solid particles so that solid particles having velocity energy collide with each other and finely pulverize.

粉砕された粒子は気流分級ロータeにより、分級され、
気流と伴に微粉排出管fを経て、図示しない微粉捕集機
に捕集され、該捕集機より製品として取り出されるので
ある。
The crushed particles are classified by an air flow classification rotor e,
Along with the air flow, it passes through the fine powder discharge pipe f, is collected by a fine powder collector (not shown), and is taken out as a product from the collector.

そして、前記粉砕室bの原料のレベルが低下すると、粉
砕室の側壁に連通孔iを介して連接した貯溜計測室gに
差し込んだセンサーhにより、その貯溜層jのレベルを
検出して固体粒子を供給し、該レベルを最適位置に維持
し、高い粉砕効率を保つのである。
Then, when the level of the raw material in the crushing chamber b decreases, the level of the storage layer j is detected by the sensor h inserted into the storage measuring chamber g connected to the side wall of the crushing chamber through the communication hole i to detect the solid particles. To maintain the level at an optimum position and maintain high grinding efficiency.

この場合の粉砕機は、原料である固体粒子の大きさが数
百ミクロン以下と比較的大きいため、投入された固体粒
子の大半はジェット噴流に打ち勝って落下し、一旦貯溜
層cを形成するものである。
In the crusher in this case, since the size of the solid particles as a raw material is relatively large, such as several hundreds of microns or less, most of the injected solid particles overcome the jet jet and fall to once form the storage layer c. Is.

[発明が解決しようとする課題] しかしながら、粒子径が前記固体粒子の大きさに比べて
相当小さい粉体の凝集体を解砕する場合、ジェット噴流
の速度などにもよるが、大半のものは、ジェット噴流に
よって、解砕浮遊し、貯溜層を形成しない。
[Problems to be Solved by the Invention] However, in the case of crushing agglomerates of powder having a particle size considerably smaller than the size of the solid particles, most of them are dependent on the jet jet speed and the like. , It is disintegrated and suspended by a jet jet and does not form a reservoir layer.

このため、たとえ、凝集体を一定量づつ供給して粉砕機
で粉砕し、気流式分級機を経て微粉を得たとしてもレベ
ル検出が出来ないことから、粉砕室内の粒子濃度は大き
く変動し、従って、得られる製品の粒度分布に差異が生
じ、粉砕効率の向上は期待できない。
For this reason, even if the agglomerates are supplied in a constant amount and crushed by a crusher, and even if fine powder is obtained through an airflow classifier, the level cannot be detected, so the particle concentration in the crushing chamber fluctuates greatly, Therefore, there is a difference in particle size distribution of the obtained products, and improvement in pulverization efficiency cannot be expected.

一方、凝集体の中には前記したように比較的大きい及び
結合力の大きい凝集体が存在するが、これはジェット噴
流によって解砕されること無くジェット噴流を通過し、
下方に落下貯溜する。そして、これがジェット噴流位置
まで達すると、これの影響により、粒子濃度の変動の原
因にもなる。
On the other hand, in the agglomerates, there is an agglomerate having a relatively large size and a large binding force as described above, which passes through the jet jet without being crushed by the jet jet.
Drop down and collect. Then, when this reaches the jet jet position, the influence of this also causes the fluctuation of the particle concentration.

そこで、本発明は、前記粒子濃度が粉砕室内における分
級ロータの内外の静圧差と比例関係となる知見に基づき
なしたものであり、粒度分布の変動を大巾に抑えるとと
もに未解砕の凝集体を排出することによって、解砕効率
を一層向上させることができる気流式粉砕分級装置を提
供することを目的とするものである。
Therefore, the present invention is based on the finding that the particle concentration is proportional to the static pressure difference between the inside and outside of the classification rotor in the crushing chamber, and greatly suppresses the fluctuation of the particle size distribution and unaggregated aggregates. It is an object of the present invention to provide an airflow type crushing and classifying device which can further improve the crushing efficiency by discharging.

[課題を解決するための手段] 上記目的を達成するために、本発明の気流式粉砕分級装
置は、粉砕室の下部に未解砕の凝集体を貯溜する貯溜部
を形成し、該貯溜部の下部に排出機を連接するととも
に、前記分級機の内外の静圧を検出する静圧検出器を設
け、この静圧検出器を静圧差変換器を介して粒子濃度制
御器に接続し、さらに前記気流式分級機の回転負荷動力
を検出する負荷検出器を設け、この負荷検出器を粒子濃
度制御器に接続し、該粒子濃度制御器より前記原料供給
機を制御するようにしたことである。
[Means for Solving the Problems] In order to achieve the above object, the airflow type pulverizing and classifying apparatus of the present invention forms a reservoir for storing unaggregated agglomerates in a lower portion of a pulverizing chamber, and the reservoir While connecting the discharger to the lower part of the, a static pressure detector for detecting the static pressure inside and outside the classifier is provided, and this static pressure detector is connected to the particle concentration controller via the static pressure difference converter, A load detector for detecting the rotational load power of the airflow classifier is provided, the load detector is connected to a particle concentration controller, and the raw material feeder is controlled by the particle concentration controller. .

[作用] 粉砕室内に投入された凝集体は、流体ノズルからのジェ
ット噴流により加速され、この加速によって、相互に衝
突と摩擦を繰り返すうちに解砕され、浮遊状態となる。
[Operation] The agglomerates introduced into the pulverization chamber are accelerated by the jet jet from the fluid nozzle, and due to this acceleration, the agglomerates are crushed while repeating collision and friction with each other, and become in a floating state.

そして、前記解砕より浮遊する微粉体は、気流分級機に
より所定の分級点で分級される。
Then, the fine powder floating from the crushing is classified at a predetermined classification point by an airflow classifier.

一方、凝集体のうち、比較的大きい及び結合力の大なる
凝集体は、ジェット噴流による加速性が弱いため、解砕
されることなく、該噴流を通過して下方に落下し、貯溜
部にたまる。
On the other hand, among the agglomerates, the agglomerates having a relatively large size and a large binding force have a weak acceleration due to the jet jet, and therefore are not disintegrated and pass through the jets and fall downward to the reservoir. Collect

ここにおいて、気流式分級機の内外の静圧をそれぞれの
静圧検出器で検出して静圧差変換器に入力し、この静圧
差を粒子濃度制御器に入力する。
Here, the static pressures inside and outside the air flow classifier are detected by the respective static pressure detectors and input to the static pressure difference converter, and this static pressure difference is input to the particle concentration controller.

さらに、気流式分級機の回転負荷動力を負荷動力検出器
で検出し、これを粒子濃度制御器に入力する。入力され
た前記2つの検出値すなわち、静圧差検出値及び負荷動
力検出値は比較演算され、この結果に基づいて、原料定
量供給機を制御して凝集体の供給量を制御するのであ
る。
Further, the rotational load power of the airflow classifier is detected by the load power detector, and this is input to the particle concentration controller. The two detected values that have been input, that is, the static pressure difference detected value and the load power detected value are compared and calculated, and based on this result, the raw material quantitative feeder is controlled to control the supply amount of the aggregate.

また、貯溜部にたまった未解砕の凝集体は、その量が一
定値を超えると押出機を作動して排出する。
In addition, the uncrushed agglomerates accumulated in the reservoir are discharged by operating the extruder when the amount exceeds a certain value.

このことによって、解砕された微粉体は確実にサブミク
ロンの一次粒子に解砕され、かつバラ付きのない微粉体
を得ることができる。
As a result, the crushed fine powder is surely crushed into submicron primary particles, and it is possible to obtain a fine powder without variation.

[実施例] 本発明の実施例を図面に基づいて説明する。[Embodiment] An embodiment of the present invention will be described with reference to the drawings.

第1図において、1は気流式粉砕機で、この粉砕機は粉
砕室1aの側壁上部に原料ビン2からロータリフィーダ3
を介して通じる供給管4を有し、このロータリフィ−ダ
3は駆動モータ5により駆動され、さらに粉砕室1aの側
壁下部寄りに複数個の流体ノズル6を有し、この流体ノ
ズル6は高圧流体発生機7と導管6aを介して連通したも
のからなっている。
In FIG. 1, reference numeral 1 denotes an air flow type crusher, which is provided on the upper side wall of a crushing chamber 1a from a raw material bottle 2 to a rotary feeder 3.
The rotary feeder 3 is driven by a drive motor 5 and further has a plurality of fluid nozzles 6 near the lower side wall of the crushing chamber 1a. The fluid nozzles 6 have a high pressure. It is in communication with the fluid generator 7 via a conduit 6a.

8は粉砕室1aの下部に形成した漏斗状の凝集体貯溜部
で、その下端に排出機9を設け、この排出機9に捕集ビ
ン10を接続する。
Reference numeral 8 denotes a funnel-shaped aggregate storage portion formed in the lower part of the crushing chamber 1a, and a discharge machine 9 is provided at the lower end thereof, and a collection bottle 10 is connected to this discharge machine 9.

11は粉砕室1a内の上端に設けた気流式分級機で、該分級
機の分級ロータ11aは粉砕室1aの上部に設けた駆動モー
タ12により高速回転するようになっている。
Reference numeral 11 is an airflow type classifier installed at the upper end of the crushing chamber 1a, and a classifying rotor 11a of the classifier is rotated at a high speed by a drive motor 12 provided above the crushing chamber 1a.

14は分級ロータ11aの下部(排出側)に設けた微粉排出
管13に接続した微粉捕集機で、この捕集機に排気ブロア
15を接続する。
Reference numeral 14 is a fine powder collector connected to a fine powder discharge pipe 13 provided at the lower portion (discharge side) of the classification rotor 11a, and an exhaust blower is connected to this collector.
Connect 15

16,17はそれぞれ粉砕室1aの上部側壁及び微粉排出管13
に設けた静圧検出器で、分級ロータ11aを基準としてそ
の内外の静圧を検出するのである。前記両検出器16,17
は静圧差変換器18に接続され、さらに静圧差変換器18は
粒子濃度制御器20に接続される。
16 and 17 are the upper side wall of the crushing chamber 1a and the fine powder discharge pipe 13 respectively.
The static pressure detector provided at the position detects the static pressure inside and outside the classification rotor 11a with reference to the classification rotor 11a. Both detectors 16,17
Is connected to a static pressure difference converter 18, and the static pressure difference converter 18 is further connected to a particle concentration controller 20.

19は分級ロータ11aの駆動モータ12の回転負荷動力を検
出する負荷動力検出器で、この検出器は前記粒子濃度制
御器に接続される。
Reference numeral 19 is a load power detector for detecting the rotational load power of the drive motor 12 of the classification rotor 11a, and this detector is connected to the particle concentration controller.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be described.

原料ビン2に貯蔵された微粉体の凝集体を駆動モータ5
の起動により、原料供給機3から定量づつ切り出し、供
給管4を経て粉砕室1aの中に投入する。
Drive motor 5 for agglomerates of fine powder stored in raw material bottle 2
By starting up, the material is cut out from the raw material supply device 3 by a fixed amount, and is introduced into the crushing chamber 1a through the supply pipe 4.

一方、高圧流体発生機で発生させた高圧流体を導管6aを
介して流体ノズル6に導き、該流体ノズル6から粉砕室
1aの中心に向けて噴射するとともに、駆動モータ12の起
動により分級ロータ11aを高速回転させ、さらに排気用
ブロア15を起動すると、前記凝集体は前記噴射されたジ
ェット噴流に巻き込まれて加速され、速度エネルギーを
もって相互に衝突や摩擦を繰り返すうちに解砕され、粉
砕室1a内を浮遊する。
On the other hand, the high-pressure fluid generated by the high-pressure fluid generator is guided to the fluid nozzle 6 via the conduit 6a, and the fluid nozzle 6 causes the high-pressure fluid to flow from the fluid nozzle 6.
While injecting toward the center of 1a, by rotating the drive motor 12 to rotate the classification rotor 11a at high speed, and further start the exhaust blower 15, the agglomerates are entrained in the injected jet jet and accelerated, The particles are crushed while repeatedly colliding and rubbing with each other with velocity energy, and float in the crushing chamber 1a.

上記のように解砕されて浮遊状態にある微粉体は、分級
ロータ11aの高速回転による遠心力によって、所定の分
級点で分給される。
The fine powder that has been crushed and suspended as described above is dispensed at a predetermined classification point by the centrifugal force generated by the high-speed rotation of the classification rotor 11a.

分給ロータ11aを通過した微粉は、気流とともに微粉排
出管13を経て微粉捕集機14に導かれ、ここで微粉と気流
とに分離され、微粉は製品として下部より排出され、気
流は排気ブロア15により大気に放出される。
The fine powder that has passed through the distribution rotor 11a is guided to the fine powder collector 14 through the fine powder discharge pipe 13 together with the air flow, where it is separated into the fine powder and the air flow, the fine powder is discharged from the lower part as a product, and the air flow is the exhaust blower. It is released into the atmosphere by 15.

一方、前記分給ロータ11aを通過しない微粉は下降し、
再度ジェット噴流による解砕作用を受ける。
On the other hand, fine powder that does not pass through the distribution rotor 11a descends,
It is subjected to the crushing action by the jet jet again.

また、凝集体のうち比較的大きい及び強度の大なるもの
は、前記ジェット噴流による解砕力が弱いため自重下降
し、貯溜部8にたまり、その量が一定値を超えると排出
機9が作動して捕集ビン10に集められる。
Further, among the agglomerates, those having a relatively large size and a high strength are weak in the crushing force due to the jet jet and are lowered by their own weight, and are accumulated in the storage part 8, and when the amount exceeds a certain value, the ejector 9 is operated. Collected in collection bin 10.

上記粉砕(解砕)分級おいて、分級ロータ11aの入口側
及び出口側の静圧を静圧検出器16,17で検出し、これを
静圧差変換器18に入力してその差を電気信号に変換して
粒子濃度制御器20に入力する。前記静圧差は粒子濃度と
比例関係にあり、その差が大きくなるほど粒子濃度も増
加する。
In the crushing (crushing) classification, the static pressure on the inlet side and the outlet side of the classification rotor 11a is detected by the static pressure detectors 16 and 17, and this is input to the static pressure difference converter 18 and the difference is an electric signal. And input to the particle concentration controller 20. The static pressure difference is proportional to the particle concentration, and the larger the difference, the higher the particle concentration.

また、駆動モータ12の回転負荷動力を負荷検出器19で検
出して粒子濃度制御器20に入力する。この回転負荷動力
は分給ロータ11aの外周回りを旋回する気流中に含まれ
る微粉の濃度(粒子濃度)と比例関係にあり、この負荷
動力が大きくなるほど粒子濃度も増加する。
Further, the rotational load power of the drive motor 12 is detected by the load detector 19 and input to the particle concentration controller 20. This rotational load power is proportional to the concentration of fine powder (particle concentration) contained in the air flow that swirls around the outer circumference of the distribution rotor 11a, and the particle concentration increases as the load power increases.

次いで、粒子濃度制御器20において、前記入力値を一定
時間毎に積分し、積分平均値と最適濃度状態を具現する
設定値が比較演算され、その差異に応じた電気信号が駆
動モータ5に出力されて回転数が制御され原料供給機か
らの凝集体の切り出し量を制御する。
Next, in the particle concentration controller 20, the input value is integrated at regular time intervals, the integrated average value and the set value that realizes the optimum concentration state are compared and calculated, and an electric signal corresponding to the difference is output to the drive motor 5. Thus, the number of revolutions is controlled and the amount of the aggregate cut out from the raw material feeder is controlled.

このようにして、粉砕室1a内の粒子濃度を最適状態に維
持することができるので、凝集体の解砕粒度分布の変動
を小さく抑えることができる。
In this way, the particle concentration in the crushing chamber 1a can be maintained in the optimum state, so that the fluctuation of the crushed particle size distribution of the aggregate can be suppressed to be small.

(実施例1) 当社製気流式微粉砕機(商品名:クロスジェットミル)
を用い、粉砕室内径110mm、ノズル数3本、分給ロータ
外形50mm、分給ロータ回転数2.1×104rpm、分給ロータ
の負荷動力0.02KW、静圧差の変動巾10mm水柱の仕様で、
最適粉砕(解砕)条件すなわち粒子濃度100%のもとで
原料(合成シリカ)を解砕した微粉体の粒度分布を第1
表に示す。
(Example 1) Our company's air flow type fine pulverizer (Product name: Cross Jet Mill)
With a crushing chamber diameter of 110 mm, three nozzles, a distribution rotor outer shape of 50 mm, a distribution rotor rotation speed of 2.1 × 10 4 rpm, a distribution rotor load power of 0.02 KW, and a static pressure difference fluctuation range of 10 mm water column.
The first is the particle size distribution of the fine powder obtained by crushing the raw material (synthetic silica) under optimum crushing (crushing) conditions, that is, 100% particle concentration.
Shown in the table.

(実施例2) 実施例1と同様の粉砕機を用い、同一仕様で、粒子濃度
80%のもとで、原料(合成シリカ)を解砕した微粉体の
粒度分布を第2表に示す。
(Example 2) The same crusher as in Example 1 was used and the particle size was the same with the same specifications.
Table 2 shows the particle size distribution of the fine powder obtained by crushing the raw material (synthetic silica) under 80%.

(実施例3) 実施例1と同様の粉砕機を用い、同一仕様で、粒子濃度
110%のもとで、原料(合成シリカ)を解砕した微粉体
の粒度分布を第3表に示す。
(Example 3) The same crusher as in Example 1 was used and the particle size was the same with the same specifications.
Table 3 shows the particle size distribution of the fine powder obtained by crushing the raw material (synthetic silica) under 110%.

なお、各表における頻度はそれぞれの試料No(粒径)に
対する生産量を%で表わし、累積は粒形の小さい側の試
料Noから順次頻度を足した総生産量を%で表わしたもの
である。
The frequency in each table represents the production amount for each sample No (particle size) in%, and the cumulative amount represents the total production amount in which the frequency is sequentially added from the sample No. with the smaller particle shape in%. .

上記実施例の結果より、実施例1(粒子濃度100%)で
解砕したものが、他の実施例2(粒子濃度80%)及び実
施例3(粒子濃度110%)のものに比べて、粒度分布1.0
1μm以下の累積値が16.8%と高く、それだけ解砕粒度
分布におけるサブミクロン域の微粉の含有割合を多くす
ることができた。
From the results of the above-mentioned examples, what was crushed in Example 1 (particle concentration 100%) was compared with those of other Examples 2 (particle concentration 80%) and Example 3 (particle concentration 110%). Particle size distribution 1.0
The cumulative value of 1 μm or less was as high as 16.8%, and the content ratio of fine powder in the submicron region in the crushed particle size distribution could be increased accordingly.

因みに、実施例2の粒子濃度が小さい場合は、粒子間距
離が大きく、それだけ粒子相互の衝突や摩擦を起す機会
が少ないことから、解砕作用が十分でないことが推測さ
れる。
Incidentally, when the particle concentration of Example 2 is small, the distance between particles is large, and the chances of causing collision and friction between particles are small accordingly, so it is presumed that the crushing action is not sufficient.

また、実施例3の粒子濃度が大きい場合は、分給ロータ
の外周回り(遠心力場における粒子が相互に干渉して分
給作用を乱すことによるものと推測される。
Further, when the particle concentration of Example 3 is high, it is presumed that this is due to the outer circumference of the distribution rotor (particles in the centrifugal force field interfere with each other and disturb the distribution effect).

[発明の効果] 本発明は、以上のように構成されているので、以下に記
載されるような効果を奏する。
[Advantages of the Invention] Since the present invention is configured as described above, it has the effects described below.

分級機の内外の静圧を検出する静圧検出機を設け、この
静圧検出機を静圧差変換器を介して粒子濃度制御器に接
続し、さらに前記気流式分級機の回転負荷動力を検出す
る負荷検出器を設け、この負荷検出器を粒子濃度制御器
に接続し、該粒子濃度制御器より前記原料供給機を制御
するようにしたから、粉砕室内に原料貯溜層の形成が不
可能な微粉対の場合であっても、粉度分布の変動を極め
て小さく抑えることができ、容易に所定の粒度分布をも
つ微粉体を得ることができる。
A static pressure detector that detects the static pressure inside and outside the classifier is installed, and this static pressure detector is connected to the particle concentration controller via a static pressure difference converter, and the rotational load power of the airflow classifier is detected. Since the load detector is provided, and the load detector is connected to the particle concentration controller and the raw material supply device is controlled by the particle concentration controller, it is impossible to form the raw material reservoir layer in the grinding chamber. Even in the case of a fine powder pair, the fluctuation of the fineness distribution can be suppressed to an extremely small level, and a fine powder having a predetermined particle size distribution can be easily obtained.

粉砕室の下部に未解砕の凝集体を貯溜する貯溜部を形成
し、該貯溜部の下部に排出機を連接して未解砕の凝集体
を排出するようにしたから、未解砕な凝集体の過度の貯
溜による解砕作用の低下を来たすことなく長期に亘り安
定した解砕を行うことができる。
Since a storage part for storing uncrushed aggregates is formed in the lower part of the crushing chamber and an ejector is connected to the lower part of the storage part to discharge the uncrushed aggregates, Stable crushing can be performed for a long period of time without degrading the crushing action due to excessive storage of aggregates.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る装置の実施例を示す構成図、第2
図は従来例を示す縦断正面図、及び第3図は第2図のI
−I線横断平面図である。 1……気流式粉砕機、1a……粉砕室 3……原料粉砕機、5……駆動モータ 6……流体ノズル、8……貯溜部 9……排出機、11……気流式分級機 12……駆動モータ、16,17……静圧検出器 18……静圧差変換器、19……負荷動力検出器 20……粒子濃度制御器
FIG. 1 is a block diagram showing an embodiment of the device according to the present invention, and FIG.
The figure shows a vertical sectional front view showing a conventional example, and FIG. 3 shows I of FIG.
FIG. 7 is a cross-sectional plan view taken along line I. 1 ... Airflow type crusher, 1a ... Grinding chamber 3 ... Raw material crusher, 5 ... Drive motor 6 ... Fluid nozzle, 8 ... Reservoir 9 ... Discharger, 11 ... Airflow type classifier 12 ...... Drive motor, 16,17 …… Static pressure detector 18 …… Static pressure difference converter, 19 …… Load power detector 20 …… Particle concentration controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粉砕室の側壁に複数個の流体ノズル及び該
流体ノズルより上部に原料供給口を設けた気流式粉砕機
と前記原料供給口に接続した原料供給機と前記粉砕室内
の上部に設けた気流式分級機と該分級機の排出側に接続
した微粉体捕集機及びブロアからなる微粉体の気流式粉
砕分級装置において、前記粉砕室の下部に未解砕の凝集
体を貯溜する貯溜部を形成し、該貯溜部の下部に排出機
を連接するとともに、前記分級機の内外の静圧を検出す
る静圧検出器を設け、該静圧検出器を静圧差変換器を介
して粒子濃度制御器に接続し、さらに前記気流式分級機
の回転負荷動力を検出する負荷検出器を設け、該負荷検
出器を粒子濃度制御器に接続し、該粒子濃度制御器より
前記原料供給機を制御するようにしたことを特徴とする
微粉体の気流式粉砕分級装置。
1. A plurality of fluid nozzles on the side wall of the crushing chamber, an air flow type crusher having a raw material supply port above the fluid nozzles, a raw material supply device connected to the raw material supply port, and an upper part of the pulverization chamber. In an air flow type pulverizing and classifying device for fine powders, which comprises an air flow type classifier provided and a fine powder collector and a blower connected to the discharge side of the classifier, the uncrushed agglomerates are stored in the lower part of the crushing chamber. A reservoir is formed, a discharger is connected to the lower part of the reservoir, and a static pressure detector for detecting static pressure inside and outside the classifier is provided, and the static pressure detector is connected via a static pressure difference converter. A load detector that is connected to a particle concentration controller and that detects the rotational load power of the airflow classifier is provided, and the load detector is connected to a particle concentration controller. Air flow type powder of fine powder characterized by being controlled Classification device.
JP25655389A 1989-09-30 1989-09-30 Air flow type pulverizing and classifying device for fine powder Expired - Lifetime JPH074556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25655389A JPH074556B2 (en) 1989-09-30 1989-09-30 Air flow type pulverizing and classifying device for fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25655389A JPH074556B2 (en) 1989-09-30 1989-09-30 Air flow type pulverizing and classifying device for fine powder

Publications (2)

Publication Number Publication Date
JPH03118850A JPH03118850A (en) 1991-05-21
JPH074556B2 true JPH074556B2 (en) 1995-01-25

Family

ID=17294240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25655389A Expired - Lifetime JPH074556B2 (en) 1989-09-30 1989-09-30 Air flow type pulverizing and classifying device for fine powder

Country Status (1)

Country Link
JP (1) JPH074556B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146704A (en) * 1991-11-29 1993-06-15 Kurimoto Ltd Feed control method of particulate matter in crushing and classifying apparatus
AT402806B (en) * 1995-03-07 1997-09-25 Innova Microsize Betriebsberat Counter-jet mill
KR100271394B1 (en) * 1998-02-27 2000-11-15 이영균 A method for manufacturing garnet powder
RU2508947C1 (en) * 2012-08-07 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (ТГУ) Method of producing ultra disperse powders with narrow particle size distribution
CN103706449B (en) * 2013-12-27 2015-09-02 北京印刷学院 A kind of small negative pressure airflow milling with ellipsoid structure crushing chamber
JP7175601B2 (en) * 2017-11-02 2022-11-21 三菱重工業株式会社 Pulverizer and operation method of the pulverizer

Also Published As

Publication number Publication date
JPH03118850A (en) 1991-05-21

Similar Documents

Publication Publication Date Title
JP5358457B2 (en) Continuous dry pulverization operation method of vertical pulverizer and vertical pulverizer
KR930004539B1 (en) Gas current classifying separator
JP5177610B2 (en) Cement clinker grinding equipment
JPH074556B2 (en) Air flow type pulverizing and classifying device for fine powder
Hixon et al. Sizing materials by crushing and grinding
JPH04161257A (en) Air jet grinding method using grinding medium
JP2503826B2 (en) Airflow type crusher
CN215029799U (en) Grading and collecting device for wet-process stirring mill coarse whiting
JP2003265975A (en) Dry media stirring type pulverizer
CN205700942U (en) A kind of air flow crushing device
CN2290402Y (en) Vertical high speed centrifugal superfine pulverizer
JPS641182B2 (en)
US1921166A (en) Pulverizer
JPS6136459B2 (en)
CN216605538U (en) Ultramicro airflow crusher
JP2695733B2 (en) Operating method of horizontal dry mill
JP2958404B2 (en) Grinding method by jet mill
CN215541323U (en) Horizontal impact mill
JPH0593558U (en) Preliminary crusher
CN219631527U (en) Continuous vibration crushing classifier capable of classifying online
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPH11290711A (en) Pulverizing system of air flow type pulverizer
JPH0910623A (en) Lumpy material pulverizer and method thereof
KR0167010B1 (en) Method and apparatus for reducing fine grain particles by means of compressed fluid
JP3211420B2 (en) Classifier