JPH04161257A - Air jet grinding method using grinding medium - Google Patents

Air jet grinding method using grinding medium

Info

Publication number
JPH04161257A
JPH04161257A JP28543490A JP28543490A JPH04161257A JP H04161257 A JPH04161257 A JP H04161257A JP 28543490 A JP28543490 A JP 28543490A JP 28543490 A JP28543490 A JP 28543490A JP H04161257 A JPH04161257 A JP H04161257A
Authority
JP
Japan
Prior art keywords
grinding chamber
chamber
grinding
ground
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28543490A
Other languages
Japanese (ja)
Other versions
JPH074557B2 (en
Inventor
Kantaro Kaneko
貫太郎 金子
Mutsuyasu Kawashima
睦泰 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP28543490A priority Critical patent/JPH074557B2/en
Publication of JPH04161257A publication Critical patent/JPH04161257A/en
Publication of JPH074557B2 publication Critical patent/JPH074557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To finely ground a material to be ground in a reduced mill power unit by injecting air from an air jet nozzle to blow up the grinding media having a diameter larger than that of the material to be ground accumulated on the lower part of a grinding chamber and the supplied falling material to be ground to form a fluidized bed generating violent collision and abrasion. CONSTITUTION:A material M to be ground is supplied to a hermetically sealed vertical grinding chamber 1 from the feeder 2 provided to the grinding chamber 1. Air is injected from the air jet nozzles 4A, 4B provided under the feeder 2 and/or provided to the lowermost end of the grinding chamber 1 to blow up the grinding media 3 having a diameter relatively larger than that of the material M to be ground accumulated on the lower part of the chamber, and the supplied falling material M to be ground to form a fluidized bed A generating violent collision and abrasion. When the solid-gas mixed stream B separated from the fluidized bed A to rise reaches the classifying rotor 5 built in the top part of the grinding chamber 1, only a fine powder F is sucked to be discharged out of the grinding chamber 1 and a coarse powder R goes back in the chamber 1 to be again involved in the fluidized bed A to receive collision and abrasion. As a result, a fine ground product can be prepared in a reduced mill power unit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気や不活性ガスなどの気体を噴射して流動層
を形成して粉砕する気流粉砕方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air flow pulverization method in which a fluidized bed is formed by injecting a gas such as air or an inert gas to pulverize.

[従来の技術〕 気流粉砕方法は気流粉砕機を使用して食品添加物、有機
顔料、その他の有機・無機の砕料を粉砕して微粉を得る
方法である。
[Prior Art] The air-flow pulverization method is a method of obtaining fine powder by pulverizing food additives, organic pigments, and other organic and inorganic materials using an air-flow pulverizer.

気流粉砕機の歴史は特に新しいと言えるものではないか
らこれに関する幾多の技術開発も提案されてきた。一般
的な形態としては第3図に例示するように密封円筒杖の
竪型の粉砕室1aの側壁へフィーダ2aを連結して砕料
Maを室内へ供給し、このフィーダの下方(場合によっ
てはこれとともに、又はこの代りに粉砕室下端)に気体
噴射ノズル4aを設けて、水平に(又は斜め下方に、又
は垂直上方に)気体を噴射すると、砕料Maは粉砕室内
の下方部で、あたかも沸騰する液体のように流動層Aa
を形成し、砕料Maはこの層内で相互に衝突し擦過し合
って微細化する。この層内で粉砕された微粉Faと所望
の粒度に迄至っていない粗粉Raも一部混じって流動層
内から離脱し噴射後の空気の流れに従って固気混合流と
して室内を垂直に上昇し、粉砕室1aの頂部に内蔵する
分級ロータ5aへ到達する。この流体のうち微粉Faは
排出口6aから吸引排出されるが、粗粉Raは質量が大
きいので高速回転する分級ロータによる遠心力のため撥
ね飛ばされ粉砕室内を落下して再び下部の流動層Aa内
へ合流し繰返し粉砕作用を受ける構成をとっている。
Since the history of pneumatic crushers is not particularly new, numerous technological developments related to this have been proposed. In a general form, as illustrated in FIG. 3, a feeder 2a is connected to the side wall of a vertical crushing chamber 1a of a sealed cylindrical cane, and crushed material Ma is supplied into the chamber. Along with this, or instead of this, if a gas injection nozzle 4a is provided at the lower end of the grinding chamber and the gas is injected horizontally (or diagonally downward, or vertically upward), the crushed material Ma will flow as if in the lower part of the grinding chamber. Fluidized bed Aa like boiling liquid
The crushed materials Ma collide and rub against each other within this layer to become fine. The fine powder Fa crushed in this layer and the coarse powder Ra that has not reached the desired particle size are also mixed in and leave the fluidized bed and rise vertically in the room as a solid-gas mixed flow according to the air flow after injection. It reaches the classification rotor 5a built in the top of the crushing chamber 1a. Of this fluid, the fine powder Fa is suctioned and discharged from the discharge port 6a, but the coarse powder Ra has a large mass, so it is splashed by the centrifugal force of the classification rotor rotating at high speed, falls inside the grinding chamber, and returns to the lower fluidized bed Aa. It has a structure in which it merges into the interior and undergoes repeated crushing action.

[発明が解決しようとする課題] 従来の気流粉砕法においては、たとえば100μmの石
英粒子を噴射空気にのせて衝突粉砕するために必要な衝
突速度は、運動エネルギーがすべて粉砕エネルギーに変
換されると仮定しても理論上66m/sと算出される。
[Problem to be solved by the invention] In the conventional air flow crushing method, for example, the collision speed required to crush 100 μm quartz particles by placing them on the jet air is such that all the kinetic energy is converted into crushing energy. Even if this assumption is made, it is theoretically calculated to be 66 m/s.

このように粒子を強力に加速するには強大な噴射気体圧
が必要であり、しかも噴射気体を発生するために電気エ
ネルギから粉砕エネルギへ置換する効率は一般に数%以
下と言う低率にとどまるから、ミル電力原単位(KWh
/l)は膨大なエネルギーロスのため大きくならざるを
得ない。
In order to strongly accelerate the particles in this way, a huge injection gas pressure is required, and the efficiency of replacing electrical energy with crushing energy to generate the injection gas is generally low, at a few percent or less. , mill power intensity (KWh
/l) must become large due to enormous energy loss.

反面、得られる製品の粒度は多くの噴射気体量を使用せ
ざるを得ないから分級ロータを通過後回収しても、平均
径が数μm程度にまで粉砕するのが限度であって、それ
以上の微粉化の要望が強くても応えられなかった。
On the other hand, the particle size of the product obtained requires the use of a large amount of injected gas, so even if it is recovered after passing through the classification rotor, the particle size of the product obtained is limited to an average diameter of several μm; Even though there was a strong demand for pulverization, it could not be met.

したがって、この課題を克服するために粉砕機へ供給す
る前に予備粉砕を行ってフィーダへ供給する砕料Maは
少なくとも100μm以下とするように工程の設定を立
てるか、または第3図(特開平1−317554号公報
)のように粉砕室の中心位置にセラミックなどで作製し
たセンタコア100を立設して流動層内に衝突の機会を
さらに増加するように図るなど、装置の配置や形状を変
更改善することが提案されている。
Therefore, in order to overcome this problem, the process must be set up so that the crushed material Ma to be fed to the feeder is at least 100 μm or less by pre-pulverizing it before being fed to the crusher, or alternatively, as shown in FIG. 1-317554), the arrangement and shape of the device were changed, such as by installing a center core 100 made of ceramic or the like in the center of the crushing chamber to further increase the chances of collision within the fluidized bed. Improvements are proposed.

前者が煩瑣、非能率の膀りを免れ得ないことは言うまで
もなく、後者によってもその作用の顕著な活性化に直結
するほどの強烈なものとは必ずしも評価できない。
Needless to say, the former cannot avoid being burdened with distractions and inefficiency, and the latter cannot necessarily be evaluated as being so strong that it directly leads to a significant activation of its effects.

さらに従来方法の一般的課題として付着性のある砕料を
粉砕すると、粉砕室内壁に付着層が累積して砕料が充満
してしまい円滑な粉砕作用の進行を妨げ、時には運転に
支障を来すに至ることすらある。
Furthermore, a common problem with conventional methods is that when grinding adherent particles, an adhesion layer accumulates on the inside of the grinding chamber, filling the grinding chamber with particles, which prevents the smooth progress of the grinding process and sometimes impedes operation. It can even lead to.

本発明は以上に述べた課題を解決するため少ない、ミル
電力原単位によってより大きなフィードサイズの砕料か
らより微細な粉砕製品を生産し、付着性の強い砕料であ
ってもこの性質に妨げられることなく長期間安定操業で
きる気流粉砕方法の提供を目的とする。
In order to solve the above-mentioned problems, the present invention produces finer pulverized products from larger feed size granules with less mill power consumption, and even highly adhesive granules can interfere with this property. The purpose of the present invention is to provide an air flow crushing method that can be operated stably for a long period of time without being affected.

[課題を解決するための手段] 本発明に係る気流粉砕方法は、密封円筒状の竪型の粉砕
室側壁へ設けたフィーダから砕料を粉砕室内へ供給し、
該フィーダより下方および/又は粉砕室最下端に装着し
た気体噴射ノズルから気体を噴射して粉砕室下方に累積
した砕料よりも比較的大径の粉砕媒体と供給落下した砕
料とを噴き上げてはげしく衝突擦過する流動層を形成し
、該流動層を離脱して上昇する固気混合流が粉砕室頂部
に内装した分級ロータへ到達すると、微粉のみを吸引し
て粉砕室外へ排出し、粗粉は室内を落下して再び流動層
内へ巻き込まれ衝突擦過を受けることによって前記の課
題をすべて解決した。
[Means for Solving the Problems] The air flow crushing method according to the present invention supplies crushed material into the crushing chamber from a feeder provided on the side wall of the sealed cylindrical vertical crushing chamber,
A gas is injected from a gas injection nozzle installed below the feeder and/or at the lowest end of the grinding chamber to blow up a grinding medium having a relatively larger diameter than the ground material accumulated at the bottom of the grinding chamber and the ground material that has been supplied and fallen. A fluidized bed that violently collides and scrapes is formed, and when the solid-gas mixed flow that leaves the fluidized bed and rises reaches the classification rotor installed at the top of the grinding chamber, it sucks in only the fine powder and discharges it outside the grinding chamber. All of the above-mentioned problems were solved by falling through the room, being caught up again in the fluidized bed, and subjected to collision and abrasion.

[作用コ 粉砕媒体としてはセラミックス、ガラス、スチールボー
ルなと一般に砕料よりも高硬度の材質が望ましいが、こ
れらに混えて、またはこれらに代えて砕料と同一材質を
媒体とする自己媒体でも製品純度の要請上通用する場合
もあり得る。しかし共通した原則として砕料に比べて大
径であるこ也を必須の要件とする。
[Effects] It is generally preferable to use a material with a higher hardness than the pulverized material, such as ceramics, glass, or steel balls, as the pulverizing medium, but in addition to or in place of these materials, a self-driving medium made of the same material as the pulverized material may also be used. There may be cases where it is acceptable due to product purity requirements. However, as a common principle, it is essential that the diameter of the material be larger than that of the crushed material.

たとえば質量が1gの粉砕媒体を100μmの石英粒子
に衝突させて粉砕するのに必要な理論衝突速度はQ、1
m/sで十分であり、これは既に述べた100μmの砕
料(石英粒子)同士を衝突させ自己粉砕させる場合の1
/660に過ぎない。
For example, the theoretical collision speed required to crush a 100 μm quartz particle by colliding a crushing medium with a mass of 1 g is Q, 1
m/s is sufficient, and this is equivalent to 1 in the case of self-pulverization by colliding 100 μm crushed particles (quartz particles) as described above.
/660 only.

100μmの石英粒子の質量は約1.4X10−6gで
あり、質量1gの粉砕媒体の衝突によって発生する運動
エネルギは桁違いに大きい。質量の小さい砕料は加速さ
れても慣性力が小さいため僅かな空気抵抗に遭って簡単
に失速するが、噴射空気によって加速躍動して流動層を
形成する粉砕媒体はそれぞれに付加された動的なエネル
ギーが太きく衝突時の粉砕力を強く長く維持して砕料を
より微細により効率的に粉砕する作用を発現する。
The mass of a 100 μm quartz particle is approximately 1.4×10 −6 g, and the kinetic energy generated by collision with a grinding medium having a mass of 1 g is orders of magnitude larger. Even if crushed particles with a small mass are accelerated, their inertia is small, so they easily stall due to slight air resistance.However, the crushing media, which is accelerated by the jet air and forms a fluidized bed, has a dynamic force added to each. The large amount of energy maintains the crushing force at the time of collision for a long time, producing the effect of crushing the crushed material more finely and efficiently.

逆に言えばフィーダへ供給する砕料の粒度について何の
制約も受けず、したがって予備粉砕の必要性を免除する
ことができる。
Conversely, there are no restrictions on the particle size of the crushed material fed to the feeder, and therefore the need for preliminary crushing can be waived.

また粉砕室内壁へ付着する傾向の大きい砕料でも、流動
状の粉砕媒体が衝突して強い衝撃力を与えて叩き落とす
作用を生じ、内壁への砕料付着の懸念を大幅に軽減する
In addition, even if the crushed particles tend to adhere to the inner wall of the grinding chamber, the fluidized crushing medium collides with the grinding medium and applies a strong impact force to knock them off, thereby greatly reducing concerns about the particles adhering to the inner walls.

[実施例コ 第1図は本発明の実施例を示す垂直断面図である。[Example code] FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

密封円筒吠の竪型の粉砕室1の側壁へ取り付けたフィー
ダ2に砕料Mが投入され、フィーダ底部に装着したスク
リューフィダ21によって粉砕室内へ入り下方へ落下す
る。
The crushed material M is fed into a feeder 2 attached to the side wall of a vertical crushing chamber 1 with a sealed cylindrical shaft, enters the crushing chamber by a screw feeder 21 attached to the bottom of the feeder, and falls downward.

粉砕室の下方にはセラミックスなど所望の材質で作製し
た砕料よりも比較的大径の粉砕媒体3が累積し、落下し
てきた砕料Mとともに気体噴射ノズル4A、4B、  
・・・から噴射する気体にょって流動層Aを形成する。
At the bottom of the grinding chamber, grinding media 3 made of a desired material such as ceramics and having a relatively larger diameter than the grinding material are accumulated, and together with the falling particles M, the gas injection nozzles 4A, 4B,
A fluidized bed A is formed by the gas injected from...

したがって空気の噴射量と粉砕媒体の累積量との間には
明確な因果関係があり、この関係に基づいて活性化が最
適の流動層を設定しなければならない。
Therefore, there is a clear causal relationship between the amount of air injection and the cumulative amount of grinding media, and a fluidized bed with optimal activation must be set based on this relationship.

第1図では空気の噴射は複数・水平に向けられているが
、粉砕室の円周を均等に分割して中心又は接線方向へ向
け、斜め下方又は上方を指向する場合や、第2図のよう
に粉砕室の最下端に別の空気噴射ノズル14を取付けて
底から強力に上方へ噴き上げてもよい。流動層A内で十
分に衝突擦過を受は揉み出された微粉Fは一部の粗粒R
とともに空気の流れに乗って固気混合流Bとして室内を
上昇し、頂部の分級ロータ5内へ到達する。
In Figure 1, multiple air jets are directed horizontally, but there are also cases where the circumference of the grinding chamber is divided equally and directed toward the center or tangential direction, diagonally downward or upward, or as shown in Figure 2. Another air injection nozzle 14 may be installed at the bottom end of the grinding chamber to forcefully blow air upward from the bottom. The fine powder F, which has been sufficiently subjected to collision and abrasion in the fluidized bed A, becomes part of the coarse particles R.
At the same time, it rides on the air flow and rises in the room as a solid-gas mixture flow B, and reaches the inside of the classification rotor 5 at the top.

分級ロータは高速で回転しその軸心は粉砕室外へ通じる
排出バイブロに連通し、排出パイプはさらに図示しない
捕集機へ繋がって負圧となっているから、微粉Fは分級
ロータの軸回りから吸引されて捕集機へ回収されるが、
粗粉Rは分級ロータの羽根付近にかかる遠心力を強力に
受け、吸引力に打ちかって粉砕室内を自然落下して再び
流動層Aへ戻る回帰流Cを形成する。
The classification rotor rotates at high speed, and its axis is connected to the discharge vibro leading outside the crushing chamber, and the discharge pipe is further connected to a collector (not shown), which is under negative pressure, so that the fine powder F flows from around the axis of the classification rotor. It is sucked and collected into a collection machine, but
The coarse powder R is strongly subjected to the centrifugal force applied near the blades of the classification rotor, and falls naturally within the grinding chamber under the suction force, forming a return flow C that returns to the fluidized bed A again.

[発明の効果コ 本発明に係る粉砕媒体を使用した気流粉砕方法は以上に
述べたような作用を経過するから、時間当りの粉砕処理
量が増加するか、又は気体噴射圧を小さくすることがで
きるので稼働に要するミル動力原単位(KWh/l)を
低減することができる。
[Effects of the Invention] Since the air flow pulverization method using the pulverization medium according to the present invention undergoes the actions described above, the amount of pulverization per hour can be increased or the gas injection pressure can be reduced. Therefore, the mill power consumption (KWh/l) required for operation can be reduced.

また粉砕エネルギーが大きいから砕料をより微細化でき
、一方気体噴射圧を小さく抑えれば風量が少なくなり分
級ロータの回転数が同一であれば製品の微細化が実現す
る。逆に予備粉砕を必要とせず比較的粗粉を直接フィー
ドしてもこれを粉砕して支障なく微細化する能力を具備
する。
In addition, since the crushing energy is large, the crushed material can be made finer, and on the other hand, if the gas injection pressure is kept low, the air volume is reduced, and if the rotation speed of the classification rotor is the same, the product can be made finer. On the other hand, even if relatively coarse powder is directly fed without requiring pre-pulverization, it is capable of pulverizing it into fine particles without any problem.

さらに付着性の傾向を持つ砕料に対しても粉砕室内壁へ
の付着に煩わされることなく円滑な稼働を維持するなど
実施上もたらす効果は大きい。
Furthermore, even with regard to particles that tend to be adhesive, it is possible to maintain smooth operation without being bothered by adhesion to the walls of the grinding chamber, which has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2はそれぞれ異なる本発明の実施例を示す垂
直断面図、第3図は従来技術を例示する垂直断面図。 1・・・・・・粉砕室     2・・・・・・フィー
ダ3・・・・・・粉砕媒体    4・・・・・・気体
噴射ノズル5・・・・・・分級ロータ   6・・・・
・・排出バイブ14・・・・・・空気噴射ノズル
FIGS. 1 and 2 are vertical sectional views showing different embodiments of the present invention, and FIG. 3 is a vertical sectional view illustrating the prior art. 1... Grinding chamber 2... Feeder 3... Grinding medium 4... Gas injection nozzle 5... Classification rotor 6...
...Exhaust vibrator 14...Air injection nozzle

Claims (1)

【特許請求の範囲】[Claims] (1)密封竪型の粉砕室側壁へ設けたフィーダから砕料
を粉砕室内へ供給し、該フィーダより下方および/又は
粉砕室最下端に装着した気体噴射ノズルから気体を噴射
して粉砕室下方に累積した砕料に対し比較的大径の粉砕
媒体と供給落下した砕料とを噴き上げてはげしく衝突擦
過する流動層を形成し、該流動層を離脱して上昇する固
気混合流が粉砕室頂部に内装した分級ロータへ到達する
と、微粉のみを吸引して粉砕室外へ排出し、粗粉は室内
を逆行して再び流動層内へ巻き込まれ衝突擦過を受ける
ことを特徴とする粉砕媒体を使用した気流粉砕方法。
(1) The crushed material is supplied into the grinding chamber from a feeder installed on the side wall of the sealed vertical grinding chamber, and gas is injected from the gas injection nozzle installed below the feeder and/or at the lowest end of the grinding chamber to the bottom of the grinding chamber. The relatively large-diameter grinding media and the fallen crushed particles are jetted up against the accumulated crushed particles to form a fluidized bed that violently collides and scrapes, and leaves the fluidized bed and the rising solid-gas mixed flow flows into the crushing chamber. When it reaches the classification rotor built into the top, only the fine powder is sucked in and discharged outside the grinding chamber, while the coarse powder moves backwards through the chamber and is drawn into the fluidized bed again where it is subjected to collision and abrasion. Air flow crushing method.
JP28543490A 1990-10-23 1990-10-23 Airflow grinding method using grinding media Expired - Lifetime JPH074557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28543490A JPH074557B2 (en) 1990-10-23 1990-10-23 Airflow grinding method using grinding media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28543490A JPH074557B2 (en) 1990-10-23 1990-10-23 Airflow grinding method using grinding media

Publications (2)

Publication Number Publication Date
JPH04161257A true JPH04161257A (en) 1992-06-04
JPH074557B2 JPH074557B2 (en) 1995-01-25

Family

ID=17691475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28543490A Expired - Lifetime JPH074557B2 (en) 1990-10-23 1990-10-23 Airflow grinding method using grinding media

Country Status (1)

Country Link
JP (1) JPH074557B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088773A (en) * 2001-09-20 2003-03-25 Kurimoto Ltd Jet mill
US6543710B2 (en) * 2000-07-11 2003-04-08 Hosokawa Alpine Aktiengesellschaft & Co. Ohg Separator mill
JP2006150150A (en) * 2004-11-25 2006-06-15 Aisin Sangyo Kk Production method for fine powder
JP2008240064A (en) * 2007-03-27 2008-10-09 Canon Inc Method and apparatus for producing structure
JP2008240063A (en) * 2007-03-27 2008-10-09 Canon Inc Production method of structure and apparatus for producing the structure using the same
KR100935692B1 (en) * 2007-05-11 2010-01-08 이건의 Apparatus for pulverization and dispersion by air injection with high-speed rotor for filtering particle
JP2010510054A (en) * 2006-11-22 2010-04-02 グラット インジェニェーアテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for producing and / or conditioning a powdered material
JP2020500105A (en) * 2016-09-30 2020-01-09 ミクロ−マチナチオーネ・エス・アー Apparatus for pulverizing powder material having the function of preventing deposits
WO2021208162A1 (en) * 2020-04-13 2021-10-21 青岛理工大学 Fluidized bed collision type airflow mechanical superfine grinding apparatus and method
US11339021B2 (en) 2018-12-11 2022-05-24 Hosokawa Alpine Aktiengesellschaft Device for winding and changing the reels of web material as well as a dedicated process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543710B2 (en) * 2000-07-11 2003-04-08 Hosokawa Alpine Aktiengesellschaft & Co. Ohg Separator mill
JP2003088773A (en) * 2001-09-20 2003-03-25 Kurimoto Ltd Jet mill
JP2006150150A (en) * 2004-11-25 2006-06-15 Aisin Sangyo Kk Production method for fine powder
JP4551747B2 (en) * 2004-11-25 2010-09-29 アイシン産業株式会社 Production method of fine powder
JP2010510054A (en) * 2006-11-22 2010-04-02 グラット インジェニェーアテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for producing and / or conditioning a powdered material
JP2008240064A (en) * 2007-03-27 2008-10-09 Canon Inc Method and apparatus for producing structure
JP2008240063A (en) * 2007-03-27 2008-10-09 Canon Inc Production method of structure and apparatus for producing the structure using the same
KR100935692B1 (en) * 2007-05-11 2010-01-08 이건의 Apparatus for pulverization and dispersion by air injection with high-speed rotor for filtering particle
JP2020500105A (en) * 2016-09-30 2020-01-09 ミクロ−マチナチオーネ・エス・アー Apparatus for pulverizing powder material having the function of preventing deposits
US11339021B2 (en) 2018-12-11 2022-05-24 Hosokawa Alpine Aktiengesellschaft Device for winding and changing the reels of web material as well as a dedicated process
WO2021208162A1 (en) * 2020-04-13 2021-10-21 青岛理工大学 Fluidized bed collision type airflow mechanical superfine grinding apparatus and method

Also Published As

Publication number Publication date
JPH074557B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
CN203355834U (en) Fluidized bed jet mill for biological pesticide production
JPH04161257A (en) Air jet grinding method using grinding medium
CN112354656A (en) Nano fluidized bed structure for crushing processing of nano particles
CN2236892Y (en) Multiple stage crushing and stage mill
CN210187391U (en) Air classification miropowder crushing apparatus
JP2003088773A (en) Jet mill
CN102441474B (en) Cyclonic jet mill
CN203886592U (en) Airflow screwed micro-grinder
CN115672511A (en) Superfine grinding system of rhizome class traditional chinese medicine
CN210545566U (en) Boiling type pulverizer
KR100745173B1 (en) Apparatus for manufacturing recycled-aggregate made of crushed waste-concrete
CN216605538U (en) Ultramicro airflow crusher
CN2403498Y (en) Vertical winnowing beater self-grinding ultrafine crusher
CN207102814U (en) A kind of airslide disintegrating mill with head-on collision rod
CN202427526U (en) Fine smashing system
CN214320432U (en) Air flow crusher
CN112473964A (en) Fluidized bed fluid energy mill
CN1038396C (en) Fluid-bed opposite-jetting superthin air flow crusher
CN213194046U (en) Solid phase particle high-speed jet bombardment crushing device for seasoning production and processing
CN210386120U (en) Airflow crusher for smashing amoxicillin micro powder
JPH074556B2 (en) Air flow type pulverizing and classifying device for fine powder
JP2000140674A (en) Pneumatic pulverizer
CN218190109U (en) Pesticide is with pneumatic grinder
CN219631525U (en) Cereal germ raw material low-temperature airflow pulverizer
CN219663932U (en) Jet mill for producing inorganic pigment