JP3169353U - Solar cell and electrode structure thereof - Google Patents

Solar cell and electrode structure thereof Download PDF

Info

Publication number
JP3169353U
JP3169353U JP2011002662U JP2011002662U JP3169353U JP 3169353 U JP3169353 U JP 3169353U JP 2011002662 U JP2011002662 U JP 2011002662U JP 2011002662 U JP2011002662 U JP 2011002662U JP 3169353 U JP3169353 U JP 3169353U
Authority
JP
Japan
Prior art keywords
screen printing
electrode
solar cell
bus bar
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011002662U
Other languages
Japanese (ja)
Inventor
呉孟修
戴▲ゆ▼▲えい▼
陳永芳
Original Assignee
新日光能源科技股▼分▲有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日光能源科技股▼分▲有限公司 filed Critical 新日光能源科技股▼分▲有限公司
Application granted granted Critical
Publication of JP3169353U publication Critical patent/JP3169353U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】二度刷りのスクリーン印刷技術を改良して、電極導電率を高めると同時に、太陽電池の信頼度及び良品率を高めることにより、光電変換率を高めて、生産コストを抑える太陽電池及びその電極構造を提供する。【解決手段】太陽電池の電極構造は、太陽電池1の基板10に設置され、複数のバスバー電極12及び複数のくし型電極11を備える。バスバー電極12は、導電材質を含む材料によって間隔をおいて基板10に設置され、くし型電極11は、導電材質を含む材料によって間隔をおいて隣合うバスバー電極12間を繋ぐように配置される。バスバー電極12及びくし型電極11は、二度刷りのスクリーン印刷によって形成される。第一次スクリーン印刷では、くし型電極11の下部を形成し、第二次スクリーン印刷では、くし型電極11の上部及びバスバー電極12を形成する。【選択図】図1A solar cell capable of improving the photoelectric conversion rate and improving the production cost by improving the screen printing technology of twice printing to increase the electrode conductivity and at the same time increasing the reliability and non-defective rate of the solar cell. The electrode structure is provided. An electrode structure of a solar cell is provided on a substrate 10 of a solar cell 1 and includes a plurality of bus bar electrodes 12 and a plurality of comb electrodes 11. The bus bar electrodes 12 are disposed on the substrate 10 with a space including a conductive material, and the comb electrodes 11 are disposed so as to connect the adjacent bus bar electrodes 12 with a space including the conductive material. . The bus bar electrode 12 and the comb electrode 11 are formed by screen printing twice. In the first screen printing, the lower part of the comb-shaped electrode 11 is formed, and in the second screen printing, the upper part of the comb-shaped electrode 11 and the bus bar electrode 12 are formed. [Selection] Figure 1

Description

本考案は、電極構造に関し、特に、太陽電池及びその電極構造に関する。   The present invention relates to an electrode structure, and more particularly to a solar cell and its electrode structure.

太陽光発電は、現在最も発展に力が注がれている再生エネルギー技術である。太陽光発電は、その発電過程において、二酸化炭素等の温室効果ガスが発生しない、汚染や騒音の発生がゼロに等しいといった長所を有する。このため、その他の発電コストと同等にまで、太陽光発電のコストダウンが実現するのを、誰もが期待するところである。しかしながら、太陽光発電のコストは、太陽電池モジュール以外にも、架台、変圧器、太陽電池を設置するための土地等の問題もあり、コストが高くなる。故に、太陽電池の発電効率を高め、発電コストを下げることが、太陽光発電市場を拡大できるか否かを左右する要素であると言える。   Photovoltaic power generation is a renewable energy technology that is currently focused on development. Photovoltaic power generation has advantages such as no generation of greenhouse gases such as carbon dioxide in the power generation process, and generation of pollution and noise is equal to zero. For this reason, everyone is expecting that the cost reduction of photovoltaic power generation will be realized to the same level as other power generation costs. However, the cost of solar power generation is increased due to problems such as a stand for installing a frame, a transformer, and a solar cell in addition to the solar cell module. Therefore, it can be said that increasing the power generation efficiency of the solar cell and lowering the power generation cost are factors that determine whether or not the solar power generation market can be expanded.

スクリーン印刷(Screen printing)技術の応用は、太陽電池の電極構造製造において、太陽電池の製造コスト及び時間を効果的に削減することが可能である。また、電極構造の製造に応用されるスクリーン印刷技術は、通常シルバーペースト印刷によって、必要なバスバー電極(Busbar electrode)及びくし型電極(Finger electrode)構造が形成される。   The application of the screen printing technology can effectively reduce the manufacturing cost and time of the solar cell in manufacturing the electrode structure of the solar cell. Also, in the screen printing technique applied to the manufacture of the electrode structure, the necessary busbar electrode and finger electrode structures are formed by silver paste printing.

太陽電池の光電変換効率をさらに高めるために、バスバー電極の太陽入射光に対する遮蔽率を低くする方法を考える必要がある。このため、バスバー電極が覆う基板上の表面積は小さいほどよい。しかしながら、充分な電子流量を伝導させるために、電極と基板の間には充分な大きさの伝導面積を必要とし、それで初めて、電極の導電度に影響しない条件の下で、光電変換効率を高めることができる。従来、二度刷りのスクリーン印刷技術を応用して、幅の狭い、高さのあるバスバー電極を印刷する方法がある。しかしながら、二度刷りのスクリーン印刷は同じパターンであり、パターンの精度に誤差が生じる。許容される誤差を超過した場合、バスバー電極の幅が広くなり過ぎて、太陽電池の光電変換効率を高めることができない。精度の誤差を小さくするためには、精度の高いスクリーン印刷機器を購入し、スクリーン膜(版)を使用する必要があるが、いずれも生産コストを上げることになる。   In order to further increase the photoelectric conversion efficiency of the solar cell, it is necessary to consider a method for lowering the shielding rate of the bus bar electrode against the solar incident light. For this reason, the smaller the surface area on the substrate covered by the bus bar electrode, the better. However, in order to conduct a sufficient electron flow rate, a sufficiently large conduction area is required between the electrode and the substrate, and for the first time, the photoelectric conversion efficiency is increased under conditions that do not affect the conductivity of the electrode. be able to. Conventionally, there is a method of printing a bus bar electrode having a narrow width and a height by applying a screen printing technique of twice printing. However, twice-printed screen printing has the same pattern, and an error occurs in the accuracy of the pattern. When the allowable error is exceeded, the width of the bus bar electrode becomes too wide to increase the photoelectric conversion efficiency of the solar cell. In order to reduce the accuracy error, it is necessary to purchase a screen printing device with high accuracy and use a screen film (plate), which both increase the production cost.

したがって、本考案は、従来の二度刷りのスクリーン印刷技術を改良して、電極導電率を高めると同時に、太陽電池の信頼度及び良品率を高めることにより、太陽電池の光電変換率を高めて、生産コストを抑えることを課題とする。   Therefore, the present invention improves the conventional double-print screen printing technology to increase the electrode conductivity, and at the same time, increase the reliability and non-defective rate of the solar cell, thereby increasing the photoelectric conversion rate of the solar cell. The challenge is to reduce production costs.

上記課題を解決するため、本考案は、従来の二度刷りのスクリーン印刷技術を改良して、電極導電率を高めると同時に、太陽電池の信頼度及び良品率を高めることにより、太陽電池の光電変換率を高めて、生産コストを抑える太陽電池及びその電極構造を提供することを目的とする。   In order to solve the above problems, the present invention improves the conventional double-print screen printing technology to increase the electrode conductivity, and at the same time, to improve the reliability and non-defective product rate of the solar cell. It aims at providing the solar cell which raises a conversion rate, and suppresses production cost, and its electrode structure.

上記目的を達成するため、本考案の太陽電池の電極構造は、太陽電池の基板に設置されて、複数のバスバー電極及び複数のくし型電極を備える。前記バスバー電極は、導電材質を含む材料によって間隔をおいて基板に設置される。前記くし型電極は、導電材質を含む材料によって間隔をおいて前記隣合うバスバー電極間を繋ぐように配置される。前記バスバー電極及びくし型電極は、二度刷りのスクリーン印刷によって形成される。一回目のスクリーン印刷では、くし型電極の下部を形成し、二回目のスクリーン印刷では、くし型電極の上部及びバスバー電極を形成する。   In order to achieve the above object, an electrode structure of a solar cell of the present invention is installed on a substrate of a solar cell and includes a plurality of bus bar electrodes and a plurality of comb electrodes. The bus bar electrodes are disposed on the substrate at an interval by a material including a conductive material. The comb electrodes are arranged so as to connect the adjacent bus bar electrodes with an interval by a material including a conductive material. The bus bar electrode and the comb electrode are formed by screen printing twice. In the first screen printing, the lower part of the comb electrode is formed, and in the second screen printing, the upper part of the comb electrode and the bus bar electrode are formed.

上記目的を達成するため、本考案の太陽電池は、基板、複数のバスバー電極及び複数のくし型電極を備える。前記バスバー電極は、導電材質を含む材料によって間隔をおいて基板上に設置することで形成される。前記くし型電極は、導電材質を含む材料によって間隔をおいて前記隣合うバスバー電極間を繋ぐように配置される。前記バスバー電極及びくし型電極は、二度刷りのスクリーン印刷によって形成される。一回目のスクリーン印刷は、くし型電極の下部を形成し、二回目のスクリーン印刷では、くし型電極の上部及びバスバー電極を形成する。   In order to achieve the above object, the solar cell of the present invention comprises a substrate, a plurality of bus bar electrodes, and a plurality of comb electrodes. The bus bar electrodes are formed by being placed on the substrate with a gap by a material including a conductive material. The comb electrodes are arranged so as to connect the adjacent bus bar electrodes with an interval by a material including a conductive material. The bus bar electrode and the comb electrode are formed by screen printing twice. The first screen printing forms the lower part of the comb-shaped electrode, and the second screen printing forms the upper part of the comb-shaped electrode and the bus bar electrode.

本考案の実施形態において、一回目のスクリーン印刷の材料成分と二回目のスクリーン印刷の材料成分は異なる。好適には、二回目のスクリーン印刷材料の導電度は、一回目のスクリーン印刷材料の導電度より高く、さらに、好適には、一回目のスクリーン印刷材料の透過性は、二回目のスクリーン印刷材料の透過性より高い。   In the embodiment of the present invention, the material component of the first screen printing is different from the material component of the second screen printing. Preferably, the conductivity of the second screen printing material is higher than the conductivity of the first screen printing material, and more preferably, the first screen printing material has a permeability of the second screen printing material. It is higher than the permeability.

本考案の実施形態において、一回目のスクリーン印刷の材料成分及び二回目のスクリーン印刷的材料成分は、銀金属の微粒及びガラス粉を含む。   In an embodiment of the present invention, the first screen printing material component and the second screen printing material component include silver metal particles and glass powder.

本考案の実施形態において、基板は、非結晶シリコン基板、単結晶シリコン基板、多結晶シリコン基板またはガリウム砒素基板等である。   In an embodiment of the present invention, the substrate is an amorphous silicon substrate, a single crystal silicon substrate, a polycrystalline silicon substrate, a gallium arsenide substrate, or the like.

本考案の実施形態において、基板は、N型半導体基板またはP型半導体基板である。   In an embodiment of the present invention, the substrate is an N-type semiconductor substrate or a P-type semiconductor substrate.

このように、本考案が提供する太陽電池の電極構造は、その一回目のスクリーン印刷のパターンと二回目のパターンが異なる。本考案は、まず一回目のスクリーン印刷において複数のくし型電極の下部が形成され、それを乾かして固化させた後、さらに、二回目のスクリーン印刷において複数のくし型電極の上部及び複数のバスバー電極が形成された後、同様にそれを乾かして固化させる。好適には、一回目のスクリーン印刷と二回目のスクリーン印刷に使用される材料は異なる。本考案の好適な実施形態において、一回目のスクリーン印刷材料の透過性は、二回目のスクリーン印刷材料の透過性より高く、さらに、二回目のスクリーン印刷材料の導電度は、一回目のスクリーン印刷材料の導電度より高いことにより、一回目のスクリーン印刷によって形成されたくし型電極下部が、高温焼結を経た後、好適に基板の抗反射層を透過する。さらに、二回目のスクリーン印刷によって形成されたくし型電極上部及びバスバー電極は、高温焼結を経た後、基板の抗反射層に接触するだけで、これを透過しない。したがって、本考案の太陽電池及びその電極構造は、従来の二度刷りのスクリーン印刷技術が、同一のパターンを重複印刷する方法を採用した電極とは異なり、太陽電池製品の環境耐用信頼度及びバスバー電極の導電度を高め、セルの破損率を低く抑えて、太陽電池の光電変換率を高めると同時に生産コストを低く抑えるという目的を達成する。   Thus, the electrode structure of the solar cell provided by the present invention is different in the first-time screen printing pattern and the second-time pattern. In the present invention, lower portions of a plurality of comb-shaped electrodes are first formed in the first screen printing, and after drying and solidifying, the upper portions of the plurality of comb-shaped electrodes and a plurality of bus bars are further formed in the second screen printing. After the electrode is formed, it is similarly dried and solidified. Preferably, the materials used for the first screen printing and the second screen printing are different. In a preferred embodiment of the present invention, the permeability of the first screen printing material is higher than the permeability of the second screen printing material, and the conductivity of the second screen printing material is the first screen printing. By being higher than the conductivity of the material, the lower part of the comb-shaped electrode formed by the first screen printing preferably passes through the anti-reflection layer of the substrate after high-temperature sintering. Further, the upper part of the comb-shaped electrode and the bus bar electrode formed by the second screen printing only contact with the anti-reflection layer of the substrate after high-temperature sintering, and do not transmit it. Therefore, the solar cell of the present invention and the electrode structure thereof are different from the electrode in which the conventional double-printing screen printing technique adopts the method of repeatedly printing the same pattern, and the environmental durability reliability and bus bar of the solar cell product are different. The purpose of increasing the electrical conductivity of the electrode, reducing the cell breakage rate, and increasing the photoelectric conversion rate of the solar cell while simultaneously keeping the production cost low is achieved.

本考案の太陽電池及びその電極構造は、従来の二度刷りのスクリーン印刷技術が、同一のパターンを重複印刷する方法を採用した電極とは異なり、太陽電池製品の環境耐用信頼度及びバスバー電極の導電度を高め、セルの破損率を低く抑えて、太陽電池の光電変換率を高めると同時に生産コストを低く抑える。   The solar cell of the present invention and its electrode structure are different from the electrode in which the conventional double printing screen printing technique adopts the method of repeatedly printing the same pattern, and the environmental durability reliability of the solar cell product and the bus bar electrode The conductivity is increased, the cell breakage rate is kept low, the photoelectric conversion rate of the solar cell is raised, and the production cost is kept low.

本考案の太陽電池及びその電極構造を示した平面図である。It is the top view which showed the solar cell of this invention, and its electrode structure. 本考案の太陽電池の電極構造における製造方法の過程を示した図である。It is the figure which showed the process of the manufacturing method in the electrode structure of the solar cell of this invention. 本考案の太陽電池において第一次スクリーン印刷に使用されるスクリーン版を示した平面図である。It is the top view which showed the screen plate used for primary screen printing in the solar cell of this invention. 本考案の太陽電池において第二次スクリーン印刷に使用されるスクリーン版を示した平面図である。It is the top view which showed the screen plate used for secondary screen printing in the solar cell of this invention.

以下、図を参照しながら、本考案の好適な実施形態における太陽電池及びその電極構造について説明する。図1は、本考案の太陽電池1及びその電極構造を示した図である。太陽電池1は、基板10、複数のバスバー電極12及び複数のくし型電極11を備える。このうち、太陽電池1は、シリコン系太陽電池または薄膜太陽電池である。基板10は、非結晶シリコン基板、単結晶シリコン基板、多結晶シリコン基板またはガリウム砒素基板等であり、さらに、あらかじめ少なくとも1個のN型半導体層または少なくとも1個のP型半導体層がその上(PN)に設置されている。好適には、N型半導体層とP型半導体層の間に、さらにI型半導体層(PIN)を備える。なお、基板10の裏面側には、他極側の平面電極が設けられている。   Hereinafter, a solar cell and an electrode structure thereof according to a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a solar cell 1 of the present invention and its electrode structure. The solar cell 1 includes a substrate 10, a plurality of bus bar electrodes 12, and a plurality of comb electrodes 11. Among these, the solar cell 1 is a silicon solar cell or a thin film solar cell. The substrate 10 is an amorphous silicon substrate, a single crystal silicon substrate, a polycrystalline silicon substrate, a gallium arsenide substrate, or the like, and further, at least one N-type semiconductor layer or at least one P-type semiconductor layer is previously formed thereon ( PN). Preferably, an I-type semiconductor layer (PIN) is further provided between the N-type semiconductor layer and the P-type semiconductor layer. A flat electrode on the other electrode side is provided on the back side of the substrate 10.

複数のバスバー電極12は、導電材質を含む材料によって間隔をおいて、基板10上に設置されて形成される。複数のくし型電極11は、導電材質を含む材料によって、間隔をおいて隣合うバスバー電極12間を繋ぐように設置される。本考案の好適な実施形態において、導電材質を含む材料は、銀ペーストであり、それは、例えば、銀金属の微粒、有機溶剤及び有機結合剤、並びにガラス粉を含む混合物である。そして、ガラス粉の成分は、酸化物粉末(例えば、鉛、ビスマス、シリコン等)を含む。   The plurality of bus bar electrodes 12 are formed on the substrate 10 at intervals with a material including a conductive material. The plurality of comb-shaped electrodes 11 are installed so as to connect the adjacent bus bar electrodes 12 at intervals with a material including a conductive material. In a preferred embodiment of the present invention, the material including the conductive material is a silver paste, which is, for example, a mixture including silver metal fine particles, an organic solvent and an organic binder, and glass powder. And the component of glass powder contains oxide powder (for example, lead, bismuth, silicon, etc.).

以上、本考案に開示する太陽電池1の構造について述べた。続いて、この太陽電池1の電極構造の製造方法について説明する。図2は、本考案の太陽電池の電極構造における製造方法の過程を示した図である。この製造方法は、ステップS21からステップS25を備える。本製造方法によって製造される太陽電池の電極構造(複数のくし型電極11と複数のバスバー電極12)は、上述のとおりであるため、以下では再述しない。   The structure of the solar cell 1 disclosed in the present invention has been described above. Then, the manufacturing method of the electrode structure of this solar cell 1 is demonstrated. FIG. 2 is a diagram showing a process of a manufacturing method in the electrode structure of the solar cell of the present invention. This manufacturing method includes steps S21 to S25. Since the electrode structure (a plurality of comb electrodes 11 and a plurality of bus bar electrodes 12) of the solar cell manufactured by this manufacturing method is as described above, it will not be described again below.

ステップS21は、基板10を提供する。基板10は、すでに事前処理された半導体基板10である。事前処理は、例えば、あらかじめ少なくとも1個のN型半導体層または少なくとも1個のP型半導体層(PN)が基板上に設置され、好適には、N型半導体層とP型半導体層の間にはさらに、I型半導体層(PIN)を備える。   Step S21 provides the substrate 10. The substrate 10 is a semiconductor substrate 10 that has already been preprocessed. In the pretreatment, for example, at least one N-type semiconductor layer or at least one P-type semiconductor layer (PN) is set on the substrate in advance, and preferably between the N-type semiconductor layer and the P-type semiconductor layer. Further comprises an I-type semiconductor layer (PIN).

ステップS22は、第一次スクリーン印刷と称する。このステップは、導電材質を含む材料を、第一次スクリーン印刷によって、間隔をおいて基板10上に形成することで、複数のくし型電極11の下部を形成する。図3を参照しながら説明する。ここでは、第一次スクリーン印刷時に使用されるスクリーン版30は、印刷時におけるそのペースト透過可能なエリア31が、すなわち複数のくし型電極11を形成するエリアである。   Step S22 is referred to as primary screen printing. In this step, the lower part of the plurality of comb-shaped electrodes 11 is formed by forming a material including a conductive material on the substrate 10 at an interval by primary screen printing. This will be described with reference to FIG. Here, in the screen plate 30 used at the time of primary screen printing, the paste-permeable area 31 at the time of printing, that is, an area where a plurality of comb-shaped electrodes 11 are formed.

ステップS23は、第一次スクリーン印刷後、くし型電極11の下部を固化させることで、材料中の揮発溶剤を除去する。その固化方式は、熱固化または光固化方式によってこれを達成する。光固化は、例えば、紫外光(UV)固化である。本考案の好適な実施形態において、熱固化方式を使用してくし型電極11を固化させる場合は、すなわち、印刷完成後、直接100〜200℃で乾燥させることで、溶剤を除去して、印刷パターンを破損させない。   In step S23, the volatile solvent in the material is removed by solidifying the lower part of the comb electrode 11 after the primary screen printing. The solidification method achieves this by a heat solidification method or a light solidification method. Light solidification is, for example, ultraviolet light (UV) solidification. In a preferred embodiment of the present invention, when solidifying the electrode 11 using a heat solidification method, that is, after printing is completed, the solvent is removed by directly drying at 100 to 200 ° C. Does not damage the pattern.

ステップS24は、第二次スクリーン印刷と称する。このステップは、導電材質を含む材料を、第二次スクリーン印刷によって、間隔をおいて基板10上に形成することで、くし型電極11の上部及び複数のバスバー電極12を形成させる。図4を参照しながら説明する。ここでは、第二次スクリーン印刷時に使用されるスクリーン版40は、印刷時におけるそのペースト透過可能なエリア41が、すなわち複数のバスバー電極12を形成するエリアである。好適には、第一次スクリーン印刷の材料と第二次スクリーン印刷の材料は異なる。   Step S24 is referred to as secondary screen printing. In this step, a material including a conductive material is formed on the substrate 10 at an interval by secondary screen printing, thereby forming the upper portion of the comb-shaped electrode 11 and the plurality of bus bar electrodes 12. This will be described with reference to FIG. Here, in the screen plate 40 used at the time of secondary screen printing, the paste-permeable area 41 at the time of printing, that is, an area where a plurality of bus bar electrodes 12 are formed. Preferably, the primary screen printing material and the secondary screen printing material are different.

好適には、第二次スクリーン印刷材料の導電度は、第一次スクリーン印刷材料の導電度より高い。好適には、第一次スクリーン印刷材料の透過性は、第二次スクリーン印刷材料の透過性より高い。   Preferably, the conductivity of the secondary screen printing material is higher than the conductivity of the primary screen printing material. Preferably, the permeability of the primary screen printing material is higher than the permeability of the secondary screen printing material.

ステップS25は、第二次スクリーン印刷後、くし型電極11の上部及びバスバー電極12を固化させることで、材料中の揮発溶剤を除去する。その固化方式は、熱固化または光固化方式によって達成する。光固化は、例えば、紫外光(UV)固化である。本考案の好適な実施形態において、くし型電極11の下部を固化するのと同様の固化方式を使用する。   In step S25, the volatile solvent in the material is removed by solidifying the upper part of the comb electrode 11 and the bus bar electrode 12 after the secondary screen printing. The solidification method is achieved by heat solidification or light solidification. Light solidification is, for example, ultraviolet light (UV) solidification. In a preferred embodiment of the present invention, a solidification method similar to that for solidifying the lower part of the comb-shaped electrode 11 is used.

このように、本考案が提供する太陽電池の電極結構は、まず第一次スクリーン印刷において複数のくし型電極の下部が形成され、それを乾かして固化させた後、さらに、二回目のスクリーン印刷において複数のくし型電極の上部及び複数のバスバー電極が形成された後、同様にそれを乾かして固化させる。その第一次スクリーン印刷のパターンと第二次スクリーン印刷のパターンは異なる。好適には、第一次スクリーン印刷と第二次スクリーン印刷に使用される材料は異なる。本考案の好適な実施形態において、第一次スクリーン印刷材料の透過性は、第二次スクリーン印刷材料の透過性より高く、さらに、第二次スクリーン印刷材料の導電度は、前記第一次スクリーン印刷材料の導電度より高いことにより、第一次スクリーン印刷によって形成されたくし型電極下部が、高温焼結を経た後、好適に基板の抗反射層を透過する。さらに、第二次スクリーン印刷によって形成されたくし型電極上部及びバスバー電極は、高温焼結を経た後、基板の抗反射層に接触するだけで、これを透過しない。このため、効果的に太陽電池製品の環境耐用信頼度及びバスバー電極の導電度を高め、セルの破損率を低く抑える。したがって、本考案の太陽電池及びその電極構造は、従来の二度刷りのスクリーン印刷技術が、同一のパターンを重複印刷する方法を採用した電極とは異なり、太陽電池の光電変換率を高めると同時に生産コストを低く抑えるという目的を達成する。   As described above, the electrode structure of the solar cell provided by the present invention is such that the lower part of the plurality of comb-shaped electrodes is first formed in the primary screen printing, and after drying and solidifying, the second screen printing is performed. After the upper portions of the plurality of comb-shaped electrodes and the plurality of bus bar electrodes are formed, they are similarly dried and solidified. The primary screen printing pattern and the secondary screen printing pattern are different. Preferably, the materials used for primary screen printing and secondary screen printing are different. In a preferred embodiment of the present invention, the permeability of the primary screen printing material is higher than that of the secondary screen printing material, and the conductivity of the secondary screen printing material is greater than the primary screen printing material. By being higher than the conductivity of the printing material, the lower part of the comb-shaped electrode formed by the primary screen printing is preferably transmitted through the anti-reflection layer of the substrate after high-temperature sintering. Further, the upper part of the comb-shaped electrode and the bus bar electrode formed by the secondary screen printing only contact with the anti-reflective layer of the substrate after high-temperature sintering, and do not transmit it. For this reason, the environmental durability reliability of the solar cell product and the conductivity of the bus bar electrode are effectively increased, and the cell breakage rate is kept low. Therefore, the solar cell of the present invention and its electrode structure are different from the electrode in which the conventional double-printing screen printing technique adopts a method of overlapping printing of the same pattern, while simultaneously increasing the photoelectric conversion rate of the solar cell. Achieving the objective of keeping production costs low.

以上、本考案の実施形態を図面を参照して詳述してきたが、具体的な構成は、これらの実施形態に限られるものではなく、本考案の要旨を逸脱しない範囲の設計変更などがあっても、本考案に含まれる。   The embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and there are design changes and the like within a scope not departing from the gist of the present invention. However, it is included in the present invention.

1 太陽電池
10 基板
11 くし型電極
12 バスバー電極
30,40 スクリーン版
31,41 ペースト透過可能なエリア
DESCRIPTION OF SYMBOLS 1 Solar cell 10 Board | substrate 11 Comb-type electrode 12 Bus-bar electrode 30,40 Screen plate 31,41 Area which can permeate | transmit paste

Claims (12)

太陽電池の基板に設置される太陽電池の電極構造であって、
導電材質を含む材料によって間隔をおいて前記基板に設置されて形成される複数のバスバー電極と、
導電材質を含む材料によって間隔をおいて前記隣合うバスバー電極間を繋ぐように設置されるくし型電極を備え、
前記バスバー電極及び前記くし型電極は、二回のスクリーン印刷によって形成され、第一次スクリーン印刷は、前記くし型電極の下部を形成し、第二次スクリーン印刷は、前記くし型電極の上部及び前記バスバー電極を形成することを特徴とする太陽電池の電極構造。
A solar cell electrode structure installed on a solar cell substrate,
A plurality of bus bar electrodes formed on the substrate at an interval by a material including a conductive material; and
Comb electrodes installed so as to connect the adjacent bus bar electrodes at an interval by a material including a conductive material,
The bus bar electrode and the comb electrode are formed by two screen printings, the primary screen printing forms a lower part of the comb electrode, and the secondary screen printing includes an upper part of the comb electrode and An electrode structure of a solar cell, wherein the bus bar electrode is formed.
前記第一次スクリーン印刷の材料成分と前記第二次スクリーン印刷の材料成分は異なることを特徴とする請求項1に記載の電極構造。   The electrode structure according to claim 1, wherein a material component of the primary screen printing is different from a material component of the secondary screen printing. 前記第二次スクリーン印刷材料の導電度は、前記第一次スクリーン印刷材料の導電度より高いことを特徴とする請求項2に記載の電極構造。   The electrode structure according to claim 2, wherein the conductivity of the secondary screen printing material is higher than the conductivity of the primary screen printing material. 前記第一次スクリーン印刷材料の透過性は、前記第二次スクリーン印刷材料の透過性より高いことを特徴とする請求項2に記載の電極構造。   The electrode structure according to claim 2, wherein the permeability of the primary screen printing material is higher than the permeability of the secondary screen printing material. 前記第一次スクリーン印刷の材料成分及び前記第二次スクリーン印刷の材料成分は、銀金属の微粒及びガラス粉を含むことを特徴とする請求項1に記載の電極構造。   The electrode structure according to claim 1, wherein the material component of the primary screen printing and the material component of the secondary screen printing include silver metal fine particles and glass powder. 基板と、
導電材質を含む材料によって間隔をおいて前記基板に設置されて形成される複数のバスバー電極と、
導電材質を含む材料によって間隔をおいて前記隣合うバスバー電極間を繋ぐように設置されるくし型電極を備え、
前記バスバー電極及び前記くし型電極は、二回のスクリーン印刷によって形成され、第一次スクリーン印刷は、前記くし型電極の下部を形成し、第二次スクリーン印刷は、前記くし型電極の上部及び前記バスバー電極を形成することを特徴とする太陽電池。
A substrate,
A plurality of bus bar electrodes formed on the substrate at an interval by a material including a conductive material; and
Comb electrodes installed so as to connect the adjacent bus bar electrodes at an interval by a material including a conductive material,
The bus bar electrode and the comb electrode are formed by two screen printings, the primary screen printing forms a lower part of the comb electrode, and the secondary screen printing includes an upper part of the comb electrode and A solar cell, wherein the bus bar electrode is formed.
前記第一次スクリーン印刷の材料成分と前記第二次スクリーン印刷の材料成分は異なることを特徴とする請求項6に記載の太陽電池。   The solar cell according to claim 6, wherein a material component of the primary screen printing is different from a material component of the secondary screen printing. 前記第二次スクリーン印刷材料の導電度は、前記第一次スクリーン印刷材料の導電度より高いことを特徴とする請求項7に記載の太陽電池。   The solar cell according to claim 7, wherein the conductivity of the secondary screen printing material is higher than the conductivity of the primary screen printing material. 前記第一次スクリーン印刷材料の透過性は、前記第二次スクリーン印刷材料の透過性より高いことを特徴とする請求項7に記載の太陽電池。   The solar cell according to claim 7, wherein the permeability of the primary screen printing material is higher than the permeability of the secondary screen printing material. 前記第一次スクリーン印刷の材料成分及び前記第二次スクリーン印刷の材料成分は、銀金属の微粒及びガラス粉を含むことを特徴とする請求項6に記載の太陽電池。   The solar cell according to claim 6, wherein the material component of the primary screen printing and the material component of the secondary screen printing include silver metal fine particles and glass powder. 前記基板は、非結晶シリコン基板、単結晶シリコン基板、多結晶シリコン基板またはガリウム砒素基板であることを特徴とする請求項6に記載の太陽電池。   The solar cell according to claim 6, wherein the substrate is an amorphous silicon substrate, a single crystal silicon substrate, a polycrystalline silicon substrate, or a gallium arsenide substrate. 前記基板は、N型半導体基板またはP型半導体基板であることを特徴とする請求項6に記載の太陽電池。   The solar cell according to claim 6, wherein the substrate is an N-type semiconductor substrate or a P-type semiconductor substrate.
JP2011002662U 2010-07-28 2011-05-13 Solar cell and electrode structure thereof Expired - Fee Related JP3169353U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099214419 2010-07-28
TW099214419U TWM393802U (en) 2010-07-28 2010-07-28 Solar cell and electrode structure therefor

Publications (1)

Publication Number Publication Date
JP3169353U true JP3169353U (en) 2011-07-28

Family

ID=44276655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002662U Expired - Fee Related JP3169353U (en) 2010-07-28 2011-05-13 Solar cell and electrode structure thereof

Country Status (4)

Country Link
US (1) US20110174372A1 (en)
EP (1) EP2413370A3 (en)
JP (1) JP3169353U (en)
TW (1) TWM393802U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523707A (en) * 2012-04-18 2015-08-13 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Printing method for solar cell contacts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046384A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell
CN103171260A (en) * 2011-12-23 2013-06-26 昆山允升吉光电科技有限公司 Matched screen board of solar cell electrode and printing method thereof
TWI492397B (en) * 2012-11-13 2015-07-11 茂迪股份有限公司 Solar cell and solar cell module
CN103165693B (en) * 2013-02-18 2016-03-16 友达光电股份有限公司 Solar energy module
TWI565220B (en) * 2014-08-25 2017-01-01 zhong-cheng Zhang Method and device for improving power generation efficiency of solar cell
JP1695074S (en) 2020-09-25 2021-09-21

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004114B2 (en) * 1997-09-26 2007-11-07 三洋電機株式会社 Method for manufacturing solar cell element and solar cell element
JPH11186572A (en) * 1997-12-22 1999-07-09 Canon Inc Photoelectromotive force element module
DE112004002853B4 (en) * 2004-05-07 2010-08-26 Mitsubishi Denki K.K. Process for producing a solar battery
CN101656276A (en) * 2009-09-17 2010-02-24 中电电气(南京)光伏有限公司 Method for preparing crystalline silicon solar battery electrode by utilizing overprinting way

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523707A (en) * 2012-04-18 2015-08-13 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Printing method for solar cell contacts

Also Published As

Publication number Publication date
US20110174372A1 (en) 2011-07-21
EP2413370A2 (en) 2012-02-01
TWM393802U (en) 2010-12-01
EP2413370A3 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP3169353U (en) Solar cell and electrode structure thereof
JP3168227U (en) Solar cell electrode structure
Tobías et al. Crystalline silicon solar cells and modules
Kim et al. Development of thin-film solar cells using solar spectrum splitting technique
CN102593248B (en) Preparation method for back-contact crystalline silicon solar cell based on plasma etching technology
CN102184973A (en) Positive electrode structure of solar battery plate
JP7023974B2 (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
CN108922938B (en) Back contact heterojunction solar cell and preparation method thereof
CN102945866A (en) N type solar cell, printing method thereof and printing silk screen
Liu et al. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells
CN102738302A (en) Method for forming electrodes of heterojunction with intrinsic thin layer (HIT) solar cell
WO2019095662A1 (en) Solar battery with combined mwt and hit, and preparation method therefor
US7927910B2 (en) Manufacturing method of solar cell
TWM426876U (en) Solar cell
CN101728459A (en) Preparation method of crystal silicon solar cell
TWI475707B (en) The method for forming the contact pattern on the solar cell surface
CN102969371B (en) Structure of two-surface solar cell and manufacturing method of structure
CN110808314B (en) Method for improving photoelectric performance of heterojunction solar cell
CN101478009B (en) Back contact type solar cell and manufacturing process thereof
CN107068799A (en) A kind of photovoltaic plant integrated control system
Lin et al. Back-contact perovskite solar cells
CN110416345A (en) Heterojunction solar battery structure of the double-deck amorphous silicon intrinsic layer and preparation method thereof
CN102522450A (en) Defect restoration method and system thereof
CN208738284U (en) A kind of coiling laminater of solar battery
Tripathi et al. Solar energy from cells to grid

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3169353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees