JP3168755B2 - Method for measuring the amount of microorganisms in bioimmobilized carriers - Google Patents

Method for measuring the amount of microorganisms in bioimmobilized carriers

Info

Publication number
JP3168755B2
JP3168755B2 JP03103693A JP3103693A JP3168755B2 JP 3168755 B2 JP3168755 B2 JP 3168755B2 JP 03103693 A JP03103693 A JP 03103693A JP 3103693 A JP3103693 A JP 3103693A JP 3168755 B2 JP3168755 B2 JP 3168755B2
Authority
JP
Japan
Prior art keywords
microorganisms
amount
measuring
carrier
atp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03103693A
Other languages
Japanese (ja)
Other versions
JPH06245795A (en
Inventor
重夫 青柳
洋 津倉
圭一 月足
昌男 藤生
弘志 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP03103693A priority Critical patent/JP3168755B2/en
Publication of JPH06245795A publication Critical patent/JPH06245795A/en
Application granted granted Critical
Publication of JP3168755B2 publication Critical patent/JP3168755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はATP法を利用して生物
固定化担体中の微生物量を測定する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of microorganisms in a bioimmobilized carrier by using the ATP method.

【0002】[0002]

【従来の技術】近年、水事情の悪化に伴い、有機汚染物
含有量の高い湖沼水や河川水等の原水を使用せざるを得
ない浄水処理施設が増加している。これらの浄水処理施
設では、良質の飲料水を確保するため、通常の浄水設備
に生物処理法を加える処理方法が検討されている(吉村
俊治ら,水質汚濁研究,9,484−489頁,198
6年参照)。
2. Description of the Related Art In recent years, along with the deterioration of water conditions, water treatment facilities that are forced to use raw water such as lake water or river water having a high organic pollutant content are increasing. In these water treatment facilities, a treatment method in which a biological treatment method is added to a normal water treatment facility is being studied in order to secure high-quality drinking water (Shunji Yoshimura et al., Water Pollution Research, 9, 484-489, 198).
6 years).

【0003】中でも生物活性炭(Biological active ca
rbon,以下BACと略称する)を用いた処理は、生物固
定化担体としての通常の活性炭の持つ優れた吸着特性
と、該活性炭の吸着物質である生物分解による吸着座の
再生作用とにより、高い有機物除去能とこの除去能の長
期持続が可能であることが明らかとなり、今後の高度浄
水処理の有力な方法として期待されている(黒沢義乗
ら,水質汚濁研究,11,577−589頁,1988
年、同11,590−588頁,1988年、鈴木順三
ら,水環境学会誌,15,45−51頁,1992年参
照)。
[0003] Among them, biologically active carbon (Biological active ca)
rbon (hereinafter abbreviated as BAC) is high in treatment due to the excellent adsorption characteristics of ordinary activated carbon as a bioimmobilization carrier and the action of regenerating adsorption sites by biodegradation, which is an adsorbent of the activated carbon. It has been clarified that the organic matter removing ability and the long-term sustainability of the removing ability are possible, and it is expected as a powerful method of advanced water purification treatment in the future (Yoshino Kurosawa, Water Pollution Research, 11, 577-589, 1988).
11, 590-588, 1988, Junzo Suzuki et al., Journal of Japan Society on Water Environment, 15, 45-51, 1992).

【0004】このBAC処理とは、活性炭等の生物固定
化担体に各種細菌類とか原生動物、微小後生動物等の微
生物を付着生息させた混合培養系により、有機物を処理
する方法である。
[0004] The BAC treatment is a method of treating an organic substance by a mixed culture system in which various bacteria or microorganisms such as protozoa and micrometastasis are attached and inhabited on a biologically immobilized carrier such as activated carbon.

【0005】一方、BACに付着した微生物量の測定方
法には、超音波処理により微生物を剥離した後、平板培
養法(上水試験法,605頁,日本水道協会1985
年,厚生省生活衛生局水道環境部監修)とかアクリジン
オレンジを用いる蛍光法(前記上水試験法の630頁、
金周永ら,第26回日本水環境学会年会講演集,128
−129頁,1992年参照)及び熱重量分析法(李建
国ら,第26回日本水環境学会年会講演集,130頁,
1992年、胡洪営ら,第24回日本水質汚濁学会年会
講演集,375頁,1990年参照)により測定する方
法が知られている。この熱重量分析法とは、微生物が付
着した担体を乾燥後、強熱して重量減少量を測定し、微
生物付着量を求める方法である。
On the other hand, a method for measuring the amount of microorganisms adhering to the BAC is to remove the microorganisms by ultrasonic treatment, and then use a plate culture method (water purification test, page 605, Japan Water Works Association 1985).
Year, Ministry of Health and Welfare Bureau Water Environment Department supervision) or fluorescent method using acridine orange (P. 630 of the above-mentioned water supply test method,
Kanasuei et al., Proceedings of the 26th Annual Meeting of the Japan Society on Water Environment, 128
-129, 1992) and thermogravimetric analysis (Li Jianguo, et al., 26th Annual Meeting of the Japan Society on Water Environment, 130,
1992, Hu Honging et al., 24th Annual Meeting of the Japan Society on Water Pollution, 375 pages, 1990). The thermogravimetric analysis method is a method in which a carrier to which microorganisms are attached is dried and then ignited to measure the amount of weight loss to determine the amount of attached microorganisms.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこのよう
な従来のBACに付着した微生物量の測定方法は、各種
の観点から必ずしも最適な方法であるとは言えない面が
あり、測定方法に関する再検討が要求されている現況に
ある。
However, such a conventional method for measuring the amount of microorganisms adhering to BAC is not necessarily the most suitable method from various viewpoints. It is in the required status.

【0007】例えば前記平板培養法とかアクリジンオレ
ンジを用いた蛍光法の前処理として実施されている超音
波処理による微生物の剥離方法の場合には、超音波処理
法が通常の磨砕法とかHughesプレス法、Frenchプレス法
等の方法と比較してもきわめて強力であるが、同時に超
音波はキャビテーションで多くの細胞構造体を破砕する
能力があるため、微生物の生存率の面から問題点が残存
している。
For example, in the case of a method for removing microorganisms by ultrasonic treatment which is carried out as a pretreatment of the plate culture method or the fluorescence method using acridine orange, the ultrasonic treatment method is a conventional grinding method or Hughes press method. Although it is extremely powerful compared to methods such as the French press method, at the same time, ultrasonic waves have the ability to disrupt many cell structures by cavitation, so problems remain in terms of the survival rate of microorganisms. I have.

【0008】又、平板培養法自体も操作が繁雑で且つ無
菌操作を必要とする上、培養時間に24時間を要するの
で、能率上での難点があり、更に蛍光法に比較して1〜
2桁程度少なく計数される(前記上水試験法,605
頁,日本水道協会1985年参照)という問題点があ
る。
In addition, the plate culture method itself is complicated in operation, requires aseptic operation, and requires 24 hours for the culture time, which is disadvantageous in terms of efficiency.
The count is reduced by about two digits (the above-mentioned water supply test method, 605).
P., Japan Water Works Association 1985).

【0009】他方のアクリジンオレンジを用いた蛍光法
は、超音波処理後に試料をメンブランフィルタで濾過
し、アクリジンオレンジで染色する必要があり、前処理
に関しては平板培養法よりも更に繁雑である。更に実施
に際して高価な設備である落射蛍光顕微鏡を必要とする
ため、コストの面での難点を有している。
On the other hand, the fluorescence method using acridine orange requires a sample to be filtered through a membrane filter after sonication and stained with acridine orange, and the pretreatment is more complicated than the plate culture method. Furthermore, the implementation requires an epi-illumination fluorescence microscope, which is an expensive facility, and thus has a disadvantage in terms of cost.

【0010】熱重量分析法は、微生物が付着した担体を
乾燥後、強熱して重量減少量を測定し、微生物付着量を
求める方法であるため、乾燥炉の温度設定はきわめて正
確であることが要求される上、精度の高い秤量計と熟練
した測定技術が必要であり、コスト並びに操作性の面で
の問題点が存在する。
The thermogravimetric analysis method is a method in which a carrier to which microorganisms are adhered is dried and then ignited to measure the amount of weight loss to determine the amount of microorganisms attached. Therefore, the temperature setting of the drying furnace is extremely accurate. In addition to the requirements, a high-precision weighing scale and a skilled measuring technique are required, and there are problems in cost and operability.

【0011】微生物量の測定は、例えば生物活性炭塔に
おける立ち上げの際に、生物分解除去機能を持つ新たな
生物活性炭を補充すべきか否かを判断する場合に特に必
要である。
The measurement of the amount of microorganisms is particularly necessary, for example, when starting up a biological activated carbon tower, in determining whether or not to replenish new biological activated carbon having a biodegradation removing function.

【0012】そこで本発明はこのような従来の生物固定
化担体中の微生物量測定方法が有している各種の問題点
を解消して、迅速且つ簡便な操作で短時間に微生物量の
測定を行うことができる方法を提供することを目的とす
るものである。
Accordingly, the present invention solves the various problems of the conventional method for measuring the amount of microorganisms in a bioimmobilized carrier, and enables the measurement of the amount of microorganisms in a short time by a quick and simple operation. It is intended to provide a method that can be performed.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を
達成するために、微生物が付着した生物固定化担体を採
取して試料を作成し、この試料のATPを抽出してか
ら、該抽出液に発光試薬を加えて発光量を測定し、この
発光強度から担体に付着している微生物量を決定するよ
うした生物固定化担体中の微生物量測定方法において、
前記生物固定化担体は、生物活性炭であること、を特徴
とする、生物固定化担体中の微生物量測定方法を提供す
る。
According to the present invention , in order to attain the above object, a sample is prepared by collecting a biologically immobilized carrier to which a microorganism is attached, and ATP of the sample is extracted. In the method for measuring the amount of microorganisms in a biologically immobilized carrier, the amount of luminescence is measured by adding a luminescent reagent to the extract, and the amount of microorganisms attached to the carrier is determined from the luminescence intensity .
The bioimmobilization carrier is a biological activated carbon.
And a method for measuring the amount of microorganisms in a bioimmobilized carrier .

【0014】 ここで、前記ATP抽出用試薬として
は、トリクロロ酢酸を用いるとよい。又、前記発光試薬
としては、ルシフェリン,ルシフェラーゼを用いるとよ
Here, as the ATP extraction reagent,
Is preferably trichloroacetic acid. Further, examples of the luminescent reagent, and using luciferin, luciferase
No.

【0015】[0015]

【作用】かかる生物固定化担体中の微生物量測定方法、
即ち、微生物が付着した生物固定化担体を採取して試料
を作成し、この試料のATPを抽出してから該抽出液に
発光試薬を加えて発光量を測定して、発光強度から担体
に付着している微生物量を決定する方法を用いることに
より、従来の平板培養法である生物活性炭から超音波処
理によって微生物を剥離し、処理液を希釈してから標準
寒天培地を無菌的に加えて培養することにより、生物活
性炭から剥離した一般細菌数を決定する方法ときわめて
良好な相関関係が得られる。従って簡易な手段であるA
TP法を用いて、生物活性炭中の微生物量を精度良く測
定することが可能となる。
[Action] A method for measuring the amount of microorganisms in such a biologically immobilized carrier,
That is, a sample is prepared by collecting the bioimmobilized carrier to which the microorganisms are attached, extract ATP of the sample, add a luminescent reagent to the extract, measure the amount of luminescence, and determine the amount of luminescence attached to the carrier from the luminescence intensity. By using a method to determine the amount of microorganisms that have been used, the microorganisms are detached from the biological activated carbon, which is a conventional plate culture method, by ultrasonic treatment, the treatment liquid is diluted, and the standard agar medium is added aseptically and cultured. By doing so, a very good correlation can be obtained with the method for determining the number of general bacteria detached from biological activated carbon. Therefore, A which is a simple means
By using the TP method, it is possible to accurately measure the amount of microorganisms in the biological activated carbon.

【0016】[0016]

【実施例】以下本発明にかかる生物固定化担体中の微生
物量測定方法の具体的な実施例を説明する。尚、本実施
例では、ATP法によるBAC中の微生物量の測定が有
効に行われたか否かを、比較例として行った平板培養法
との相関に基づいて検証した。
EXAMPLES Hereinafter, specific examples of the method for measuring the amount of microorganisms in a bioimmobilized carrier according to the present invention will be described. In this example, whether the measurement of the amount of microorganisms in BAC by the ATP method was effectively performed was verified based on the correlation with the plate culture method performed as a comparative example.

【0017】尚、本実施例の測定原理であるATP(ア
デノシン三リン酸)法について簡単に説明すると、一般
にATPは微生物活性を表わす指標として用いられてお
り、ATPがルシフェリン,ルシフェラーゼと反応して
発光する原理を利用している。このATPの抽出法はい
くつか知られているが、一般には試料を試験管に取り、
トリス緩衝液を加えて沸騰水浴中で撹拌しながら抽出を
行い、得られた検水を蛍光光度計のキュベットに入れて
蛍光光度を測定する方法を用いる。
The ATP (adenosine triphosphate) method, which is a measurement principle of the present embodiment, will be briefly described. Generally, ATP is used as an index indicating the activity of a microorganism, and ATP reacts with luciferin and luciferase. Utilizes the principle of light emission. Several methods for extracting ATP are known, but generally, a sample is taken in a test tube,
A method is used in which a Tris buffer is added, extraction is performed while stirring in a boiling water bath, and the obtained sample is placed in a cuvette of a fluorometer and the fluorescence is measured.

【0018】〔実施例〕本実施例では生物固定化担体と
して生物活性炭を採用し、1mlの蒸留水を含む小型シ
ャーレに、スパーテルで洗浄済みの生物活性炭を0.5
gずつ秤量して入れ、サンプルとする。本例ではサンプ
ル7個を用意した。
[Embodiment] In this embodiment, bioactive carbon is adopted as a bioimmobilization carrier, and 0.5 ml of bioactive carbon washed with a spatula is placed in a small petri dish containing 1 ml of distilled water.
Weigh and weigh each g to make a sample. In this example, seven samples were prepared.

【0019】(1)パスツールピペットで蒸留水を除
き、1mlの蒸留水を含む試験管にスパーテルとパスツ
ールピペットを用いて生物活性炭をもれなく加える。
(1) Distilled water is removed with a Pasteur pipette, and biological activated carbon is completely added to a test tube containing 1 ml of distilled water using a spatula and a Pasteur pipette.

【0020】(2)次に生物活性炭を含む試験管にトリ
クロロ酢酸を1ml加え、30秒間ボルテックスでAT
Pを抽出する。そしてトリス緩衝液を10ml加えて希
釈する。この時点で生物活性炭中のATPは12倍に希
釈されたことになる。
(2) Next, 1 ml of trichloroacetic acid was added to a test tube containing biological activated carbon, and AT was performed by vortexing for 30 seconds.
Extract P. Then, 10 ml of Tris buffer is added for dilution. At this point, ATP in the biological activated carbon has been diluted 12-fold.

【0021】(3)0、10-11、10-10、10-9、1
-8、10-7、10-6MのATPを調製し、標準曲線を
作成する。
(3) 0, 10 -11 , 10 -10 , 10 -9 , 1
Prepare 0 -8 , 10 -7 , and 10 -6 M ATP and create a standard curve.

【0022】(4)汚泥活性度測定装置(キッコーマン
製UPD−2000EX)用の試薬キット「ルシフェー
ル−AS」の発光試薬0.25mlと上記ATP抽出液
をポリエチレンチューブに加え、発光量をルミノメータ
(明電舍製UPD−8000)で測定する。
(4) 0.25 ml of the luminescence reagent of the reagent kit "Lucifer-AS" for a sludge activity measuring device (UPD-2000EX manufactured by Kikkoman) and the above-described ATP extract were added to a polyethylene tube, and the luminescence was measured using a luminometer (light meter). Measured by Densha UPD-8000).

【0023】(5)ATPの標準曲線に基づいて、生物
活性炭から抽出されたATP量を求め、坦体に付着して
いる微生物量を決定する。
(5) The amount of ATP extracted from the biological activated carbon is determined based on the standard curve of ATP, and the amount of microorganisms adhering to the carrier is determined.

【0024】〔比較例〕実施例と同様1mlの蒸留水を
含む小型シャーレに、スパーテルで洗浄済みの生物活性
炭を0.5gずつ秤量して入れ、7個のサンプルを用意
する。
COMPARATIVE EXAMPLE As in the example, 0.5 g of biological activated carbon washed with a spatula was weighed and placed in a small petri dish containing 1 ml of distilled water to prepare seven samples.

【0025】(1)パスツールピペットで蒸留水を除
き、減菌生理食塩水3.0mlを含む試験管にスパーテ
ルとパスツールピペットを用いて生物活性炭をもれなく
加える。 (2)DUTY CYCLE調整機能を持つ超音波発生装置を用い
て、生物活性炭をDUTY CYCLE50%、OUTPUT CONTROL:
2、処理時間:1分の条件で超音波処理し、微生物を剥
離する。超音波発生装置として島津製作所製超音波発生
装置USP−300を採用した。又、上記のOUTPUT CON
TROL2とは、超音波出力が40〜50Wの範囲にあるこ
とを指している。
(1) Distilled water is removed with a Pasteur pipette, and biological activated carbon is completely added to a test tube containing 3.0 ml of sterilized physiological saline using a spatula and a Pasteur pipette. (2) Using an ultrasonic generator with DUTY CYCLE adjustment function, 50% DUTY CYCLE in biological activated carbon, OUTPUT CONTROL:
2. Treatment time: Ultrasonic treatment is performed under the condition of 1 minute to remove microorganisms. An ultrasonic generator USP-300 manufactured by Shimadzu Corporation was used as the ultrasonic generator. Also, the above OUTPUT CON
TROL2 indicates that the ultrasonic output is in the range of 40 to 50W.

【0026】(3)処理液を10-6、10-5、10-4
10-3、10-2倍に希釈する。この希釈液1mlをシャ
ーレに入れ、これに45℃〜50℃に保温した標準寒天
培地を約15mlずつ無菌的に加え(n=2)、36℃
±1℃で48時間±2時間培養し、生物活性炭から剥離
した一般細菌数を決定する(厚生省生活衛生局水道環境
部監修、上水試験法、日本水道協会、1985年によ
る)。
(3) The treatment liquid is 10 -6 , 10 -5 , 10 -4 ,
Dilute 10 -3 and 10 -2 times. 1 ml of this diluted solution was placed in a Petri dish, and about 15 ml of a standard agar medium kept at 45 ° C to 50 ° C was aseptically added thereto (n = 2).
After culturing at ± 1 ° C. for 48 hours ± 2 hours, the number of general bacteria detached from the biologically activated carbon is determined (supervised by the Ministry of Health and Welfare, Ministry of Health and Welfare, Water Environment Department, Water Supply Test Method, Japan Water Works Association, 1985).

【0027】〔結果〕図1は、室外,室内実験における
7個の生物活性炭サンプルの微生物量を、本実施例に基
づくATP法と比較例に基づく平板培養法とを用いて測
定した細菌数(cells/ml)の相関を示すグラフである。
図1によれば、相関係数r=0.931ときわめて良好
な結果が得られた。
[Results] FIG. 1 shows the numbers of bacteria obtained by measuring the microbial amounts of seven biologically activated carbon samples in the outdoor and indoor experiments using the ATP method based on the present example and the plate culture method based on the comparative example. 7 is a graph showing the correlation of cells / ml).
According to FIG. 1, a very good result was obtained with the correlation coefficient r = 0.931.

【0028】上記のように本実施例にかかる方法、即
ち、微生物が付着した生物固定化担体を採取して試料を
作成し、この試料のATPを抽出して該抽出液に発光試
薬を加えて発光量を測定し、この発光強度から担体に付
着している微生物量を決定する方法と、生物活性炭から
超音波処理によって微生物を剥離し、処理液を希釈して
から標準寒天培地を無菌的に加えて培養することによ
り、生物活性炭から剥離した一般細菌数を決定するとい
う平板培養法とが良好な相関関係を保っており、従って
簡易な手段であるATP法によって生物活性炭中の微生
物量をかなり精度良く測定できることが判明した。
As described above, the method according to the present embodiment, that is, a sample is prepared by collecting the organism-immobilized carrier to which the microorganisms are adhered, ATP of this sample is extracted, and a luminescent reagent is added to the extract. A method of measuring the amount of luminescence, determining the amount of microorganisms attached to the carrier from the luminescence intensity, and exfoliating the microorganisms from biological activated carbon by ultrasonic treatment, diluting the treatment solution, and aseptically removing the standard agar medium. In addition, the cultivation maintains a good correlation with the plate culture method of determining the number of general bacteria detached from the biological activated carbon. Therefore, the amount of microorganisms in the biological activated carbon can be considerably reduced by the ATP method which is a simple means. It turned out that measurement can be performed with high accuracy.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明にか
かる生物固定化担体中の微生物量測定方法を用いること
により、従来の平板培養法ときわめて良好な相関関係が
得られ、従って簡易な手段であるATP法を用いて生物
活性炭中の微生物量を精度良く測定することが可能とな
る。この方法は超音波を用いた場合のようにキャビテー
ションで多くの細胞構造体を破砕する惧れがなく、微生
物の生存率の面からも有効であり、且つ無菌操作等を省
略して操作自体を簡易化することが出来る。
As described in detail above, by using the method for measuring the amount of microorganisms in a biologically immobilized carrier according to the present invention, a very good correlation with the conventional plating method can be obtained, and therefore a simple method can be obtained. Using the ATP method, which is a means, it is possible to accurately measure the amount of microorganisms in biological activated carbon. This method has no fear of breaking many cell structures by cavitation as in the case of using ultrasonic waves, is effective also from the viewpoint of the survival rate of microorganisms, and omits the aseptic operation and the like and eliminates the operation itself. It can be simplified.

【0030】更に実施に際し、迅速且つ簡便な操作で短
時間に微生物量の測定を行うことができるとともに、高
価な設備を不要としてコストの面からも有利であり、格
別の精度とか熟練した測定技術を必要としないという効
果が得られ、例えば生物活性炭塔における立ち上げの際
に新たな生物活性炭を補充すべきか否かを判断するデー
タを容易に得ることができる。
Further, in carrying out the method, the amount of microorganisms can be measured in a short time by a quick and simple operation, and expensive equipment is not required, which is advantageous in terms of cost. Is not required, and data for determining whether or not to add new bioactive carbon when starting up the bioactive carbon tower, for example, can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】生物活性炭のサンプルの微生物量を、本実施例
に基づくATP法と比較例に基づく平板培養法とを用い
て測定した細菌数(cells/ml)の相関を示すグラフ。
FIG. 1 is a graph showing the correlation between the number of bacteria (cells / ml) obtained by measuring the amount of microorganisms in a sample of biological activated carbon using the ATP method based on the present example and the plate culture method based on a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤生 昌男 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 島崎 弘志 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (58)調査した分野(Int.Cl.7,DB名) C12Q 1/02 - 1/66 C12N 11/14 BIOSIS(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masao Fujio 2-1-117 Osaki, Shinagawa-ku, Tokyo, Japan Inside Meidensha Co., Ltd. (72) Inventor Hiroshi Shimazaki 2-1-1, Osaki, Shinagawa-ku, Tokyo Meidensha Co., Ltd. (58) Fields surveyed (Int. Cl. 7 , DB name) C12Q 1/02-1/66 C12N 11/14 BIOSIS (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微生物が付着した生物固定化担体を採取
して試料を作成し、この試料のATPを抽出してから、
該抽出液に発光試薬を加えて発光量を測定し、この発光
強度から担体に付着している微生物量を決定する生物固
定化担体中の微生物量測定方法において、 前記生物固定化担体は生物活性炭であることを特徴とす
る生物固定化担体中の微生物量測定方法。
1. Collecting a biologically immobilized carrier to which microorganisms have adhered.
To make a sample, extract the ATP of this sample,
A luminescent reagent was added to the extract, and the amount of luminescence was measured.
Biosolids that determine the amount of microorganisms attached to a carrier from strength
In the method for measuring the amount of microorganisms in an immobilized carrier, the bioimmobilized carrier is a biological activated carbon.
Method for measuring the amount of microorganisms in a biologically immobilized carrier.
【請求項2】 前記ATP抽出用試薬としてトリクロロ
酢酸を用いたことを特徴する請求項1記載の生物固定化
担体中の微生物量測定方法。
2. A method for extracting ATP, comprising the steps of:
2. The bioimmobilization according to claim 1, wherein acetic acid is used.
A method for measuring the amount of microorganisms in a carrier.
【請求項3】 前記ATPの発光試薬としてルシフェリ
ン,ルシフェラーゼを用いたことを特徴とする請求項1
記載の生物固定化担体中の微生物量測定方法。
3. A luciferase as a luminescent reagent for ATP.
And luciferase.
The method for measuring the amount of microorganisms in a bioimmobilized carrier according to the above.
JP03103693A 1993-02-22 1993-02-22 Method for measuring the amount of microorganisms in bioimmobilized carriers Expired - Fee Related JP3168755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03103693A JP3168755B2 (en) 1993-02-22 1993-02-22 Method for measuring the amount of microorganisms in bioimmobilized carriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03103693A JP3168755B2 (en) 1993-02-22 1993-02-22 Method for measuring the amount of microorganisms in bioimmobilized carriers

Publications (2)

Publication Number Publication Date
JPH06245795A JPH06245795A (en) 1994-09-06
JP3168755B2 true JP3168755B2 (en) 2001-05-21

Family

ID=12320274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03103693A Expired - Fee Related JP3168755B2 (en) 1993-02-22 1993-02-22 Method for measuring the amount of microorganisms in bioimmobilized carriers

Country Status (1)

Country Link
JP (1) JP3168755B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191395A (en) * 2000-12-27 2002-07-09 Zeon Joho System Kk Method for discriminating genuine product from false product
JP5833450B2 (en) 2008-12-31 2015-12-16 スリーエム イノベイティブ プロパティズ カンパニー Detection method of living bioburden using microparticles
BR112012016119B1 (en) 2009-12-30 2020-04-28 3M Innovative Properties Co cell detection method in a sample, unit sample preparation and detection device and kit

Also Published As

Publication number Publication date
JPH06245795A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
Warkentin et al. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots
JPS5991900A (en) Selective measurement of body cell and microbial cell havingliving activity
US5177012A (en) Biosensor containing immobilized Zymomonas mobilis cells for measuring glucose, fructose and sucrose
Nelson et al. Microbial viability measurements and activated sludge kinetics
Zhang et al. A simple method for quantifying biomass cell and polymer distribution in biofilms
Xu et al. The mechanical scouring of bio-carriers improves phosphorus removal and mediates functional microbiomes in membrane bioreactors
CN107189986A (en) A kind of reporter gene cell line construction method and its application based on er stress
Hallier et al. Photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum
JP3168755B2 (en) Method for measuring the amount of microorganisms in bioimmobilized carriers
CN103336045B (en) Device for on-line detection and automatic alarm of toxic substances and detection method of toxic substances
Park et al. Comparison of faecal indicator and viral pathogen light and dark disinfection mechanisms in wastewater treatment pond mesocosms
Luna-Pabello et al. Ciliated protozoa as indicators of a wastewater treatment system performance
Cunningham et al. Fulvic acid interferences on ATP determinations in sediments 1
JP2002199875A (en) Denitrification method
Clasen et al. The use of algal assays for determining the effect of iron and phosphorus compounds on the growth of various algal species
Zhang et al. Effects of AHLs inhibitors and exogenous AHLs on the stability and activity of Anammox granules at low temperatures
Varma et al. Kinetics of oxygen uptake by dead algae
Hwang et al. Evaluating a correlation between volatile suspended solid and adenosine 5′-triphosphate levels in anaerobic treatment of high organic suspended solids wastewater
Kale et al. Rapid determination of biochemical oxygen demand
Hetling et al. Kinetics of the steady-state bacterial culture. II. Variation in synthesis.
CN110672588A (en) Cleaning reagent for chemiluminescence reaction system and preparation method thereof
NL2028995B1 (en) Method for screening carbon sources for enhancing biofilm anaerobic denitrification for pond wastewater treatment
JP2001149094A (en) Determination of activity of nitrifying bacteria and treatment of water using the method
Hannan et al. An algal toxicity test and evaluation of adsorption effect
JPH06153989A (en) Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees