JPH06153989A - Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function - Google Patents

Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function

Info

Publication number
JPH06153989A
JPH06153989A JP31384592A JP31384592A JPH06153989A JP H06153989 A JPH06153989 A JP H06153989A JP 31384592 A JP31384592 A JP 31384592A JP 31384592 A JP31384592 A JP 31384592A JP H06153989 A JPH06153989 A JP H06153989A
Authority
JP
Japan
Prior art keywords
carrier
microorganisms
organism
microorganism
bioimmobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31384592A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyanagi
重夫 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP31384592A priority Critical patent/JPH06153989A/en
Publication of JPH06153989A publication Critical patent/JPH06153989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine the conditions for separation of a microorganism from an organism-immobilizing carrier by ultrasonic treatment considering the survival ratio of the microorganism with first priority and to evaluate according to a simple method whether the organism-immobilizing carrier performs an organism decomposition and removal function or not. CONSTITUTION:In this method for separation of a microorganism from an organism-immobilizing carrier and the method for evaluation of the organism decomposition function, an ultrasonic wave generator having a duty cycle control function is used and ultrasonic treatment is carried out under conditions of 20 to 80% duty cycle, 15 to 50W ultrasonic wave generation power and 1 to 5min treatment time. Further, the method for evaluation of the organism decomposition function is carried out by sampling the organism-immobilizing carrier with time, extracting ATP from the samples, adding a luminous reagent to the extracts, measuring the intensity of luminescence and continuing the measurement until the concentration of ATP reaches a constant value and used as a standard for judgment of the adsorptivity of the carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生物固定化担体からの微
生物剥離法及び生物分解機能評価法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exfoliating microorganisms from a bioimmobilized carrier and a method for evaluating biodegradation function.

【0002】[0002]

【従来の技術】近年、水事情の悪化に伴い、有機汚染物
含有量の高い湖沼水や河川水等の原水を使用せざるを得
ない浄水処理施設が増加している。これらの浄水処理施
設では、良質の飲料水を確保するため、通常の浄水設備
に生物処理法を加える処理方法が検討されている(吉村
俊治ら,水質汚濁研究,9,484−489頁,198
6年参照)。
2. Description of the Related Art In recent years, with the deterioration of water conditions, the number of water purification treatment facilities that must use raw water such as lake water or river water having a high content of organic pollutants is increasing. In these water treatment facilities, in order to secure good quality drinking water, a treatment method in which a biological treatment method is added to an ordinary water treatment facility is being investigated (Shunji Yoshimura et al., Water Pollution Research, 9, 484-489, 198).
See 6 years).

【0003】中でも生物活性炭(Biological active ca
rbon,以下BACと略称する)を用いた処理は、生物固
定化担体としての通常の活性炭の持つ優れた吸着特性
と、該活性炭の吸着物質である生物分解による吸着座の
再生作用とにより、高い有機物除去能とこの除去能の長
期持続が可能であることが明らかとなり、今後の高度浄
水処理の有力な方法として期待されている(黒沢義乗
ら,水質汚濁研究,11,577−589頁,1988
年、同11,590−588頁,1988年、鈴木順三
ら,水環境学会誌,15,45−51頁,1992年参
照)。
Among them, biological activated carbon
rbon (hereinafter abbreviated as BAC)) is excellent due to the excellent adsorption characteristics of ordinary activated carbon as a bioimmobilization carrier and the regenerating action of adsorption sites by biodegradation which is an adsorbed substance of the activated carbon. It has been clarified that the ability to remove organic matter and its long-term sustainability are possible, and it is expected as an effective method for future advanced water purification treatment (Kurosawa Yoshinori et al., Water Pollution Research, 11, 577-589, 1988).
11: 590-588, 1988, Junzo Suzuki et al., Journal of Japan Society on Water Environment, 15, 45-51, 1992).

【0004】このBAC処理とは、活性炭等の生物固定
化担体に各種細菌類とか原生動物、微小後生動物等の微
生物を付着生息させた混合培養系により、有機物を処理
する方法である。
The BAC treatment is a method of treating organic matter by a mixed culture system in which various bacteria and microorganisms such as protozoa and micro metazoa are attached and inhabited on a biologically immobilized carrier such as activated carbon.

【0005】一方、BAC中の微生物解析を目的とし
て、該BACに付着生息した微生物の剥離に超音波処理
を行うことが報告されている(例えば鈴木順三ら,水環
境学会誌,15,45−51頁,1992年、芳倉太郎
ら,用水と廃水,33,463−470頁,1991
年、東條光峰ら,第25回水質汚濁学会講演集,256
−257頁,1991年、金周永ら,第26回日本水環
境学会年会講演集,128−129頁,1992年参
照)。
On the other hand, for the purpose of analyzing the microorganisms in BAC, it has been reported that ultrasonic treatment is applied to the exfoliation of microorganisms attached and inhabiting the BAC (for example, Junzo Suzuki et al., Journal of Japan Society for Water Environment, 15, 45). -51, 1992, Taro Yoshikura et al., Water and Wastewater, 33, 463-470, 1991.
Mitsuho Tojo et al., 25th Annual Conference on Water Pollution Society, 256
257, pp. 1991, Kin Shu Naga et al., 26th Annual Meeting of the Japan Society on Water Environment, pp. 128-129, 1992).

【0006】このような超音波処理によるBACからの
微生物剥離条件の選定について特に詳細に検討している
報告はないが、例えば上記の鈴木らは、水質分析及び生
菌数の測定手段として、寒天培地を用いて培養したBA
Cの湿重1gを減菌生理食塩水で洗浄した後、該減菌生
理食塩水を加えてスパーテルで粉砕し、更に15分間の
超音波処理を行ったという報告があり、又、芳倉らは混
合培養系試料における細菌による2−MIBの分解過程
を調べるために、TOMY精工製UD-200を用いて超音波処理
を行ったという報告がある。更に金らはBACから剥離
した細菌数をアクリジンオレンジ法での評価により、処
理時間3〜5分,強度30W,40W,50W,60
W,70Wの超音波処理を検討しており、強度が40
W,3分間の処理条件を選定したという報告がなされて
いる。
[0006] Although no report has been made on the selection of conditions for removing microorganisms from BAC by such ultrasonic treatment in detail, for example, Suzuki et al. Mentioned above, agar is used as a means for water quality analysis and viable cell count measurement. BA cultured with medium
It was reported that 1 g of wet weight of C was washed with sterilized physiological saline, sterilized physiological saline was added, and the mixture was crushed with a spatula and further sonicated for 15 minutes. Reported that ultrasonic treatment was carried out using UD-200 manufactured by TOMY Seiko Co., Ltd. in order to investigate the decomposition process of 2-MIB by bacteria in a mixed culture system sample. Furthermore, Kin et al. Evaluated the number of bacteria exfoliated from BAC by the acridine orange method, treatment time 3 to 5 minutes, intensity 30W, 40W, 50W, 60.
We are considering ultrasonic treatment of W and 70W and the intensity is 40%.
It is reported that the processing conditions of W and 3 minutes were selected.

【0007】他方で、BACが生物分解除去機能を果た
しているか否かの判断基準として、吸着では除去されな
いが、硝化細菌では除去可能なアンモニア性窒素(NH
3−N)とか、吸着,微生物のいずれでも除去可能なト
リハロメタン生成能(THMFP)、ジオスミン、2−
メチルイソボルネオール(2−MIB)等の除去特性を
利用する方法が用いられている(例えば赤澤尚友ら,第
42回全国水道協会発表会,635−637頁,199
1年、三好宗好ら,第43回全国水道協会発表会,25
0−252頁,1992年、名雪輝直ら,第43回全国
水道協会発表会,265−267頁,1992年参
照)。
On the other hand, as a criterion for deciding whether or not BAC fulfills the function of removing biodegradation, ammoniacal nitrogen (NH 3) which is not removed by adsorption but can be removed by nitrifying bacteria is used.
3- N), the ability to generate trihalomethane (THMFP), which can be removed by adsorption or microorganisms, diosmin, 2-
A method utilizing the removal property of methylisoborneol (2-MIB) or the like is used (for example, Naoto Akazawa et al., 42nd National Water Works Association Presentation, 635-637, 199).
1 year, Muneyoshi Miyoshi et al., 43rd National Waterworks Association Presentation, 25
0-252, 1992, Teruki Nayuki et al., 43rd National Water Works Association Presentation, 265-267, 1992).

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
な従来の超音波処理は、生物固定化担体としての活性炭
における微生物の生存率の観点から考慮して必ずしも最
適な方法であるとは言えない面があり、条件的な見地か
らの再検討が要求されている現況にある。
However, such conventional ultrasonic treatment is not necessarily the most suitable method from the viewpoint of the survival rate of microorganisms on activated carbon as a biologically immobilized carrier. Yes, there is a current situation where re-examination from a conditional point of view is required.

【0009】即ち、上記の超音波処理は、磨砕法とかHu
ghesプレス法、Frenchプレス法等の方法と比較してもき
わめて強力であるが、同時に超音波はキャビテーション
で多くの細胞構造体を破砕する能力があるため、微生物
の生存率の面から検討すべき問題点が残存している(微
生物研究法懇談会編、微生物実験法269頁、講談社1
975年参照)。従って微生物の生存率の高い超音波処
理条件を探索する必要がある。
That is, the above ultrasonic treatment is performed by a grinding method or a Hu method.
Although it is extremely powerful compared to ghes press method, French press method, etc., at the same time, ultrasonic waves have the ability to disrupt many cell structures by cavitation, so it should be examined from the aspect of microbial viability. Problems still remain (Microbial Research Methods Round-table Conference, Microbial Experimental Methods page 269, Kodansha 1
1975). Therefore, it is necessary to search for sonication conditions with high survival rate of microorganisms.

【0010】又、BACが生物分解除去機能を果たして
いるか否かの判断基準として用いられているアンモニア
性窒素(NH3−N)の測定には、通常イオンクロマト
グラフが採用され、同じくトリハロメタンの測定にはエ
レクトロン・キャプチャ・ディテクタを検出器とするガ
スクロマトグラフが用いられ、同じくジオスミン、2−
MIBの測定にはガスクロマトグラフ質量分析計を必要
とするが、これらの装置はきわめて高価である上、使用
時には操作員の熟練を要するという難点がある。従って
簡易且つ迅速にBAC生物分解除去機能を評価する方法
の実現が望まれている現状にある。この評価は、例えば
生物活性炭塔における立ち上げの際に、生物分解除去機
能を持つ新たなBACを補充すべきか否かを判断する場
合に特に必要である。
In addition, an ion chromatograph is usually adopted for the measurement of ammonia nitrogen (NH 3 —N), which is used as a criterion for determining whether or not BAC fulfills the function of removing biodegradation, and also the measurement of trihalomethane. A gas chromatograph with an electron capture detector as the detector is used for the same.
A gas chromatograph / mass spectrometer is required for MIB measurement, but these devices are extremely expensive and require the skill of an operator to use them. Therefore, at present, it is desired to realize a method for easily and quickly evaluating the biodegradation and removal function of BAC. This evaluation is particularly necessary when deciding whether or not a new BAC having a biodegradation removal function should be replenished, for example, at the time of start-up in a bioactive carbon tower.

【0011】そこで本発明はこのような従来の超音波処
理によるBACからの微生物剥離条件の選定において、
該微生物の生存率を第一義的に考慮した処理方法を得る
ことを目的とするものである。更に本発明の他の目的
は、簡便な手段によってBACが生物分解除去機能を果
たしているか否かの評価を行うことができる方法を提供
することにある。
[0011] Therefore, the present invention, in the selection of conditions for removing microorganisms from BAC by such conventional ultrasonic treatment,
It is an object of the present invention to obtain a treatment method in which the survival rate of the microorganism is primarily considered. Still another object of the present invention is to provide a method capable of evaluating whether or not BAC has a biodegradation-removing function by a simple means.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、微生物が付着した生物
固定化担体に対して超音波処理を施すことにより、該生
物固定化担体から微生物を剥離して解析する方法におい
て、超音波発生装置としてデューティサイクル調整機能
を持つ機器を採用するとともに、該デューティサイクル
を20%〜80%,超音波発生出力を15W〜50W,
処理時間を1分〜5分の条件下で超音波処理を行うよう
にした生物固定化担体からの微生物剥離法を提供する。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a biologically immobilized carrier having microorganisms attached thereto by subjecting the biologically immobilized carrier to ultrasonic treatment. In the method of separating and analyzing microorganisms from the above, a device having a duty cycle adjusting function is adopted as an ultrasonic wave generator, the duty cycle is 20% to 80%, and the ultrasonic wave generation output is 15 W to 50 W.
Provided is a method for exfoliating a microorganism from a biologically immobilized carrier, wherein ultrasonic treatment is performed under a treatment time of 1 minute to 5 minutes.

【0013】又、請求項3により、微生物が付着した生
物固定化担体を経時的に採取して試料を作成し、この試
料に対して超音波処理を施すことによって微生物を剥離
し、該微生物数が一定値になるまで計数を継続すること
によって生物固定化担体の生物分解機能を評価する方法
において、超音波発生装置としてデューティサイクル調
整機能を持つ機器を採用するとともに、該デューティサ
イクルを20%〜80%,超音波発生出力を15W〜5
0W,処理時間を1分〜5分の条件下で超音波処理を行
うようにした生物分解機能評価法を提供し、請求項4に
より、微生物が付着した生物固定化担体を経時的に採取
して試料を作成し、この試料のATPを抽出して該抽出
液に発光試薬を加えて発光強度を測定し、ATP濃度が
一定値になるまで測定を行うことによって担体吸着能の
判断基準とした生物固定化担体の生物分解機能評価法を
提供する。
Further, according to claim 3, a sample is prepared by sampling the biologically immobilized carrier to which microorganisms are adhered with time, and subjecting the sample to ultrasonic treatment to exfoliate the microorganisms, In the method of evaluating the biodegradation function of the bioimmobilized carrier by continuing the counting until the value becomes a constant value, a device having a duty cycle adjusting function is adopted as the ultrasonic wave generator, and the duty cycle is 20% to 80%, output of ultrasonic wave 15W-5
Provided is a biodegradation function evaluation method in which ultrasonic treatment is performed under the conditions of 0 W and a treatment time of 1 minute to 5 minutes, and according to claim 4, a bioimmobilized carrier to which a microorganism is attached is collected over time. A sample was prepared, ATP of this sample was extracted, a luminescent reagent was added to the extract, the luminescence intensity was measured, and the measurement was performed until the ATP concentration reached a constant value, which was used as a criterion for determining the carrier adsorption capacity. Provided is a biodegradation function evaluation method for a bioimmobilized carrier.

【0014】前記生物固定化担体として生物活性炭を採
用する。
As the bio-immobilized carrier, bio-activated carbon is adopted.

【0015】[0015]

【作用】かかる生物固定化担体からの微生物剥離法によ
れば、上記の条件を採用した超音波処理を施すことによ
り、解析のために生物固定化担体からの微生物の剥離数
を最大とすることができる上、微生物の生存率も極めて
良好になるという結果が得られる。前記の条件は微生物
の生存にとっても穏和な条件であり、固定化担体におけ
る微生物の生存率を高めるという観点からも最適な方法
が得られる。
According to the method for exfoliating microorganisms from the bioimmobilized carrier, the number of exfoliated microorganisms from the bioimmobilized carrier is maximized for analysis by performing ultrasonic treatment using the above conditions. In addition to the above, it is possible to obtain the result that the survival rate of the microorganism is extremely good. The above conditions are also mild conditions for the survival of microorganisms, and an optimal method can be obtained from the viewpoint of increasing the survival rate of the microorganisms on the immobilized carrier.

【0016】又、超音波処理を利用した生物固定化担体
の生物分解機能評価法によれば、超音波処理条件によっ
て生物固定化担体から微生物を剥離して計数するという
簡易な手段によって直接生物固定化担体の生物分解除去
機能を評価することが可能となり、更に生物固定化担体
中のATPを測定し、ATPとNH3−N、トリハロメ
タンの除去特性の関係を明らかにし、且つATPの発光
強度を測定することによって生物固定化担体の生物分解
除去機能を簡易に評価することができる。
Further, according to the method for evaluating the biodegradation function of a bioimmobilized carrier using ultrasonic treatment, direct bioimmobilization is carried out by a simple means of separating and counting the microorganisms from the bioimmobilized carrier under ultrasonic treatment conditions. It is possible to evaluate the biodegradation removal function of the immobilized carrier, further measure ATP in the bioimmobilized carrier, clarify the relationship between the removal properties of ATP and NH 3 -N, trihalomethane, and determine the emission intensity of ATP. By measuring, the biodegradation removal function of the bioimmobilized carrier can be easily evaluated.

【0017】[0017]

【実施例】以下本発明にかかる固定化担体からの微生物
剥離法及び生物分解機能評価法の各種実施例を説明す
る。
EXAMPLES Hereinafter, various examples of the method for exfoliating microorganisms from an immobilized carrier and the method for evaluating biodegradation function according to the present invention will be described.

【0018】〔実施例1〕本実施例では微生物として大
腸菌を選択し、超音波発生装置としてDUTY CYCLE調整機
能を持つ機器を選定して、大腸菌の生存条件を設定し
た。上記DUTY CYCLE調整機能を持つ装置は、例えば1秒
間中の超音波発生時間を調整することができるので、微
生物の生存条件の設定に適している。機器としては島津
製作所製超音波発生装置USP−300もしくはUSP
−600を採用した。
[Embodiment 1] In this embodiment, Escherichia coli was selected as a microorganism, a device having a DUTY CYCLE adjusting function was selected as an ultrasonic generator, and the survival condition of E. coli was set. The device having the DUTY CYCLE adjusting function can adjust the ultrasonic wave generation time in one second, for example, and is therefore suitable for setting the survival condition of microorganisms. The equipment is ultrasonic generator USP-300 or USP manufactured by Shimadzu Corporation.
-600 was adopted.

【0019】1−1.方法 (1)大腸菌(C-600)1白金耳を5mlの肉汁培地2
本に接種し、37℃で一晩、振とう培養する。(2)菌
体を集菌し、生理食塩水で3回洗浄し、10mlの生理
食塩水を加える。(3)菌体0.3ml、減菌生理食塩
水2.7mlを試験管に加え、同時に菌液中の大腸菌数
を3M製ペトリフィルム好気性菌測定プレートで計数す
る。(4)USP−300を用いてDUTY CYCLE50%の
条件でOUTPUT CONTROL:1、2、3、処理時間:1分、
2.5分、5分、7.5分、10分、12.5分、15
分とパラメータを変えて処理する。(5)処理液を10
-6、10-5、10-4倍に希釈し、1mlをペトリフィル
ム好気性菌測定プレートにのせる。(6)48時間大腸
菌を計測する。(7)大腸菌の生存に必要な超音波処理
時間を決定する。
1-1. Method (1) Escherichia coli (C-600) 1 platinum loop with 5 ml of broth medium 2
The book is inoculated and shake-cultured at 37 ° C. overnight. (2) The bacterial cells are collected, washed 3 times with physiological saline, and 10 ml of physiological saline is added. (3) 0.3 ml of bacterial cells and 2.7 ml of sterilized physiological saline are added to a test tube, and at the same time, the number of Escherichia coli in the bacterial solution is counted using a 3M Petrifilm aerobic bacteria measurement plate. (4) OUTPUT CONTROL: 1, 2, 3, processing time: 1 minute under the condition of 50% duty cycle using USP-300
2.5 minutes, 5 minutes, 7.5 minutes, 10 minutes, 12.5 minutes, 15
Process with different minutes and parameters. (5) Add 10 treatment liquids
Dilute -6 , 10 -5 , 10 -4 times, and put 1 ml on a Petrifilm aerobic bacteria assay plate. (6) Count E. coli for 48 hours. (7) Determine the sonication time required for the survival of E. coli.

【0020】尚、上記のOUTPUT CONTROL1は超音波出力
が15W、OUTPUT CONTROL2は同40〜50W、OUTPUT
CONTROL3は同70Wとなっている。
The above-mentioned OUTPUT CONTROL 1 has an ultrasonic output of 15 W, and OUTPUT CONTROL 2 has the same 40-50 W output.
CONTROL3 is the same 70W.

【0021】1−2.結果 図1,図2はOUTPUT CONTROL1,2における超音波の処
理時間(分)と大腸菌の残存率(%)の相関を示し、図
3はOUTPUT CONTROL3における超音波処理時間(分)と
細菌数(cells/ml)の相関を示す。大腸菌が20%以上
の残存率を示す超音波発生条件は、OUTPUT CONTROL1で
は1分、2.5分、5分、7.5分、10分であり、OU
TPUT CONTROL2では1分、2.5分、5分であり、この
条件でBACに吸着した微生物を剥離すれば良い結果が
得られる。又、図3に示したOUTPUT CONTROL3では超音
波の強度が大き過ぎて大腸菌が死滅してしまうことが判
明した。
1-2. Results Figures 1 and 2 show the correlation between the ultrasonic treatment time (minutes) in OUTPUT CONTROL 1 and 2 and the survival rate (%) of Escherichia coli, and Fig. 3 shows the ultrasonic treatment time (minutes) in OUTPUT CONTROL 3 and the number of bacteria ( cells / ml). The ultrasonic wave generation conditions in which Escherichia coli has a residual rate of 20% or more are 1 minute, 2.5 minutes, 5 minutes, 7.5 minutes, and 10 minutes in OUTPUT CONTROL 1, and OU
With TPUT CONTROL 2, it takes 1 minute, 2.5 minutes and 5 minutes. Under these conditions, it is possible to obtain good results by exfoliating the microorganisms adsorbed on BAC. It was also found that the OUTPUT CONTROL 3 shown in FIG. 3 killed E. coli due to the intensity of ultrasonic waves being too high.

【0022】〔実施例2〕実施例1の結果からBACに
吸着した微生物を剥離する条件を決定する。
Example 2 From the results of Example 1, the conditions for exfoliating the microorganisms adsorbed on BAC are determined.

【0023】2−1.方法 (1)0.5gのBACと減菌生理食塩水3.0mlを
試験管に加える。(2)USP−300を用いてDUTY C
YCLE50%で大腸菌が生存する超音波発生条件であるOU
TPUT CONTROL1で1分、2.5分、5分、7.5分、1
0分、OUTPUT CONTROL2で1分、2.5分、5分でBA
Cを超音波処理する。(3)処理液を10-6,10-5
10-4,10-3,10-2倍希釈する。この希釈液1ml
をシャーレに入れ、これに45〜50℃に保温した標準
寒天培地を約15mlずつ無菌的に加え(n=2)、3
6±1℃で48±2時間培養し、BACから剥離した一
般細菌数を決定する(厚生省生活衛生局水道環境部監
修、上水試験法、日本水道協会、1985年による)。
(4)BACに吸着した一般細菌を剥離するための最適
な超音波条件を決定する。
2-1. Method (1) Add 0.5 g of BAC and 3.0 ml of sterile physiological saline to a test tube. (2) DUTY C using USP-300
OU, which is an ultrasonic wave generation condition for E. coli to survive at 50% YCLE
1 minute, 2.5 minutes, 5 minutes, 7.5 minutes, 1 with TPUT CONTROL 1
0 minutes, 1 minute in OUTPUT CONTROL2, 2.5 minutes, BA in 5 minutes
Sonicate C. (3) Treatment liquid is 10 -6 , 10 -5 ,
Dilute 10 −4 , 10 −3 , 10 −2 times. 1 ml of this diluent
In a petri dish, and aseptically add about 15 ml of standard agar medium kept at 45 to 50 ° C (n = 2), 3
After culturing at 6 ± 1 ° C. for 48 ± 2 hours, the number of general bacteria exfoliated from BAC is determined (supervised by Ministry of Health, Health and Welfare Bureau, Water Environment Department, water supply test method, Japan Water Works Association, 1985).
(4) Determine optimum ultrasonic conditions for stripping general bacteria adsorbed on BAC.

【0024】2−2.結果 図4,図5はOUTPUT CONTROLがそれぞれ1,2における
超音波処理時間(分)と細菌数(cells/ml)の相関を示
している。OUTPUT CONTROL1では、5分の条件で剥離数
が最大となり、OUTPUT CONTROL2では、1分の条件で剥
離数が最大となった。
2-2. Results Figures 4 and 5 show the correlation between the ultrasonication time (minutes) and the bacterial count (cells / ml) when OUTPUT CONTROL was 1 and 2, respectively. With OUTPUT CONTROL 1, the number of peels was maximum under the condition of 5 minutes, and with OUTPUT CONTROL 2, the number of peels was maximum under the condition of 1 minute.

【0025】実施例1の大腸菌の残存率と、実施例2の
細菌数の結果を踏まえて、BACに吸着した一般細菌を
剥離するための超音波条件は、OUTPUT CONTROL2で処理
時間1分とすれば良いことが判明した。尚、実験の結果
から超音波発生装置のDUTY CYCLEは20%〜80%が良
好な動作可能範囲にあることが分かった。この時の大腸
菌の生存率は87.5%と極めて良好であった。
Based on the residual ratio of Escherichia coli of Example 1 and the result of the number of bacteria of Example 2, the ultrasonic conditions for stripping general bacteria adsorbed on BAC were as follows: OUTPUT CONTROL 2 for a treatment time of 1 minute. It turned out to be good. From the results of the experiment, it was found that the duty cycle of the ultrasonic generator was 20% to 80% in a good operable range. At this time, the survival rate of Escherichia coli was 87.5%, which was extremely good.

【0026】以上の結果から、超音波発生装置としてU
SP−300もしくはUSP−600を用いて、DUTY C
YCLE20%〜80%,出力15W〜50W,1分〜5分
の条件とすることにより、BACからの大腸菌剥離数が
最大となり、且つ大腸菌の生存率が極めて良好な結果が
得られた。この条件は微生物の生存にとっても極めて穏
和な条件ともなっている。
From the above results, U as an ultrasonic generator
DUTY C using SP-300 or USP-600
Under the conditions of YCLE 20% to 80%, output 15 W to 50 W, and 1 minute to 5 minutes, the number of Escherichia coli detached from BAC was maximized and the survival rate of E. coli was extremely good. This condition is also a very mild condition for the survival of microorganisms.

【0027】〔実施例3〕BACを経時的に採取し、超
音波処理によって微生物数を計数して、BACに吸着し
た微生物数とNH3−N、トリハロメタンの除去特性の
関係を明らかにし、BACの生物分解除去機能を評価す
る。
Example 3 BAC was collected over time and the number of microorganisms was counted by ultrasonic treatment to clarify the relationship between the number of microorganisms adsorbed on BAC and the removal characteristics of NH 3 —N and trihalomethane. Evaluate the biodegradation and removal function of.

【0028】3−1.BACの微生物数の計数方法 (1)経時的に採取した0.5gBACと減菌生理食塩
水3.0mlを試験管に加える。(2)USP−600
を用いてDUTY CYCLE50%,超音波発生条件としてOUTP
UT CONTROL2(出力40W〜50W),1分でBACを
超音波処理する。(3)処理液を10-6,10-5,10
-4,10-3,10-2倍希釈する。この希釈液1mlをシ
ャーレに入れ、これに45〜50℃に保温した標準寒天
培地を約15mlずつ無菌的に加え(n=2)、36±
1℃で48±2時間培養し、BACから剥離した一般細
菌数を決定する。
3-1. Method for counting the number of microorganisms in BAC (1) Add 0.5 g BAC collected over time and 3.0 ml of sterile physiological saline to a test tube. (2) USP-600
DUTY CYCLE 50% using the
UT CONTROL2 (output 40W-50W), ultrasonic processing BAC in 1 minute. (3) Treating solution with 10 -6 , 10 -5 , 10
Dilute -4 , 10 -3 , 10 -2 times. 1 ml of this diluted solution was put in a petri dish, and about 15 ml of standard agar medium kept at 45 to 50 ° C. was aseptically added to each (n = 2), and 36 ±
Incubate at 1 ° C. for 48 ± 2 hours and determine the number of general bacteria detached from BAC.

【0029】3−2.NH3−Nの測定方法 (1)経時的に採取したBAC処理前後のサンプルを
0.45μmのメンブランフィルタに透過させる。
(2)東亜電波製ICA−3010ポンプとICA−3
030電気伝導計を用いてマニュアルに従ってNH3
Nを測定する。
3-2. Method for measuring NH 3 —N (1) Samples before and after BAC treatment collected over time are passed through a 0.45 μm membrane filter.
(2) Toa Denpa ICA-3010 pump and ICA-3
NH 3 − using a 030 electric conductivity meter according to the manual
Measure N.

【0030】3−3.THMFPの測定方法 (1)経時的に採取したBAC処理前後のサンプルを塩
素処理し、トリハロメタンを生成させ、溶媒を抽出する
(厚生省生活衛生局水道環境部監修、上水試験法、日本
水道協会、489頁,1985年による)。(2)エレ
クトロン・キャプチャ・ディテクタを検出器とするガス
クロマトグラフGC−14Aを用いてトリハロメタンを
測定する。
3-3. Measurement method of THMFP (1) Chlorine treatment of samples before and after BAC treatment collected over time to generate trihalomethane and extract solvent (Ministry of Health and Welfare Bureau Health and Sanitation Bureau Water Environment Department supervision, water supply test method, Japan Waterworks Association, 489, 1985). (2) Trihalomethane is measured using a gas chromatograph GC-14A having an electron capture detector as a detector.

【0031】3−4.結果 図6はBACに吸着した微生物数とNH3−N,THM
FPの除去特性を示すものであって、同図によれば、N
3−Nは40日後に80%除去されて一定値となり、
THMFPは60日後に85%除去されて一定値となっ
た。又、40日後のBAC1g湿重量当たりの微生物量
は、約1×106個/mlの一定値を示した。
3-4. Results Figure 6 shows the number of microorganisms adsorbed on BAC and NH 3 -N, THM.
The FP removal characteristic is shown in FIG.
After 40 days, 80% of H 3 -N was removed and became a constant value.
THMFP was removed 85% after 60 days and became a constant value. Further, the amount of microorganisms per 1 g of wet weight of BAC after 40 days showed a constant value of about 1 × 10 6 cells / ml.

【0032】従って超音波発生装置としてUSP−60
0を用いて、DUTY CYCLE50%,処理時間1分の超音波
発生条件を用いることにより、従って最適な超音波処理
条件によってBACから微生物を剥離し、微生物数を計
数するという直接法はBACの生物分解除去機能を評価
できることが判明した。
Therefore, USP-60 is used as an ultrasonic wave generator.
The direct method of separating microorganisms from BAC and counting the number of microorganisms by using the ultrasonic wave generation conditions of 0, DUTY CYCLE 50%, and treatment time of 1 minute according to the optimal ultrasonic treatment condition is the biological method of BAC. It was found that the decomposition and removal function can be evaluated.

【0033】尚、実験を継続した結果、DUTY CYCLE20
%〜80%,処理時間1分〜5分の超音波発生条件を用
いても実用上問題がないことが判明した。
As a result of continuing the experiment, DUTY CYCLE20
It was found that there is no problem in practice even if the ultrasonic wave generation conditions of% -80% and treatment time 1 minute-5 minutes are used.

【0034】〔実施例4〕BACを経時的に採取して該
BAC中のATPを測定し、ATPとNH3−N、トリ
ハロメタンの除去特性の関係を明らかにし、且つATP
の発光強度を測定することによってBACの生物分解除
去機能を評価する。
[Example 4] BAC was collected over time and ATP in the BAC was measured to clarify the relationship between ATP and NH 3 -N and trihalomethane removal characteristics, and
The biodegradation and removal function of BAC is evaluated by measuring the luminescence intensity of BAC.

【0035】4−1.ATP法 (1)1mlの蒸留水を含む小型シャーレにスパーテル
で洗浄済みのBACを0.5gずつ秤量する。次にパス
ツールピペットで蒸留水を除き、1mlの蒸留水を含む
試験管にスパーテルとパスツールピペットを用いてBA
Cをもれなく加える。(2)次にBACを含む試験管に
トリクロロ酢酸を1ml加え、30秒間ボルテックスで
ATPを抽出する。そしてトリス緩衝液を10ml加
え、希釈する。この時点で、BAC中のATPは12倍
希釈されたことになる。(3)0、10-11、10-10
10-9、10-8、10-7、10-6mol/lATPを調
製し、標準曲線を作成する。キッコーマン製汚泥活性度
測定装置(UPD−2000EX)用試薬キット『ルシ
フェール−AS』の発光試薬0.25mlと前記ATP
抽出液0.25mlをポリエチレンチューブに加え、発
光量を明電舍製ルミノメータUPD−8000で測定す
る。(4)ATP標準曲線より、BACから抽出された
ATP量を求める。
4-1. ATP method (1) Weigh 0.5 g of BAC washed with a spatula in small petri dishes containing 1 ml of distilled water. Next, remove distilled water with a Pasteur pipette, and use a spatula and Pasteur pipette to remove BA into a test tube containing 1 ml of distilled water.
Add C without exception. (2) Next, 1 ml of trichloroacetic acid is added to a test tube containing BAC, and ATP is extracted by vortex for 30 seconds. Then, 10 ml of Tris buffer is added and diluted. At this point, ATP in BAC has been diluted 12-fold. (3) 0, 10 -11 , 10 -10 ,
10 -9 , 10 -8 , 10 -7 , 10 -6 mol / l ATP is prepared and a standard curve is prepared. 0.25 ml of the luminescence reagent of the reagent kit "Lucifer-AS" for Kikkoman sludge activity measuring device (UPD-2000EX) and the ATP
0.25 ml of the extract is added to a polyethylene tube, and the amount of luminescence is measured with a luminometer UPD-8000 manufactured by Meiden Saw. (4) The amount of ATP extracted from BAC is obtained from the ATP standard curve.

【0036】4−2.NH3−Nの測定方法 (1)経時的に採取したBAC処理前後のサンプルを
0.45μmのメンブランフィルタに透過させる。
(2)東亜電波製ICA−3010ポンプとICA−3
030電気伝導計を用いてマニュアルに従ってNH3
Nを測定する。
4-2. Method for measuring NH 3 —N (1) Samples before and after BAC treatment collected over time are passed through a 0.45 μm membrane filter.
(2) Toa Denpa ICA-3010 pump and ICA-3
NH 3 − using a 030 electric conductivity meter according to the manual
Measure N.

【0037】4−3.THMFPの測定方法 (1)経時的に採取したBAC処理前後のサンプルを塩
素処理し、トリハロメタンを生成させ、溶媒抽出する。
(2)エレクトロン・キャプチャ・ディテクタを検出器
とするガスクロマトグラフGC−14Aを用いてトリハ
ロメタンを測定する。
4-3. Method for measuring THMFP (1) Chlorine treatment of samples before and after BAC treatment collected over time to generate trihalomethane and solvent extraction.
(2) Trihalomethane is measured using a gas chromatograph GC-14A having an electron capture detector as a detector.

【0038】4−4.結果 図7はBACのATP量とNH3−N,THMFPの除
去特性を示すものであって、同図によれば、NH3−N
は40日後に80%除去されて一定値となり、THMF
Pは60日後に85%除去されて一定値となった。又、
40日後のBAC1g湿重量当たりのATP量は、約
1.2×10-8mol/lの一定値を示した。従ってA
TP法によってもBACの生物分解除去機能を評価でき
ることが判明した。
4-4. Results Figure 7, there is shown the amount of ATP and NH 3 -N of BAC, the removal characteristics of THMFP, according to the figure, NH 3 -N
After 40 days, 80% was removed and it became a constant value.
After 60 days, P was 85% removed and became a constant value. or,
The amount of ATP per 1 g of wet weight of BAC after 40 days showed a constant value of about 1.2 × 10 −8 mol / l. Therefore A
It was found that the TP method can also evaluate the biodegradation removal function of BAC.

【0039】上記のように超音波処理によってBACか
ら微生物を剥離し、微生物数を計数する直接法と、BA
Cから抽出したATPの発光強度を測定するという方法
の何れの方法によってもBACの生物分解除去機能を評
価できることが判明した。このような評価法により、生
物活性炭塔における立ち上げの際に新たなBACを補充
すべきか否かの情報を迅速に得ることができる。
As mentioned above, a direct method for separating microorganisms from BAC by ultrasonication and counting the number of microorganisms, and BA
It was found that the biodegradation removal function of BAC can be evaluated by any of the methods of measuring the emission intensity of ATP extracted from C. By such an evaluation method, it is possible to quickly obtain information as to whether or not new BAC should be supplemented at the time of starting up the biological activated carbon tower.

【0040】[0040]

【発明の効果】以上詳細に説明したように、本発明にか
かる生物固定化担体からの微生物剥離法によれば、規定
された条件下での超音波処理を施すことによって解析の
ために生物固定化担体からの微生物の剥離数を最大と
し、しかも微生物の生存率を良好に保つことができる。
前記規定された条件は微生物の生存にとって穏和な条件
であり、微生物の生存率を高めるという観点から最適な
方法が提供される。
As described above in detail, according to the method for exfoliating microorganisms from the bioimmobilized carrier according to the present invention, ultrasonic treatment under prescribed conditions is performed to fix the organism for analysis. It is possible to maximize the number of exfoliated microorganisms from the modified carrier and to keep the survival rate of the microorganisms good.
The defined conditions are mild conditions for the survival of microorganisms, and an optimal method is provided from the viewpoint of increasing the survival rate of microorganisms.

【0041】又、超音波処理を利用した生物固定化担体
の生物分解機能評価法によれば、超音波処理条件によっ
て生物固定化担体から微生物を剥離して計数するという
簡易な手段によって直接生物固定化担体の生物分解除去
機能を評価することが可能となり、更に生物固定化担体
中のATPを測定し、該ATPの発光強度を測定するこ
とによって生物分解除去機能を簡易に評価することがで
きる。上記の評価方法は高価な装置を必要としない上、
操作員の熟練も要しないという利点があり、しかも迅速
に生物固定化担体の生物分解除去機能を評価して、例え
ば生物活性炭塔における立ち上げの際に新たな生物活性
炭を補充すべきか否かを判断するデータを得ることがで
きる。
According to the method for evaluating the biodegradation function of a bioimmobilized carrier using ultrasonic treatment, direct bioimmobilization is carried out by a simple means of separating and counting the microorganisms from the bioimmobilized carrier under ultrasonic treatment conditions. The biodegradation removal function of the immobilized carrier can be evaluated, and the biodegradation removal function can be easily evaluated by measuring ATP in the bioimmobilized carrier and measuring the emission intensity of the ATP. The above evaluation method does not require expensive equipment and
It has the advantage that it does not require the skill of an operator, and furthermore, the biodegradation / removal function of the bioimmobilized carrier can be quickly evaluated to determine whether or not new bioactive carbon should be replenished, for example, when starting up in a bioactive carbon tower. You can get the data to judge.

【図面の簡単な説明】[Brief description of drawings]

【図1】生物固定化担体に対するOUTPUT CONTROL1にお
ける超音波の処理時間(分)と大腸菌の残存率(%)の
相関を示すグラフ。
FIG. 1 is a graph showing the correlation between the ultrasonic treatment time (minutes) and the residual rate (%) of Escherichia coli in OUTPUT CONTROL 1 for a biologically immobilized carrier.

【図2】生物固定化担体に対するOUTPUT CONTROL2にお
ける超音波の処理時間(分)と大腸菌の残存率(%)の
相関を示すグラフ。
FIG. 2 is a graph showing the correlation between the ultrasonic treatment time (minutes) and the Escherichia coli residual rate (%) in OUTPUT CONTROL 2 for a biologically immobilized carrier.

【図3】生物固定化担体に対するOUTPUT CONTROL3にお
ける超音波処理時間(分)と剥離した細菌数(cells/m
l)の相関を示すグラフ。
[Fig. 3] Ultrasonic treatment time (minutes) and the number of exfoliated bacteria (cells / m) in OUTPUT CONTROL 3 for the biologically immobilized carrier.
The graph which shows the correlation of l).

【図4】生物固定化担体に対するOUTPUT CONTROL1にお
ける超音波処理時間(分)と剥離した細菌数(cells/m
l)の相関を示すグラフ。
[Fig. 4] Ultrasonic treatment time (minutes) and the number of exfoliated bacteria (cells / m) in OUTPUT CONTROL 1 for the biologically immobilized carrier
The graph which shows the correlation of l).

【図5】生物固定化担体に対するOUTPUT CONTROL2にお
ける超音波処理時間(分)と剥離した細菌数(cells/m
l)の相関を示すグラフ。
[Fig. 5] Ultrasonic treatment time (minutes) and the number of exfoliated bacteria (cells / m) in OUTPUT CONTROL 2 for the biologically immobilized carrier
The graph which shows the correlation of l).

【図6】生物固定化担体に吸着した微生物数とNH3
N,THMFPの除去特性を示すグラフ。
FIG. 6 shows the number of microorganisms adsorbed on the bio-immobilized carrier and NH 3
The graph which shows the removal characteristic of N and THMFP.

【図7】生物固定化担体のATP量とNH3−N,TH
MFPの除去特性を示すグラフ。
FIG. 7: ATP amount of bioimmobilized carrier and NH 3 —N, TH
6 is a graph showing the removal characteristics of the MFP.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微生物が付着した生物固定化担体に対し
て超音波処理を施すことにより、該生物固定化担体から
微生物を剥離して解析する方法において、 超音波発生装置としてデューティサイクル調整機能を持
つ機器を採用するとともに、該デューティサイクルを2
0%〜80%,超音波発生出力を15W〜50W,処理
時間を1分〜5分の条件下で超音波処理を行うことを特
徴とする生物固定化担体からの微生物剥離法。
1. A method for separating a microorganism from a biologically immobilized carrier by subjecting the biologically immobilized carrier to which the microorganism has adhered to ultrasonic treatment and analyzing the microorganism, wherein the ultrasonic generator has a duty cycle adjusting function. The equipment that has it is adopted, and the duty cycle is 2
A method for exfoliating microorganisms from a biologically immobilized carrier, which comprises performing ultrasonic treatment under conditions of 0% to 80%, an ultrasonic wave generation output of 15 W to 50 W, and a treatment time of 1 minute to 5 minutes.
【請求項2】 前記生物固定化担体が生物活性炭である
請求項1記載の生物固定化担体からの微生物剥離法。
2. The method for separating microorganisms from a bioimmobilized carrier according to claim 1, wherein the bioimmobilized carrier is bioactive carbon.
【請求項3】 微生物が付着した生物固定化担体を経時
的に採取して試料を作成し、この試料に対して超音波処
理を施すことによって微生物を剥離し、該微生物数が一
定値になるまで計数を継続することによって生物固定化
担体の生物分解機能を評価する方法において、 超音波発生装置としてデューティサイクル調整機能を持
つ機器を採用するとともに、該デューティサイクルを2
0%〜80%,超音波発生出力を15W〜50W,処理
時間を1分〜5分の条件下で超音波処理を行うことを特
徴とする生物固定化担体の生物分解機能評価法。
3. A biologically immobilized carrier having microorganisms attached thereto is collected over time to prepare a sample, and the sample is subjected to ultrasonic treatment to exfoliate the microorganisms so that the number of the microorganisms becomes a constant value. In a method of evaluating the biodegradation function of a bioimmobilized carrier by continuing counting up to, a device having a duty cycle adjusting function is adopted as an ultrasonic generator and the duty cycle is set to 2
A method for evaluating a biodegradation function of a bioimmobilized carrier, which comprises performing ultrasonic treatment under the conditions of 0% to 80%, an ultrasonic wave generation output of 15 W to 50 W, and a treatment time of 1 minute to 5 minutes.
【請求項4】 微生物が付着した生物固定化担体を経時
的に採取して試料を作成し、この試料のATPを抽出し
て該抽出液に発光試薬を加えて発光強度を測定し、AT
P濃度が一定値になるまで測定を行うことによって担体
吸着能の判断基準とすることを特徴とする生物固定化担
体の生物分解機能評価法。
4. An organism-immobilized carrier to which microorganisms adhere is collected over time to prepare a sample, ATP of this sample is extracted, and a luminescent reagent is added to the extract to measure the luminescence intensity.
A method for evaluating a biodegradation function of a bioimmobilized carrier, which is used as a criterion for determining the carrier adsorption capacity by measuring until the P concentration reaches a constant value.
【請求項5】 前記生物固定化担体が生物活性炭である
請求項3,4記載の生物固定化担体の生物分解機能評価
法。
5. The method for evaluating a biodegradation function of a bioimmobilized carrier according to claim 3, wherein the bioimmobilized carrier is bioactive carbon.
JP31384592A 1992-11-25 1992-11-25 Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function Pending JPH06153989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31384592A JPH06153989A (en) 1992-11-25 1992-11-25 Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31384592A JPH06153989A (en) 1992-11-25 1992-11-25 Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function

Publications (1)

Publication Number Publication Date
JPH06153989A true JPH06153989A (en) 1994-06-03

Family

ID=18046206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31384592A Pending JPH06153989A (en) 1992-11-25 1992-11-25 Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function

Country Status (1)

Country Link
JP (1) JPH06153989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103371A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
WO2016159287A1 (en) * 2015-04-03 2016-10-06 住友化学株式会社 Method for producing microbiologic agent, and microbiologic agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103371A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP4506137B2 (en) * 2003-09-29 2010-07-21 富士電機ホールディングス株式会社 Methane fermentation treatment method
WO2016159287A1 (en) * 2015-04-03 2016-10-06 住友化学株式会社 Method for producing microbiologic agent, and microbiologic agent
JP2016195566A (en) * 2015-04-03 2016-11-24 住友化学株式会社 Method for manufacturing microbial preparation, and microbial preparation
US10526223B2 (en) 2015-04-03 2020-01-07 Sumitomo Chemical Company, Limited Method for producing microbiologic agent, and microbiologic agent

Similar Documents

Publication Publication Date Title
Hill et al. Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater
Kott et al. Bacteriophages as viral pollution indicators
Izaguirre et al. A Pseudanabaena species from Castaic Lake, California, that produces 2-methylisoborneol
Karaman et al. Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle–clay complex, activated charcoal, and reverse osmosis membranes
Mackuľak et al. Occurrence of pharmaceuticals, illicit drugs, and resistant types of bacteria in hospital effluent and their effective degradation by boron-doped diamond electrodes
Park et al. Comparison of faecal indicator and viral pathogen light and dark disinfection mechanisms in wastewater treatment pond mesocosms
Dhall et al. Restructuring BOD: COD ratio of dairy milk industrial wastewaters in BOD analysis by formulating a specific microbial seed
JPH06153989A (en) Separation of microorganism from organism immobilizing carrier and evaluation of organism decomposition function
Boylen et al. Microbiological survey of Adirondack lakes with various pH values
Martikainen et al. Occurrence of thermophilic campylobacters in rural and urban surface waters in central Finland
JP3844741B2 (en) Female hormone-degrading bacteria and their uses
Yang et al. Oligotrophic Nitrification and Denitrification Bacterial Communities in a Constructed Sewage Treatment Ecosystem and Nitrogen Removal of NF4
Kott et al. Lagooned, secondary effluents as water source for extended agricultural purposes
Kott Current concepts of indicator bacteria
Hershey et al. A practical guide to studying the microbiology of karst aquifers
JP3168755B2 (en) Method for measuring the amount of microorganisms in bioimmobilized carriers
Abdel-Razek et al. Biodegradation of phenol by Microbacterium terregenes isolated from oil field NORM SOIL
Chang Land application of sewage sludge: Pathogen issues
Paluszak et al. Microbiological evaluation of the effectiveness of sewage sludge sanitization with solar drying technology
Adetuyi et al. Effects of Electromagnetic Fields on the Microbial Load of Waste Water Samples from Selected Industries in Akure Metropolis
CN110938561B (en) Burkholderia Y-4 and application thereof in adsorption of heavy metal ions and sulfanilamide antibiotics
Verma et al. Effectiveness of Aeration units in improving water quality of Lower Lake, Bhopal, India
CN114806921B (en) Denitrifying bacteria with N-methylpyrrolidone as electron donor and application thereof
Singh et al. Municipal Wastewater Treatment by Indigenous Bacterial Isolates
Masago et al. Prevalence and survival of Enterococcus faecium populations carrying the esp gene as a source-tracking marker