JP3163704B2 - Partially stabilized zirconia sintered body - Google Patents

Partially stabilized zirconia sintered body

Info

Publication number
JP3163704B2
JP3163704B2 JP35170791A JP35170791A JP3163704B2 JP 3163704 B2 JP3163704 B2 JP 3163704B2 JP 35170791 A JP35170791 A JP 35170791A JP 35170791 A JP35170791 A JP 35170791A JP 3163704 B2 JP3163704 B2 JP 3163704B2
Authority
JP
Japan
Prior art keywords
stabilized zirconia
partially stabilized
sintered body
zirconia sintered
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35170791A
Other languages
Japanese (ja)
Other versions
JPH05139827A (en
Inventor
浩一 林
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP35170791A priority Critical patent/JP3163704B2/en
Publication of JPH05139827A publication Critical patent/JPH05139827A/en
Application granted granted Critical
Publication of JP3163704B2 publication Critical patent/JP3163704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水熱耐久性に優れた部分
安定化ジルコニア焼結体に関する。
The present invention relates to a partially stabilized zirconia sintered body having excellent hydrothermal durability.

【0002】[0002]

【従来の技術】ジルコニア(ZrO2)は特定の温度付近
で結晶構造が単斜晶と正方晶との間で変化し、これにと
もなって体積も変化する。したがって当該特定の温度付
近で繰り返し使用していると疲労し最終的に崩壊してし
まう。これを抑えるためにジルコニア中にイットリア等
を多量に含んだ完全安定化ジルコニアが知られている。
この完全安定化ジルコニアは常温から約1500℃まで
の範囲において極めて安定しているのであるが、機械的
な強度の点で劣る。
2. Description of the Related Art Zirconia (ZrO 2 ) changes its crystal structure between a monoclinic system and a tetragonal system near a specific temperature, and its volume changes accordingly. Therefore, repeated use near the specific temperature results in fatigue and ultimately collapse. In order to suppress this, completely stabilized zirconia containing a large amount of yttria or the like in zirconia is known.
This fully stabilized zirconia is extremely stable in the range from room temperature to about 1500 ° C., but is inferior in mechanical strength.

【0003】そこで、上記よりもイットリア等を少なく
した部分安定化ジルコニアが知られている。この部分安
定化ジルコニアは曲げ強度及び破壊靭性が大きく、熱膨
張係数が小さいという優れた機械特性を具備しているの
で、アルミナに代って最近では光ファイバーのコネクタ
に組み込むフェルールやスリーブ或いはボンディングキ
ャピラリ等の材料として利用されるようになってきてい
る。
[0003] Therefore, a partially stabilized zirconia in which the amount of yttria and the like is reduced from the above is known. This partially stabilized zirconia has excellent mechanical properties such as high bending strength and fracture toughness and low coefficient of thermal expansion. Therefore, instead of alumina, ferrules, sleeves, bonding capillaries, etc., which are recently incorporated into optical fiber connectors Is being used as a material.

【0004】[0004]

【発明が解決しようとする課題】上述した部分安定化ジ
ルコニアは約200〜400℃(特に水蒸気下)のエー
ジングにより室温では安定であった正方晶が徐々に単斜
晶に相転移し、これにともなう体積変化により経時劣化
を引き起す不利がある。これを解消するため従来では結
晶粒子径を微細化したり、アルミナとの複合体を作製す
る等の手段を試みているが満足できる結果は得られてい
ない。
The partially stabilized zirconia described above undergoes aging at about 200 to 400 ° C. (particularly under steam), and the tetragonal phase which has been stable at room temperature gradually undergoes a phase transition to monoclinic phase. There is a disadvantage of causing deterioration with time due to the accompanying volume change. In order to solve this, conventionally, measures such as reducing the crystal particle diameter or preparing a composite with alumina have been tried, but satisfactory results have not been obtained.

【0005】[0005]

【課題を解決するための手段】上述したように、従来の
手段では満足できる特性が得られない原因を以下に考察
する。先ず、部分安定化ジルコニアの原料中にはAl2
3 、SiO2、Fe23、Na2Oなどの不純物が不可避に
混入している。この原料を用いて作製した焼結体中の不
純物のイオン強度と粒界界面からの深さとの関係を図6
のグラフに示す。
As described above, the reason why satisfactory characteristics cannot be obtained with the conventional means will be discussed below. First, Al 2 O is contained in the raw material of the partially stabilized zirconia.
3 , impurities such as SiO 2 , Fe 2 O 3 , and Na 2 O are inevitably mixed. FIG. 6 shows the relationship between the ionic strength of impurities in the sintered body produced using this raw material and the depth from the grain boundary interface.
Is shown in the graph.

【0006】図6から、Fe、Alについては結晶粒子の
界面と内部とでその強度は全く変わらないので、Feと
Alについては偏析がなく全て固溶していると考えら
れ、一方、NaとSiについては粒界付近において固溶限
界(Naについてはイオン強度で8×102、Siについ
てはイオン強度で2×102)を超え、過剰分が図7
(a)に示すように偏析していると考えられる。
From FIG. 6, it is considered that the strength of Fe and Al is not changed at the interface between the crystal grains and the inside thereof, so that Fe and Al are all segregated without segregation. Si exceeded the solid solution limit near the grain boundary (Na: ionic strength: 8 × 10 2 , Si: ionic strength: 2 × 10 2 ).
It is considered that they are segregated as shown in FIG.

【0007】そして、上記のようにNaが粒界に偏析し
た部分安定化ジルコニアを水熱条件下でエージングする
と、図7(b)に示すようにNaとH2Oとが反応して粒
界にNaOHを生成し、この高濃度のNaOHによって粒
界が腐食し、図7(c)に示すようにマイクロクラック
が発生する。更に相転移に伴う体積変化による内部応力
がこのマイクロクラックに加わることで、マイクロクラ
ックが更に進展して崩壊につながると推察される。
When the partially stabilized zirconia in which Na segregates at the grain boundaries as described above is aged under hydrothermal conditions, Na and H 2 O react with each other as shown in FIG. NaOH is generated at the same time, and the grain boundary is corroded by the high-concentration NaOH, thereby generating microcracks as shown in FIG. 7C. Further, it is presumed that when the internal stress due to the volume change accompanying the phase transition is applied to the microcracks, the microcracks further develop and lead to collapse.

【0008】そこで本発明は、部分安定化ジルコニア焼
結体を構成する結晶の粒界に偏析するナトリウムを酸処
理によって除去した。
Therefore, in the present invention, sodium segregated at the grain boundaries of the crystals constituting the partially stabilized zirconia sintered body is removed by an acid treatment.

【0009】[0009]

【作用】部分安定化ジルコニア用の原料を用いて成形し
た成形体を仮焼した後、成形体中に硝酸等を含浸せしめ
て成形体中のNaを溶出する。
After sintering a molded article formed using a raw material for partially stabilized zirconia, the molded article is impregnated with nitric acid or the like to elute Na in the molded article.

【0010】[0010]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る部分安定化ジル
コニア焼結体の製造プロセスを示すブロック図であり、
本発明にあっては原料としての部分安定化ジルコニア用
粉末82重量部に、溶媒としてベンゼンを100重量
部、有機バインダを18重量部加えて混合し、これをナ
イロン製のミルとボールを用いて十分に混合した後、加
熱蒸留してベンゼンを除去する。そして、加熱しながら
セラミック製ロールミルによる混練で剪断応力をかけて
バインダと部分安定化ジルコニア用粉末とを均一になる
まで濡らし、更にセラミック製スタンプミルにより粉砕
してセラミックコンパウンドを得る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a block diagram showing a manufacturing process of the partially stabilized zirconia sintered body according to the present invention,
In the present invention, 100 parts by weight of benzene as a solvent and 18 parts by weight of an organic binder are added to 82 parts by weight of the powder for partially stabilized zirconia as a raw material and mixed, and the mixture is mixed using a nylon mill and balls. After thorough mixing, heat distillation is performed to remove benzene. Then, the binder and the powder for partially stabilized zirconia are wetted by applying shear stress by kneading with a ceramic roll mill while heating until the binder and the powder for partially stabilized zirconia become uniform, and further pulverized by a ceramic stamp mill to obtain a ceramic compound.

【0011】ここで、混練を樹脂やセラミック等の非金
属材料からなるミル等で行なうことで、コンパウンド中
への金属及び金属酸化物の混入を避けることができるの
で好ましいが、本発明によれば後述する酸処理により金
属及び金属酸化物をセラミックコンパウンドから溶出す
るため、金属製の混練機を用いてもよい。
The kneading is preferably performed by a mill or the like made of a non-metallic material such as a resin or a ceramic, because mixing of a metal and a metal oxide into the compound can be avoided. A metal kneader may be used to elute metals and metal oxides from the ceramic compound by the acid treatment described below.

【0012】以上の如くして調製したセラミックコンパ
ウンドを、射出温度459K、射出圧力100MPaの
条件で4×5×50mm3の成形体を射出成形し、この
成形体を加圧脱脂(窒素ガス雰囲気、8atm、400
℃まで72時間昇温)した後、600〜800℃で1時
間程度大気中で仮焼を行なう。ここで仮焼の温度を60
0〜800℃としたのは、600℃未満だと後述の酸処
理装置にセットするために必要最低限の強度を発揮でき
ず、800℃を超えると金属が完全に酸化物の状態とな
り酸によって溶出されにくくなるからである。
The ceramic compound prepared as described above is injection molded at a temperature of 459 K and an injection pressure of 100 MPa into a molded body of 4 × 5 × 50 mm 3 , and the molded body is press-degreased (nitrogen gas atmosphere, 8 atm, 400
After raising the temperature to 72 ° C. for 72 hours, calcination is performed at 600 to 800 ° C. for about 1 hour in the air. Here, the calcination temperature is set to 60
The reason why the temperature is set to 0 to 800 ° C. is that if the temperature is lower than 600 ° C., the minimum strength required for setting in an acid treatment apparatus described later cannot be exerted. This is because it is difficult to be eluted.

【0013】この後、仮焼後の成形体を硝酸に接触せし
め、成形体に混入しているNaを溶出する酸処理を施
す。ここで、酸処理に用いる酸としては塩酸や王水も考
えられるが、塩酸や王水はClを含むため、セラミック
コンパウンド中にCrが混入していると高温でも安定な
CrCl3を生成するため硝酸が最も好ましい。
After that, the calcined compact is brought into contact with nitric acid and subjected to an acid treatment for eluting Na mixed in the compact. Here, hydrochloric acid or aqua regia can be considered as the acid used in the acid treatment. However, since hydrochloric acid or aqua regia contains Cl, if Cr is mixed in the ceramic compound, it produces stable ClCl3 even at a high temperature. Is most preferred.

【0014】そして、酸処理によってNaを除去した成
形体を大気中、1420℃まで12時間で昇温して焼成
し、この焼結体をダイヤモンド研削研磨機で3×4×4
0mm3の試料を得た。
The molded body from which Na has been removed by acid treatment is heated to 1420 ° C. in the air for 12 hours and fired, and the sintered body is 3 × 4 × 4 with a diamond grinding and polishing machine.
A sample of 0 mm 3 was obtained.

【0015】ここで図2は上記酸処理した成形体を後述
の条件で焼成した焼結体の粒界界面からの深さと不純物
元素のイオン強度との関係を示すグラフであり、このグ
ラフから明らかなように、酸処理によって結晶粒子の界
面に偏析していたNaは除去され、微量Naは焼結体中に
均一に固溶していることがわかる。ここで、不純物元素
の粒界への偏析状態は二次イオン質量分析装置(SIMS:
トムソンジャパン製PF6300)を用いて、試料破面(粒
界)から深さ方向に測定した。
FIG. 2 is a graph showing the relationship between the depth from the grain boundary interface and the ionic strength of the impurity element of the sintered body obtained by firing the above-mentioned acid-treated compact under the conditions described below. Thus, it was found that Na segregated at the interface of the crystal grains was removed by the acid treatment, and a trace amount of Na was uniformly dissolved in the sintered body. Here, the segregation state of the impurity element at the grain boundary is determined by a secondary ion mass spectrometer (SIMS:
It was measured in the depth direction from the sample fracture surface (grain boundary) using Thomson Japan PF6300).

【0016】[0016]

【発明の効果】上記の試料(本発明に係る部分安定化ジ
ルコニア焼結体)と従来の部分安定化ジルコニア焼結体
の水熱処理の前後における曲げ強度及びワイブル係数を
比較した結果を以下の(表1)に示す。ここで、曲げ強
度については3点曲げ試験機(島津製作所:OSS−5
00)を用いてスパン30mm、クロスヘッドスピード
0.5mm/minの条件でJISR1601に準じて
行なった。
The bending strength and Weibull coefficient of the above sample (partially stabilized zirconia sintered body according to the present invention) and a conventional partially stabilized zirconia sintered body before and after hydrothermal treatment are shown below. It is shown in Table 1). Here, regarding the bending strength, a three-point bending tester (Shimadzu Corporation: OSS-5)
00) according to JISR1601 under the conditions of a span of 30 mm and a crosshead speed of 0.5 mm / min.

【0017】[0017]

【表1】 [Table 1]

【0018】(表1)から明らかなように、本発明に係
る部分安定化ジルコニア焼結体は従来の部分安定化ジル
コニア焼結体に比較して、水熱処理後の曲げ強度及びワ
イブル係数が大幅に向上していることが分る。
As is apparent from Table 1, the partially stabilized zirconia sintered body according to the present invention has a significantly higher bending strength and Weibull coefficient after hydrothermal treatment than the conventional partially stabilized zirconia sintered body. You can see that it has improved.

【0019】また上記の試料と従来の部分安定化ジルコ
ニア焼結体の水熱処理の前後における表面と破面の顕微
鏡写真を図3乃至図5に示す。ここで、試料の表面及び
破面の観察は走査型電子顕微鏡(SEM:日立製作所S
ー800)を用い、更に水熱処理はオートクレーブ(耐
圧硝子工業製)を用いて573K、8MPaの水蒸気下
で9時間行なった。
FIGS. 3 to 5 show micrographs of the surface and fracture surface of the sample and the conventional partially stabilized zirconia sintered body before and after the hydrothermal treatment. Here, the observation of the surface and the fracture surface of the sample is performed by a scanning electron microscope (SEM: Hitachi, Ltd.
-800), and the hydrothermal treatment was performed for 9 hours under a steam of 573 K and 8 MPa using an autoclave (manufactured by Pressure Glass).

【0020】本発明に係る部分安定化ジルコニア焼結体
も従来の部分安定化ジルコニア焼結体も水熱処理前にあ
っては、その表面はいずれも鏡面であり、また破面はい
ずれも図3に示すように内部にポアが認められるが、マ
イクロクラックは認められない。一方水熱処理後にあっ
ては、酸処理を行なった本発明に係る部分安定化ジルコ
ニア焼結体は図4(a)に示すように表面に粒界を示す
線は確認できるが大きく成長したマイクロクラックは認
められなず、酸処理を行なわない従来の部分安定化ジル
コニア焼結体は図4(b)に示すように表面に大きく成
長したマイクロクラックが認められる。同様に本発明に
係る部分安定化ジルコニア焼結体は図5(a)に示すよ
うに破面にマイクロクラックは認められず、酸処理を行
なわない従来の部分安定化ジルコニア焼結体は図5
(b)に示すように破面にはっきりとマイクロクラック
が認められる。
Before the hydrothermal treatment, both the partially stabilized zirconia sintered body according to the present invention and the conventional partially stabilized zirconia sintered body are mirror-finished, and the fracture surfaces are all shown in FIG. As shown in the figure, pores are observed inside, but no microcracks are observed. On the other hand, after the hydrothermal treatment, the partially stabilized zirconia sintered body according to the present invention, which was subjected to the acid treatment, showed a line showing a grain boundary on the surface as shown in FIG. No micro-cracks were observed on the surface of the conventional partially stabilized zirconia sintered body not subjected to the acid treatment, as shown in FIG. 4 (b). Similarly, in the partially stabilized zirconia sintered body according to the present invention, as shown in FIG. 5 (a), no microcrack is observed on the fracture surface, and the conventional partially stabilized zirconia sintered body without acid treatment is shown in FIG.
Microcracks are clearly observed on the fracture surface as shown in (b).

【0021】以上の試験結果からも明らかなように本発
明によれば、部分安定化ジルコニア焼結体の粒界に偏析
するナトリウムを焼成前の酸処理によって除去したの
で、マイクロクラックの成長を抑制して、水熱条件下で
も耐久性に優れたものが得られる。
As apparent from the above test results, according to the present invention, sodium segregated at the grain boundaries of the partially stabilized zirconia sintered body was removed by an acid treatment before firing, so that the growth of microcracks was suppressed. Thus, a material having excellent durability even under hydrothermal conditions can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る部分安定化ジルコニア焼結体の製
造手順を示したブロック図
FIG. 1 is a block diagram showing a manufacturing procedure of a partially stabilized zirconia sintered body according to the present invention.

【図2】本発明に係る部分安定化ジルコニア焼結体の粒
界界面からの深さと不純物元素のイオン強度との関係を
示すグラフ
FIG. 2 is a graph showing the relationship between the depth from the grain boundary interface of the partially stabilized zirconia sintered body according to the present invention and the ionic strength of impurity elements.

【図3】水熱処理前の本発明に係る部分安定化ジルコニ
ア焼結体と従来の部分安定化ジルコニア焼結体の破面の
粒子構造を表す顕微鏡写真
FIG. 3 is a micrograph showing a grain structure of a fracture surface of a partially stabilized zirconia sintered body according to the present invention before hydrothermal treatment and a conventional partially stabilized zirconia sintered body.

【図4】(a)は水熱処理後の本発明に係る部分安定化
ジルコニア焼結体の表面の粒子構造を表す顕微鏡写真、
(b)は水熱処理後の従来の部分安定化ジルコニア焼結
体の表面の粒子構造を表す顕微鏡写真
FIG. 4A is a micrograph showing the particle structure of the surface of a partially stabilized zirconia sintered body according to the present invention after hydrothermal treatment,
(B) is a micrograph showing the particle structure of the surface of the conventional partially stabilized zirconia sintered body after the hydrothermal treatment.

【図5】(a)は水熱処理後の本発明に係る部分安定化
ジルコニア焼結体の破面の粒子構造を表す顕微鏡写真、
(b)は水熱処理後の従来の部分安定化ジルコニア焼結
体の破面の粒子構造を表す顕微鏡写真
FIG. 5 (a) is a micrograph showing a grain structure of a fracture surface of a partially stabilized zirconia sintered body according to the present invention after hydrothermal treatment,
(B) is a micrograph showing a grain structure of a fracture surface of a conventional partially stabilized zirconia sintered body after hydrothermal treatment.

【図6】部分安定化ジルコニア焼結体の粒界界面からの
深さと不純物元素のイオン強度との関係を示すグラフ
FIG. 6 is a graph showing the relationship between the depth from the grain boundary interface of a partially stabilized zirconia sintered body and the ionic strength of an impurity element.

【図7】NaOHによる粒界の浸食過程を示す拡大図FIG. 7 is an enlarged view showing the erosion process of a grain boundary by NaOH.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/48 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/48 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジルコニア中にマグネシア、イットリア
或いはカルシア等を含んだ部分安定化ジルコニア焼結体
において、この焼結体は酸処理によって粒界に偏析する
ナトリウムが除去されていることを特徴とする部分安定
化ジルコニア焼結体。
1. A partially stabilized zirconia sintered body containing magnesia, yttria or calcia in zirconia, wherein sodium segregated at grain boundaries is removed by acid treatment. Partially stabilized zirconia sintered body.
JP35170791A 1991-11-19 1991-11-19 Partially stabilized zirconia sintered body Expired - Fee Related JP3163704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35170791A JP3163704B2 (en) 1991-11-19 1991-11-19 Partially stabilized zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35170791A JP3163704B2 (en) 1991-11-19 1991-11-19 Partially stabilized zirconia sintered body

Publications (2)

Publication Number Publication Date
JPH05139827A JPH05139827A (en) 1993-06-08
JP3163704B2 true JP3163704B2 (en) 2001-05-08

Family

ID=18419076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35170791A Expired - Fee Related JP3163704B2 (en) 1991-11-19 1991-11-19 Partially stabilized zirconia sintered body

Country Status (1)

Country Link
JP (1) JP3163704B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
窪田 吉孝,「高強度・高靱性ジルコニアの低温劣化と疲労」,機能材料(1989),第9巻第2号第14〜25頁

Also Published As

Publication number Publication date
JPH05139827A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
EP0311264A2 (en) Ceramic cutting tool inserts and production thereof
US4764491A (en) Low temperature sintering of yttria stabilized zirconia with lanthana borate additions
US4690911A (en) Zirconia ceramics and process for producing the same
JPH04130049A (en) Ceramic composite material and its production
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JP3163704B2 (en) Partially stabilized zirconia sintered body
JP2000211968A (en) Highly durable piezoelectric composite ceramics and their production
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JP2004115343A (en) Method of producing partially stabilized zirconia sintered compact
JP2004075425A (en) Partially stabilized zirconia sintered compact
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
Ćurković et al. Comparison of Mechanical Properties of Conventionally and Non-Conventionally Sintered Cold Isostatically Pressed Al2O3 Ceramics
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JP3121996B2 (en) Alumina sintered body
JPH07291722A (en) Production of ceramics sintered compact
JP2581939B2 (en) High-strength alumina sintered body and method for producing the same
JP2581936B2 (en) Alumina sintered body and method for producing the same
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH0813702B2 (en) Composite ceramics
JPH05319910A (en) Ceramic composite material and its production
Kapuri et al. Sintering of fused mullite based particulate composites containing zirconia
JP2922713B2 (en) Zirconia sintered body for tools
Marino et al. The effect of addition of ball clay and wollastonite on properties of sintered zircon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

LAPS Cancellation because of no payment of annual fees