JP3162864B2 - A method for producing a polycrystalline semiconductor thin film. - Google Patents
A method for producing a polycrystalline semiconductor thin film.Info
- Publication number
- JP3162864B2 JP3162864B2 JP05232393A JP5232393A JP3162864B2 JP 3162864 B2 JP3162864 B2 JP 3162864B2 JP 05232393 A JP05232393 A JP 05232393A JP 5232393 A JP5232393 A JP 5232393A JP 3162864 B2 JP3162864 B2 JP 3162864B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- amorphous
- hydrogen
- semiconductor thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に光起電力装置の半
導体層に用いられる多結晶半導体薄膜の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polycrystalline semiconductor thin film used for a semiconductor layer of a photovoltaic device.
【0002】[0002]
【従来の技術】図1は、i層として多結晶Ge膜を備え
た光起電力装置の模式的断面図である。2. Description of the Related Art FIG. 1 is a schematic sectional view of a photovoltaic device having a polycrystalline Ge film as an i-layer.
【0003】この光起電力装置は、次の様に形成され
る。[0003] This photovoltaic device is formed as follows.
【0004】ガラス基板1上に、 膜厚が2000Å〜
1μmのAgまたはAlから成る裏面電極2、支持体と
して膜厚が約500Åの非晶質Ge膜から成るn層3、
膜厚が約1000Åの非晶質Ge膜から成るi層4を順
次積層する。On a glass substrate 1, a film thickness of 2000-
A back electrode 2 made of 1 μm Ag or Al, an n-layer 3 made of an amorphous Ge film having a thickness of about 500 ° as a support,
An i-layer 4 made of an amorphous Ge film having a thickness of about 1000 ° is sequentially laminated.
【0005】ここで、上記n層3、i層4を公知のプラ
ズマCVD法で形成した。i層4の形成条件は、圧力
0.2torr、RFパワ−10W、GeH4/H2:4
0SCCMである。Here, the n layer 3 and the i layer 4 were formed by a known plasma CVD method. The conditions for forming the i-layer 4 were as follows: a pressure of 0.2 torr, an RF power of 10 W, and GeH 4 / H 2 : 4.
0 SCCM.
【0006】そして、ゴ−ルドイメ−ジ炉によりN2雰
囲気中で熱アニ−ルを4時間行い、上記非晶質Ge膜か
ら成るi層4を固相成長させた。[0006] Then, GORE - Rudoime - thermal annealing in an N 2 atmosphere by di furnace - performed 4 hours Le, and the i layer 4 made of the amorphous Ge film was solid-phase crystallization.
【0007】ただし、固相成長温度としては、断面SE
Mにより粒径200Å以上の結晶粒が認められた温度を
採用した。[0007] However, the solid phase growth temperature is the cross-section SE.
The temperature at which a crystal grain having a particle size of 200 ° or more was recognized by M was adopted.
【0008】その後、膜厚が約200Åの非晶質Si膜
からなるp層5をプラズマCVD法で形成し、膜厚が2
000〜6000ÅのITO等の透明電極膜6を順次積
層する。Thereafter, a p-layer 5 made of an amorphous Si film having a thickness of about 200 ° is formed by a plasma CVD method.
A transparent electrode film 6 of ITO or the like having a thickness of 2,000 to 6000 ° is sequentially laminated.
【0009】図2に、非晶質Ge膜における膜中水素量
と固相成長温度の関係を示す。FIG. 2 shows the relationship between the hydrogen content in the amorphous Ge film and the solid phase growth temperature.
【0010】図2より、膜中水素量2.5%の非晶質G
e膜の固相成長温度は380℃で、膜中水素量9.5%
の非晶質Ge膜の固相成長温度は460℃である。FIG. 2 shows that amorphous G having a hydrogen content of 2.5%
e The solid phase growth temperature of the film is 380 ° C, and the hydrogen content in the film is 9.5%.
The solid phase growth temperature of the amorphous Ge film is 460 ° C.
【0011】膜中水素量は基板温度の制御(室温〜40
0℃)によって、制御することができる。すなわち、基
板温度を350℃に設定することによって、膜中水素量
2.5%、基板温度を80℃に設定することによって、
膜中水素量9.5%とすることができる。The amount of hydrogen in the film is controlled by controlling the substrate temperature (from room temperature to 40
0 ° C.). That is, by setting the substrate temperature to 350 ° C., the hydrogen content in the film is set to 2.5%, and the substrate temperature is set to 80 ° C.,
The hydrogen content in the film can be 9.5%.
【0012】表1は、膜中水素量2.5%の非晶質Ge
膜の固相成長によって得られた多結晶Ge膜(i層4)
を備えた光起電力装置Aと、膜中水素量9.5%の非晶
質Ge膜の固相成長によって得られた多結晶Ge膜(i
層4)を備えた光起電力装置Bの出力特性を示す。Table 1 shows that amorphous Ge having a hydrogen content of 2.5% in the film was used.
Polycrystalline Ge film obtained by solid phase growth of film (i-layer 4)
And a polycrystalline Ge film (i) obtained by solid-phase growth of an amorphous Ge film having a hydrogen content of 9.5% in the film.
4 shows output characteristics of a photovoltaic device B having a layer 4).
【0013】ただし、測定値は、基準光源(AM1.
5)、100mW/cm2照射下の条件に基づくもので
ある。However, the measured values are based on the reference light source (AM1.
5) Based on conditions under irradiation of 100 mW / cm 2 .
【0014】[0014]
【表1】 [Table 1]
【0015】表1より明らかなように、光活性層として
膜中水素量9.5%の非晶質Ge膜の固相成長膜を備え
た光起電力装置Bの方が全体的により良い出力特性を示
している。As is apparent from Table 1, the photovoltaic device B provided with a solid-phase grown film of an amorphous Ge film having a hydrogen content of 9.5% as a photoactive layer has a better overall output. The characteristics are shown.
【0016】これは、水素による補償効果により膜特性
が良くなった結果である。This is a result of improving the film characteristics due to the compensation effect of hydrogen.
【0017】しかし、唯一、Vocについては、光起電
力装置Bの方が30mVも低い。However, only Voc is lower by 30 mV in the photovoltaic device B.
【0018】これは、膜中水素量の多い非晶質半導体薄
膜の方がアニ−ル温度が高くなるために、Vocが低下
したものと思われる。This is probably because the amorphous semiconductor thin film having a large amount of hydrogen in the film has a higher annealing temperature, and thus has a lower Voc.
【0019】因みに、PHILOSOPHICAL M
AGAZINE,Vol60,1989,p3−9にお
いては、結晶成長温度が500℃以上というような高温
になるとの記載がある。By the way, PHILOSOPICAL M
AGAZINE, Vol 60, 1989, p3-9, states that the crystal growth temperature is as high as 500 ° C. or higher.
【0020】[0020]
【発明が解決しようとする課題】そこで本発明は上記に
鑑みて、結晶成長温度を低下させることにより、非晶質
半導体薄膜を結晶化させた多結晶半導体薄膜の特性を改
善することを課題とする。In view of the above, an object of the present invention is to improve the characteristics of a polycrystalline semiconductor thin film obtained by crystallizing an amorphous semiconductor thin film by lowering the crystal growth temperature. I do.
【0021】[0021]
【課題を解決するための手段】支持体上に形成された水
素を含有する非晶質半導体薄膜に、熱処理を施すことに
よって、多結晶化せしめる多結晶半導体薄膜の製造方法
において、上記非晶質半導体薄膜の支持体側に膜中水素
含有量の少ない領域を設けたことを特徴とする。According to a method for producing a polycrystalline semiconductor thin film in which a hydrogen-containing amorphous semiconductor thin film formed on a support is polycrystallized by subjecting it to a heat treatment, A region having a small hydrogen content in the film is provided on the support side of the semiconductor thin film.
【0022】[0022]
【作用】本発明によれば、支持体側に膜中水素含有量の
少ない領域を設けたので、熱処理を施して上記非晶質半
導体膜を多結晶化させる際に、従来より低温で結晶成長
が始まるとともに、膜中水素量の多い領域により、水素
による補償等の効果がもたらされる。According to the present invention, since a region having a low hydrogen content in the film is provided on the support side, when the heat treatment is performed to polycrystallize the amorphous semiconductor film, crystal growth can be performed at a lower temperature than in the past. At the beginning, the region with a large amount of hydrogen in the film brings about effects such as compensation by hydrogen.
【0023】[0023]
【実施例】本発明における光起電力装置の構造は、従来
例と同様に図1で示されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a photovoltaic device according to the present invention is shown in FIG.
【0024】図3は本発明の一実施例に用いる非晶質G
e膜(i層4)中の水素プロファイル(1)を示す。FIG. 3 shows an amorphous G used in one embodiment of the present invention.
3 shows a hydrogen profile (1) in an e-film (i-layer 4).
【0025】膜中の水素量は、成膜時の基板温度によっ
て制御される。The amount of hydrogen in the film is controlled by the substrate temperature during film formation.
【0026】支持体(n層3)との界面からの距離が0
〜250Åの成膜過程では、基板温度を350℃とし、
250Å〜500Åの成膜過程では、基板温度を250
℃とし、500Å〜750Åの成膜過程では、基板温度
を150℃とし、750〜1000Åの成膜過程では、
基板温度を80℃としたとき、上記水素プロファイル
(1)を有する非晶質Ge膜(i層4)が得られた。The distance from the interface with the support (n layer 3) is 0
In the film formation process of ~ 250 °, the substrate temperature was 350 ° C,
In the film formation process of 250 ° to 500 °, the substrate temperature is set to 250 ° C.
° C, the substrate temperature is set to 150 ° C in the film forming process of 500 ° to 750 °, and in the film forming process of 750 to 1000 °,
When the substrate temperature was set to 80 ° C., an amorphous Ge film (i-layer 4) having the hydrogen profile (1) was obtained.
【0027】上記非晶質Ge膜(i層4)は、プラズマ
CVD法で形成した。このときの条件は、圧力0.2t
orr、RFパワ−10W、GeH4/H2:40SCC
Mである。The amorphous Ge film (i-layer 4) was formed by a plasma CVD method. The condition at this time is a pressure of 0.2 t.
orr, RF power 10W, GeH 4 / H 2 : 40SCC
M.
【0028】次に、ゴ−ルドイメ−ジ炉によりN2雰囲
気中で熱アニ−ルを行い、上記非晶質Ge膜を固相成長
させ、多結晶Ge膜を製造した。このときの固相成長温
度を調べたところ、375℃であった。これは、水素の
ほとんど入っていない非晶質Ge膜の場合とほぼ同じ温
度であった。Next, GORE - Rudoime - thermal annealing in an N 2 atmosphere by di furnace - performs Le, the amorphous Ge film was solid-phase growth, to produce a poly-Ge layer. When the solid phase growth temperature at this time was examined, it was 375 ° C. This was almost the same temperature as that of the amorphous Ge film containing almost no hydrogen.
【0029】このときも、断面SEMにより粒径200
Å以上の結晶粒が認められる温度を採用した。At this time, the particle size was 200
The temperature at which more than Å crystal grains were observed was adopted.
【0030】表2は、本発明の方法によって作成した多
結晶Ge膜と従来の方法によって作成した多結晶Ge膜
との特性の比較表である。Table 2 is a comparison table of characteristics between a polycrystalline Ge film formed by the method of the present invention and a polycrystalline Ge film formed by a conventional method.
【0031】[0031]
【表2】 [Table 2]
【0032】表2より明らかなように、本発明の製造方
法の方が、従来の製造方法よりも結晶化温度を低くする
ことができるとともに、粒径が大きく、移動度も大きい
膜を作成することができる。As is clear from Table 2, the production method of the present invention can lower the crystallization temperature and produce a film having a large particle size and a high mobility, as compared with the conventional production method. be able to.
【0033】次に、表3は上記のように製造した多結晶
Ge膜から成るi層4を備えた光起電力装置Cの出力特
性を示す。Next, Table 3 shows the output characteristics of the photovoltaic device C provided with the i-layer 4 made of the polycrystalline Ge film manufactured as described above.
【0034】ただし、測定値は、基準光源(AM1.
5)、100mW/cm2照射下の条件に基づくもので
ある。However, the measured values are based on the reference light source (AM1.
5) Based on conditions under irradiation of 100 mW / cm 2 .
【0035】[0035]
【表3】 [Table 3]
【0036】表1と表3を比較すると、光起電力装置C
では、低温で膜中水素量の多い非晶質Ge膜(i層4)
を固相成長させた結果、出力特性が大きく改善されたこ
とがわかる。Comparison between Tables 1 and 3 shows that the photovoltaic device C
Then, an amorphous Ge film having a large amount of hydrogen in the film at a low temperature (i-layer 4)
As a result, the output characteristics were greatly improved.
【0037】図4は、本発明の他の実施例に用いる非晶
質Ge膜(i層4)中の水素プロファイル(2)を示
す。FIG. 4 shows a hydrogen profile (2) in an amorphous Ge film (i-layer 4) used in another embodiment of the present invention.
【0038】成膜の開始時(支持体(n層3)界面から
の距離が0Å)での基板温度を350℃に設定し、成膜
の終了時(支持体界面からの距離が1000Å)の基板
温度が80℃に設定し、この間の基板温度を徐々に下げ
ていくことによって、水素プロファイル(2)を有する
非晶質Ge膜が得られた。At the start of the film formation (the distance from the interface of the support (n-layer 3) is 0 °), the substrate temperature is set to 350 ° C., and at the end of the film formation (the distance from the interface of the support is 1000 °). By setting the substrate temperature to 80 ° C. and gradually lowering the substrate temperature during this period, an amorphous Ge film having a hydrogen profile (2) was obtained.
【0039】上記非晶質Ge膜(i層4)は、プラズマ
CVD法で形成した。このときの条件は、圧力0.2t
orr、RFパワ−10W、GeH4/H2:40SCC
Mである。The amorphous Ge film (i-layer 4) was formed by a plasma CVD method. The condition at this time is a pressure of 0.2 t.
orr, RF power 10W, GeH 4 / H 2 : 40SCC
M.
【0040】次に、ゴ−ルドイメ−ジ炉によりN2雰囲
気中で熱アニ−ルを行い、上記非晶質Ge膜(i層4)
を固相成長させ、多結晶Ge膜を製造した。このときの
固相成長温度を調べたところ、380℃であった。これ
は、水素のほとんど入っていない非晶質Ge膜の場合と
ほぼ同じ温度であった。Next, thermal annealing is performed in a N 2 atmosphere by a gold image furnace to form the amorphous Ge film (i-layer 4).
Was subjected to solid phase growth to produce a polycrystalline Ge film. When the solid phase growth temperature at this time was examined, it was 380 ° C. This was almost the same temperature as that of the amorphous Ge film containing almost no hydrogen.
【0041】このときも、断面SEMにより粒径200
Å以上の結晶粒が認められる温度を採用した。At this time, the particle size was 200
The temperature at which more than Å crystal grains were observed was adopted.
【0042】表4は、上記のように製造した多結晶Ge
膜から成るi層4を備えた光起電力装置Dの出力特性を
示す。Table 4 shows the polycrystalline Ge produced as described above.
The output characteristic of the photovoltaic device D provided with the i-layer 4 made of a film is shown.
【0043】ただし、測定値は基準光源(AM1.
5)、100mW/cm2照射下の条件に基づくもので
ある。However, the measured values are based on the reference light source (AM1.
5) Based on conditions under irradiation of 100 mW / cm 2 .
【0044】[0044]
【表4】 [Table 4]
【0045】表1と表4を比較すると、光起電力装置D
では、低温で膜中水素量の多い非晶質Ge膜(i層4)
を固相成長させた結果、出力特性が大きく改善された。Comparison between Table 1 and Table 4 shows that the photovoltaic device D
Then, an amorphous Ge film having a large amount of hydrogen in the film at a low temperature (i-layer 4)
As a result of the solid phase growth, the output characteristics were greatly improved.
【0046】しかも、光起電力装置Dにおいては連続的
に水素量が変化しているために、固相成長後の膜のF.
F.の大きな改善が認められた。Moreover, in the photovoltaic device D, since the amount of hydrogen changes continuously, the F.V.
F. Significant improvement was observed.
【0047】尚、光活性層であるi層4の主構成材料と
してGeをとりあげたが、Si等でも同様の効果が得ら
れる。Although Ge is used as a main constituent material of the i-layer 4 as the photoactive layer, the same effect can be obtained with Si or the like.
【0048】また、ガラス基板1上に、透明電極6、p
層5、i層4、n層3、裏面電極2をこの順に積層され
た構造の光起電力装置に用いることも可能である。この
とき支持体はp層5となる。Further, a transparent electrode 6, p
It is also possible to use a photovoltaic device having a structure in which the layer 5, the i-layer 4, the n-layer 3, and the back electrode 2 are stacked in this order. At this time, the support becomes the p-layer 5.
【0049】[0049]
【発明の効果】本発明によれば、非晶質半導体膜の支持
体側に膜中水素含有量の少ない領域を設けることによ
り、結晶化温度を低温化でき、特性の良好な多結晶半導
体薄膜が得られる。According to the present invention, a crystallization temperature can be lowered by providing a region having a low hydrogen content in a film on the support side of an amorphous semiconductor film, and a polycrystalline semiconductor thin film having good characteristics can be obtained. can get.
【図1】多結晶Ge膜を備えた光起電力装置の模式的断
面図を示す。FIG. 1 is a schematic sectional view of a photovoltaic device provided with a polycrystalline Ge film.
【図2】膜中水素量と非晶質Ge膜の固相成長温度の変
化図を示す。FIG. 2 is a diagram showing changes in the amount of hydrogen in the film and the solid phase growth temperature of the amorphous Ge film.
【図3】本発明の一実施例である非晶質Ge膜の水素プ
ロファイル(1)を示す。FIG. 3 shows a hydrogen profile (1) of an amorphous Ge film according to one embodiment of the present invention.
【図4】本発明の他の実施例である非晶質Ge膜の水素
プロファイル(2)を示す。FIG. 4 shows a hydrogen profile (2) of an amorphous Ge film according to another embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−122171(JP,A) 特開 平5−55140(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 31/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-122171 (JP, A) JP-A-5-55140 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/205 H01L 31/04
Claims (1)
晶質半導体薄膜に、熱処理を施すことによって、多結晶
化せしめる多結晶半導体薄膜の製造方法において、上記
非晶質半導体薄膜の支持体側に膜中水素含有量の少ない
領域を設けたことを特徴とする多結晶半導体薄膜の製造
方法。1. A method for producing a polycrystalline semiconductor thin film, which comprises subjecting a hydrogen-containing amorphous semiconductor thin film formed on a support to heat treatment so as to be polycrystallized, comprises the step of supporting the amorphous semiconductor thin film. A method for producing a polycrystalline semiconductor thin film, wherein a region having a low hydrogen content in a film is provided on a body side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05232393A JP3162864B2 (en) | 1993-03-12 | 1993-03-12 | A method for producing a polycrystalline semiconductor thin film. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05232393A JP3162864B2 (en) | 1993-03-12 | 1993-03-12 | A method for producing a polycrystalline semiconductor thin film. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06267860A JPH06267860A (en) | 1994-09-22 |
JP3162864B2 true JP3162864B2 (en) | 2001-05-08 |
Family
ID=12911591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05232393A Expired - Lifetime JP3162864B2 (en) | 1993-03-12 | 1993-03-12 | A method for producing a polycrystalline semiconductor thin film. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3162864B2 (en) |
-
1993
- 1993-03-12 JP JP05232393A patent/JP3162864B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06267860A (en) | 1994-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3322440B2 (en) | Method for producing thin-film polycrystalline silicon | |
JP2917392B2 (en) | Method for manufacturing semiconductor device | |
JP3445187B2 (en) | Semiconductor device defect compensation method | |
JP2003282458A (en) | Semiconductor device and method of manufacturing the same | |
JPH0697070A (en) | Manufacture of polycrystalline silicon film | |
JP3162864B2 (en) | A method for producing a polycrystalline semiconductor thin film. | |
JP2917388B2 (en) | Method for manufacturing semiconductor device | |
JPH0864851A (en) | Photovoltaic element and fabrication thereof | |
JP3623520B2 (en) | Thin film solar cell manufacturing method | |
JP2000349321A (en) | Thin-film solar battery and its manufacture | |
JP3332467B2 (en) | Method for manufacturing polycrystalline semiconductor | |
JPH02194620A (en) | Crystal growth method of semiconductor thin film | |
JP3102772B2 (en) | Method for producing silicon-based semiconductor thin film | |
JP3333187B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH034564A (en) | Manufacture of semiconductor device | |
JP2889718B2 (en) | Method for manufacturing photovoltaic device | |
JPH0282655A (en) | Manufacture of photovolatic device | |
JP3234403B2 (en) | Semiconductor thin film manufacturing method | |
JP2771921B2 (en) | Photovoltaic device | |
JPH03126220A (en) | Semiconductor element | |
JPH02238617A (en) | Crystal growth of semiconductor thin film | |
JP2846704B2 (en) | Photoelectric conversion element | |
JP2810495B2 (en) | Photovoltaic element | |
JP3244375B2 (en) | Method for producing thin-film polycrystalline silicon and method for producing photovoltaic element using the same | |
JP3153202B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090223 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090223 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |