JP3153132B2 - Liquid particle detector - Google Patents

Liquid particle detector

Info

Publication number
JP3153132B2
JP3153132B2 JP25365796A JP25365796A JP3153132B2 JP 3153132 B2 JP3153132 B2 JP 3153132B2 JP 25365796 A JP25365796 A JP 25365796A JP 25365796 A JP25365796 A JP 25365796A JP 3153132 B2 JP3153132 B2 JP 3153132B2
Authority
JP
Japan
Prior art keywords
particle
particles
peak value
output signal
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25365796A
Other languages
Japanese (ja)
Other versions
JPH10104150A (en
Inventor
和夫 一条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP25365796A priority Critical patent/JP3153132B2/en
Publication of JPH10104150A publication Critical patent/JPH10104150A/en
Application granted granted Critical
Publication of JP3153132B2 publication Critical patent/JP3153132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒子と気泡が混在
している液中の粒子と気泡を分離して粒子と気泡の粒径
及び粒数を検出する液中粒子検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged particle detector for separating particles and bubbles in a liquid containing particles and bubbles and detecting the particle diameter and the number of particles and bubbles.

【0002】[0002]

【従来の技術】液中粒子検出装置は、試料液体中に含ま
れる微小な粒子をリアルタイムに計測することが可能で
あり、また、個人差の少ない測定結果が得られる。さら
に、粒子が1リットル中に1個程度あるような、極めて
清浄度の高い液体をも測定可能である。そして、多くの
分野、例えば、電子工業、精密機械、医薬品、食品等の
分野で粒子検出に用いられている。
2. Description of the Related Art An in-liquid particle detection device can measure minute particles contained in a sample liquid in real time, and can obtain measurement results with little individual difference. In addition, it is possible to measure a liquid having extremely high cleanliness, such as one particle per liter. And it is used for particle detection in many fields, for example, in the fields of electronics industry, precision machinery, medicine, food and the like.

【0003】これらの液体には気泡が含まれている場合
があり、気泡が含まれている液体中の粒子を計測し、管
理したいという要求は強い。気泡が含まれている液体と
しては、撹拌された液体、界面活性剤が入っている液
体、ビールや炭酸飲料のように発泡しやすい液体等が挙
げられる。
[0003] These liquids may contain air bubbles, and there is a strong demand to measure and manage particles in the liquids containing air bubbles. Examples of the liquid containing bubbles include a stirred liquid, a liquid containing a surfactant, and a liquid that easily foams such as beer and carbonated beverages.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の液中粒
子検出装置では、粒子と気泡とを識別できないため、気
泡が含まれている試料液体中の粒子のみを選択的に計数
するのが不可能であった。従って、粒子と気泡が混在し
た試料液体の粒子濃度を管理することはできなかった。
However, in the conventional apparatus for detecting particles in liquid, since particles and bubbles cannot be distinguished, it is difficult to selectively count only particles in the sample liquid containing bubbles. It was possible. Therefore, it was not possible to control the particle concentration of the sample liquid in which particles and bubbles were mixed.

【0005】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、試料液体中の粒子と気泡とを区別してそれらを
計数する液中粒子検出装置を提供しようとするものであ
る。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to distinguish between particles and bubbles in a sample liquid and to count them in a liquid. It is intended to provide a particle detection device.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく請
求項1の発明は、流路を通過する試料液体中に存在する
粒子や泡などの粒径に対応した信号を出力する第1およ
び第2の粒子検出手段と、第1および第2の粒子検出手
段の間の流路に設置されて通過する試料液体を所定温度
に冷却又は加熱する液体温度変更手段と、粒子や泡など
の粒径及び粒数を算出する信号処理手段を備え、この信
号処理手段は、前記第1の粒子検出手段の出力信号と前
記第2の粒子検出手段の出力信号を比較し、前記第1の
粒子検出手段の出力信号の波高値が前記第2の粒子検出
手段の出力信号の波高値と略等しいとき、粒子対応信号
を出力する波高値比較回路と、この波高値比較回路の粒
子対応信号を計数して表示する粒子計数表示部からなる
ものである。
According to a first aspect of the present invention, there is provided a first and a second means for outputting a signal corresponding to a particle diameter of particles or bubbles existing in a sample liquid passing through a flow path. A second particle detecting unit, a liquid temperature changing unit disposed in a flow path between the first and second particle detecting units to cool or heat a sample liquid passing therethrough to a predetermined temperature, and a particle such as a particle or a bubble. a signal processing means for calculating the diameter and the particle number, the signal
Signal processing means for comparing the output signal of the first particle detection means with the output signal of the first particle detection means.
Comparing the output signals of the second particle detection means,
The peak value of the output signal of the particle detection means is equal to the second particle detection value.
When the peak value of the output signal of the means is substantially equal to the particle corresponding signal
A peak value comparison circuit that outputs
And a particle count display unit for counting and displaying the child correspondence signal .

【0007】請求項2の発明は、流路を通過する試料液
体中に存在する粒子や泡などの粒径に対応した信号を出
力する第1および第2の粒子検出手段と、第1および第
2の粒子検出手段の間の流路に設置されて通過する試料
液体を所定温度に冷却又は加熱する液体温度変更手段
と、粒子や泡などの粒径及び粒数を算出する信号処理手
段を備え、この信号処理手段は、前記第1の粒子検出手
段の出力信号と前記第2の粒子検出手段の出力信号を比
較し、前記第1の粒子検出手段の出力信号の波高値が前
記第2の粒子検出手段の出力信号の波高値と略等しいと
きに粒子対応信号を出力し、前記第1の粒子検出手段の
出力信号の波高値と前記第2の粒子検出手段の出力信号
の波高値に差があるときに気泡対応信号を出力する波高
値比較回路と、この波高値比較回路の粒子対応信号を計
数して表示する粒子計数表示部と、前記波高値比較回路
の気泡対応信号を計数して表示する気泡計数表示部から
なるものである。
According to a second aspect of the present invention, a sample liquid passing through a flow path is provided.
Outputs signals corresponding to the particle size of particles and bubbles existing in the body.
First and second particle detecting means for applying force;
The sample that is installed in the flow path between the two particle detection means and passes
Liquid temperature changing means for cooling or heating the liquid to a predetermined temperature
And signal processing means for calculating the particle size and number of particles and bubbles
A step, wherein the signal processing means comprises a first particle detecting means.
The output signal of the stage is compared with the output signal of the second particle detection means.
The peak value of the output signal of the first particle detecting means is
When the peak value of the output signal of the second particle detecting means is substantially equal to
And outputs a particle correspondence signal when the first
Peak value of output signal and output signal of the second particle detection means
To output a bubble response signal when there is a difference in the peak values
Value comparison circuit and the particle corresponding signal of this peak value comparison circuit.
A particle counting display unit for counting and displaying, and the peak value comparing circuit
From the bubble count display that counts and displays the air bubble corresponding signal
It becomes .

【0008】請求項3の発明は、請求項1又は2記載の
液中粒子検出装置において、前記第1の粒子検出手段と
前記波高値比較回路の間に試料液体が前記第1および第
2の粒子検出手段間を通過する時間だけ、前記第1の粒
子検出手段の出力信号を遅延させる遅延回路を設けても
よい
According to a third aspect of the present invention, there is provided the apparatus for detecting particles in liquid according to the first or second aspect , wherein the first particle detecting means includes:
The sample liquid is supplied between the first and second peak value comparing circuits.
The first particles only for the time required to pass between the two particle detecting means.
Even if a delay circuit for delaying the output signal of the
Good .

【0009】請求項4の発明は、請求項1、2又は3記
載の液中粒子検出装置において、前記第1および第2の
粒子検出手段は、光散乱式粒子検出器とすることができ
According to a fourth aspect of the present invention, there is provided the apparatus for detecting particles in liquid according to the first, second or third aspect, wherein
The particle detection means can be a light scattering type particle detector
You .

【0010】[0010]

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明の第1
の実施の形態に係る液中粒子検出装置の構成図、図2は
本発明の第2の実施の形態に係る液中粒子検出装置の構
成図、図3は水に対する空気の溶解度を示す特性図、図
4は液中に含まれる粒子の粒径と光散乱強度の関係を示
す特性図、図5は粒子検出手段の一例の構成図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows a first embodiment of the present invention .
Diagram submerged particle detector in accordance with the embodiment, FIG. 2
FIG. 3 is a configuration diagram of a submerged particle detection device according to a second embodiment of the present invention , FIG. 3 is a characteristic diagram showing the solubility of air in water, and FIG. 4 is a graph showing the particle size and light scattering intensity of particles contained in the liquid. FIG. 5 is a characteristic diagram showing the relationship, and FIG. 5 is a configuration diagram of an example of the particle detection means.

【0012】図1に示すように、本発明の第1の実施の
形態に係る液中粒子検出装置1は、第1光散乱式粒子検
出器2、通過する試料液体を所定の温度に冷却する冷却
器3、第2光散乱式粒子検出器4、信号処理部5及び流
量制御部6を備えている。ここで、第1及び第2光散乱
式粒子検出器2,4は、同一であり、試料液体に光を照
射した時に、試料液体中の粒子や気泡などが発する散乱
光を検出し、その強度に対応する波高の電気パルス信号
を出力するものである。なお、周知のように粒子や気泡
などの粒径が大きければ大きいほど、粒子や気泡などの
発する散乱光の強度は高い。
As shown in FIG. 1, a first embodiment of the present invention is shown.
The liquid particle detection device 1 according to the embodiment includes a first light scattering type particle detector 2, a cooler 3 for cooling a passing sample liquid to a predetermined temperature, a second light scattering type particle detector 4, and a signal processing unit 5. And a flow control unit 6. Here, the first and second light scattering type particle detectors 2 and 4 are the same, detect scattered light emitted from particles or bubbles in the sample liquid when irradiating the sample liquid with light, and detect the intensity of the scattered light. To output an electric pulse signal having a wave height corresponding to. Note that, as is well known, the greater the particle size of the particles and bubbles, the higher the intensity of the scattered light emitted by the particles and bubbles.

【0013】信号処理部5は、第1光散乱式粒子検出器
2が出力する電気パルスの波高値Aと第2光散乱式粒子
検出器4が出力する電気パルスの波高値Bとを比較する
パルス波高値比較回路7と、粒子数をカウントして表示
する粒子計数表示部8と、気泡数をカウントして表示す
る気泡計数表示部9から成っている。
The signal processing unit 5 compares the peak value A of the electric pulse output from the first light scattering type particle detector 2 with the peak value B of the electric pulse output from the second light scattering type particle detector 4. It comprises a pulse peak value comparison circuit 7, a particle count display section 8 for counting and displaying the number of particles, and a bubble count display section 9 for counting and displaying the number of bubbles.

【0014】パルス波高値比較回路7は、第1光散乱式
粒子検出器2の出力パルスの波高値Aと第2光散乱式粒
子検出器4の出力パルスの波高値Bとを比較し、それら
の波高値A,Bが略等しいとき(A≒B)、粒子対応パ
ルスを出力し、第1光散乱式粒子検出器2の出力パルス
の波高値Aが第2光散乱式粒子検出器4の出力パルスの
波高値Bより大きいとき(A>B)、気泡対応パルスを
出力する。
The pulse peak value comparing circuit 7 compares the peak value A of the output pulse of the first light scattering type particle detector 2 with the peak value B of the output pulse of the second light scattering type particle detector 4, and compares them. When the peak values A and B are substantially equal (A ≒ B), a pulse corresponding to the particle is output, and the peak value A of the output pulse of the first light scattering type particle detector 2 is equal to that of the second light scattering type particle detector 4. If the peak value of the output pulse is larger than B (A> B), a bubble-corresponding pulse is output.

【0015】また、流量制御手段5は、試料液体が第1
光散乱式粒子検出器2、冷却器2および第2光散乱式粒
子検出器4を接続して液中粒子検出装置1を構成する流
路10を所望の一定速度で流れるように制御するために
設けられている。なお、プラントの流路の一部に液中粒
子検出装置を挿入して、プラントにおける粒子検出を行
う場合に、プラント流路の試料液体の圧力が一定である
時には、必ずしも流量制御手段5を設ける必要はない。
The flow rate control means 5 controls whether the sample liquid is the first liquid.
In order to connect the light scattering type particle detector 2, the cooler 2, and the second light scattering type particle detector 4, and to control the flow path 10 constituting the submerged particle detection device 1 to flow at a desired constant speed. Is provided. In addition, when the particle detection in the plant is performed by inserting the submerged particle detection device into a part of the flow path of the plant and the pressure of the sample liquid in the plant flow path is constant, the flow control means 5 is necessarily provided. No need.

【0016】粒子計数表示部8および気泡計数表示部9
は、パルス波高値比較回路7の出力する粒子対応パルス
および気泡対応パルスを、それぞれカウントして、この
計数結果を粒子数および気泡数として表示する。
Particle counting display 8 and bubble counting display 9
Counts the particle-corresponding pulse and the bubble-corresponding pulse output from the pulse crest value comparison circuit 7, and displays the counting result as the number of particles and the number of bubbles.

【0017】以上のように構成した液中粒子検出装置1
の作用について説明する。粒子又は気泡を含んだ試料液
体が液中粒子検出装置1に導入されると、この試料液体
が第1光散乱式粒子検出器2を通過するとき、第1光散
乱式粒子検出器2はこれらの粒径に対応した電気パルス
を出力する。冷却器3は、試料液体を所定温度に冷却す
る。そして、冷却器3により冷却された試料液体が第2
光散乱式粒子検出器4を通過するとき、第2光散乱式粒
子検出器4は、試料液体に含まれる粒子又は気泡の粒径
に対応した電気パルスを出力する。
The apparatus for detecting particles in liquid 1 configured as described above
The operation of will be described. When a sample liquid containing particles or air bubbles is introduced into the particle-in-liquid detection device 1, when the sample liquid passes through the first light-scattering particle detector 2, the first light-scattering particle detector 2 And outputs an electric pulse corresponding to the particle size. The cooler 3 cools the sample liquid to a predetermined temperature. Then, the sample liquid cooled by the cooler 3 is
When passing through the light scattering type particle detector 4, the second light scattering type particle detector 4 outputs an electric pulse corresponding to the particle diameter of particles or bubbles contained in the sample liquid.

【0018】液中粒子検出装置1を粒子が通過する場合
には、粒子は冷却されても粒径に変化は生じないので、
第1及び第2光散乱式粒子検出器2,4がそれぞれ出力
する電気パルスの波高値A,Bは変わらない。なお、粒
子又は気泡が第1光散乱式粒子検出器2から第2光散乱
式粒子検出器4を通過する時間よりも十分長い時間、第
1及び第2光散乱式粒子検出器2,4が粒子又は気泡を
検出でき、しかも粒子又は気泡の濃度、比率が時間的に
安定している、即ち粒子又は気泡の濃度分布、粒子又は
気泡の比率がほぼ均一であれば、第1及び第2光散乱式
粒子検出器2,4がそれぞれ出力する電気パルスのタイ
ミングがずれていても問題はない。
When the particles pass through the submerged particle detection device 1, the particles do not change in size even if they are cooled.
The peak values A and B of the electric pulses output by the first and second light scattering type particle detectors 2 and 4 do not change. Note that the first and second light scattering particle detectors 2 and 4 are kept for a time sufficiently longer than the time when the particles or bubbles pass from the first light scattering particle detector 2 to the second light scattering particle detector 4. If the particles or bubbles can be detected and the concentration or ratio of the particles or bubbles is stable over time, that is, if the concentration distribution of the particles or bubbles and the ratio of the particles or bubbles are substantially uniform, the first and second light beams are detected. There is no problem even if the timings of the electric pulses output by the scattering particle detectors 2 and 4 are shifted.

【0019】第1光散乱式粒子検出器2が出力する電気
パルスと第2光散乱式粒子検出器4が出力する電気パル
スは、パルス波高値比較回路7に入力される。パルス波
高値回路7は、これらの電気パルスの波高値A,Bがほ
ぼ同一である場合(A≒B)には、粒子対応パルスを出
力する。従って、試料液体が液中粒子検出装置1を通過
した場合は、試料液体に含まれる粒子の数が粒子計数表
示部8に表示される。
The electric pulse output from the first light scattering type particle detector 2 and the electric pulse output from the second light scattering type particle detector 4 are input to a pulse peak value comparison circuit 7. When the peak values A and B of these electric pulses are substantially the same (A ≒ B), the pulse peak value circuit 7 outputs a particle-corresponding pulse. Therefore, when the sample liquid has passed through the in-liquid particle detection device 1, the number of particles contained in the sample liquid is displayed on the particle count display unit 8.

【0020】一方、液中粒子検出装置1を気泡が通過す
る場合には、気泡は冷却されると粒径が縮小するので第
1光散乱式粒子検出器2が出力する電気パルスの波高値
Aの方が、第2光散乱式粒子検出器4が出力する電気パ
ルスの波高値Bよりも大きくなる。
On the other hand, when air bubbles pass through the liquid particle detection device 1, since the air bubbles are cooled and the particle diameter is reduced, the peak value A of the electric pulse output from the first light scattering type particle detector 2 is obtained. Is larger than the peak value B of the electric pulse output from the second light scattering type particle detector 4.

【0021】この理由の1つは、気体の液体に対する溶
解度(液体中に溶解する気体の量)が低温になると低下
するためである。気体が試料液体中に存在する場合、一
部は液体中に溶解し、液体中に溶解できない部分が気泡
となっており、このときの気泡の粒径は溶解度に依存す
る。空気の気泡が水に存在する場合を、図2に示す。
One of the reasons is that the solubility of a gas in a liquid (the amount of gas dissolved in the liquid) decreases as the temperature decreases. When a gas is present in a sample liquid, a part of the gas is dissolved in the liquid, and a part that cannot be dissolved in the liquid is a bubble, and the particle size of the bubble at this time depends on the solubility. FIG. 2 shows the case where air bubbles are present in water.

【0022】2つ目の理由は、図3に示すように、粒子
や気泡に光を照射した場合、粒子や気泡の発する光散乱
強度は、粒子や気泡の粒径に依存し、粒径が大きければ
大きいほど光散乱強度も高いからである。特に、粒径が
微小な粒子である場合には、光散乱強度は粒径の6乗に
比例する。
The second reason is that, as shown in FIG. 3, when particles or bubbles are irradiated with light, the light scattering intensity generated by the particles or bubbles depends on the particle size of the particles or bubbles. This is because the larger the value, the higher the light scattering intensity. In particular, when the particle size is small, the light scattering intensity is proportional to the sixth power of the particle size.

【0023】例えば、気泡が第1光散乱式粒子検出器2
を通過するとき、試料液体の初期温度が40℃であった
として、冷却器3で20℃に冷却された場合を想定する
と、40℃における溶解度は0.014であり、20℃
における溶解度は0.019である。これは、40℃の
時の気泡の粒径が、20℃時の粒径の1.1倍であるこ
とを意味する。さらに、気泡の粒径が0.2〜0.3ミ
クロン程度であると想定すると、光散乱強度は粒径の6
乗に比例するので、この気泡の20℃での光散乱強度と
40℃での光散乱強度とを比較すると、後者の方が前者
の1.8倍となる。
For example, when the bubble is the first light scattering type particle detector 2
Assuming that the initial temperature of the sample liquid is 40 ° C. when the sample liquid is cooled to 20 ° C. by the cooler 3, the solubility at 40 ° C. is 0.014,
Is 0.019. This means that the particle size of the bubbles at 40 ° C. is 1.1 times the particle size at 20 ° C. Further, assuming that the bubble diameter is about 0.2 to 0.3 μm, the light scattering intensity is 6
Since the light scattering intensity at 20 ° C. and the light scattering intensity at 40 ° C. are compared with each other, the latter is 1.8 times as large as the former.

【0024】このように気泡である場合には、第1光散
乱式粒子検出器2が出力する電気パルスの波高値Aの方
が、第2光散乱式粒子検出器4が出力する電気パルスの
波高値Bよりも大きい。この場合、パルス波高値回路7
は、気泡対応パルスを出力するので、気泡が液中粒子検
出装置1を通過したときには、気泡計数表示部9に気泡
の数が表示される。
In the case of bubbles, the peak value A of the electric pulse output from the first light scattering type particle detector 2 is larger than the peak value A of the electric pulse output from the second light scattering type particle detector 4. It is larger than the peak value B. In this case, the pulse peak value circuit 7
Outputs a bubble-corresponding pulse, so that the number of bubbles is displayed on the bubble count display section 9 when the bubbles pass through the liquid particle detection device 1.

【0025】図2に示すように、本発明の第2の実施の
形態に係る液中粒子検出装置11は、請求項3の液中粒
子検出装置1において、第1光散乱式粒子検出器2とパ
ルス波高値比較回路7の間に試料液体が第1光散乱式粒
子検出器2と第2光散乱式粒子検出器4の間を通過する
時間だけ、第1光散乱式粒子検出器2の出力信号を遅延
させる遅延回路12を設けたものである。
FIG. 2 shows a second embodiment of the present invention.
In the liquid particle detection device 11 according to the embodiment, in the liquid particle detection device 1 according to claim 3, the sample liquid is the first light scattering type between the first light scattering type particle detector 2 and the pulse peak value comparison circuit 7. A delay circuit 12 is provided for delaying the output signal of the first light scattering type particle detector 2 by the time passing between the particle detector 2 and the second light scattering type particle detector 4.

【0026】試料液体の粒子又は気泡の濃度、比率が低
く、また粒子又は気泡の濃度分布、粒子又は気泡の比率
が均一でない場合には、第1光散乱式粒子検出器2が出
力する電気パルスのタイミングと第2光散乱式粒子検出
器4が出力する電気パルスのタイミングが問題となる。
そこで、上述した遅延回路12により第1光散乱式粒子
検出器2が出力する電気パルスを遅延させることで、第
1光散乱式粒子検出器2が出力する電気パルスと第2光
散乱式粒子検出器4が出力する電気パルスが、同時にパ
ルス波高値比較回路7に入力するようにした。
When the concentration or ratio of the particles or bubbles of the sample liquid is low and the concentration distribution of the particles or bubbles and the ratio of the particles or bubbles are not uniform, the electric pulse output from the first light scattering type particle detector 2 is used. And the timing of the electric pulse output by the second light scattering type particle detector 4 becomes a problem.
Therefore, the electric pulse output from the first light scattering type particle detector 2 and the electric pulse output from the first light scattering type particle detector 2 are delayed by delaying the electric pulse output from the first light scattering type particle detector 2 by the delay circuit 12 described above. The electric pulse output from the heater 4 is simultaneously input to the pulse peak value comparison circuit 7.

【0027】パルス波高値比較回路7は、遅延回路12
が出力する電気パルスの波高値Aと第2光散乱式粒子検
出器4が出力する電気パルスの波高値Bとを比較して、
遅延回路12が出力する電気パルスの波高値Aが第2光
散乱式粒子検出器4が出力する電気パルスの波高値Bと
略等しいとき(A≒B)、粒子対応パルスを出力し、遅
延回路12が出力する電気パルスの波高値Aが第2光散
乱式粒子検出器4が出力する電気パルスの波高値Bより
大きいとき(A>B)、気泡対応パルスを出力する。
The pulse peak value comparing circuit 7 includes a delay circuit 12
Is compared with the peak value B of the electric pulse output from the second light scattering type particle detector 4,
When the peak value A of the electric pulse output from the delay circuit 12 is substantially equal to the peak value B of the electric pulse output from the second light scattering type particle detector 4 (A ≒ B), a pulse corresponding to the particle is output, and the delay circuit is output. When the peak value A of the electric pulse output from 12 is greater than the peak value B of the electric pulse output from the second light scattering type particle detector 4 (A> B), a bubble-corresponding pulse is output.

【0028】以上のように構成した液中粒子検出装置1
1の作用について説明する。粒子又は気泡を含んだ試料
液体が液中粒子検出装置1に導入されると、この試料液
体が第1光散乱式粒子検出器2を通過するとき、第1光
散乱式粒子検出器2はこれらの粒径に対応した電気パル
スを出力する。冷却器3は、試料液体を所定温度に冷却
する。そして、冷却器3により冷却された試料液体が第
2光散乱式粒子検出器4を通過するとき、第2光散乱式
粒子検出器4は、試料液体に含まれる粒子又は気泡の粒
径に対応した電気パルスを出力する。
The liquid particle detecting device 1 configured as described above
1 will be described. When a sample liquid containing particles or air bubbles is introduced into the particle-in-liquid detection device 1, when the sample liquid passes through the first light-scattering particle detector 2, the first light-scattering particle detector 2 And outputs an electric pulse corresponding to the particle size. The cooler 3 cools the sample liquid to a predetermined temperature. When the sample liquid cooled by the cooler 3 passes through the second light scattering type particle detector 4, the second light scattering type particle detector 4 corresponds to the particle diameter of particles or bubbles contained in the sample liquid. Output the generated electric pulse.

【0029】液中粒子検出装置11を粒子が通過する場
合には、粒子は冷却されても粒径に変化は生じないの
で、第1及び第2光散乱式粒子検出器2,4がそれぞれ
出力する電気パルスの波高値A,Bは変わらない。しか
し、これらの電気パルスのタイミングはずれているの
で、上述した遅延回路12により第1光散乱式粒子検出
器2が出力する電気パルスを遅延させることで、第1光
散乱式粒子検出器2が出力する電気パルスと第2光散乱
式粒子検出器4が出力する電気パルスは、同時にパルス
波高値比較回路7に入力される。
When the particles pass through the submerged particle detector 11, since the particles do not change in size even if they are cooled, the first and second light scattering type particle detectors 2 and 4 output the respective particles. The peak values A and B of the generated electric pulse do not change. However, since the timings of these electric pulses are shifted, the electric pulse output from the first light scattering type particle detector 2 is delayed by the above-described delay circuit 12, so that the first light scattering type particle detector 2 outputs And the electric pulse output from the second light scattering type particle detector 4 are input to the pulse peak value comparison circuit 7 at the same time.

【0030】パルス波高値回路7は、これらの電気パル
スの波高値A,Bがほぼ同一である場合(A≒B)に
は、粒子対応パルスを出力する。従って、試料液体が液
中粒子検出装置11を通過した場合は、試料液体に含ま
れる粒子の数が粒子計数表示部8に表示される。
When the peak values A and B of these electric pulses are substantially the same (A ≒ B), the pulse peak value circuit 7 outputs a particle-corresponding pulse. Therefore, when the sample liquid has passed through the in-liquid particle detection device 11, the number of particles contained in the sample liquid is displayed on the particle count display section 8.

【0031】また、気泡が液中粒子検出装置11を通過
する場合には、第1光散乱式粒子検出器2が出力する電
気パルスの波高値Aの方が、第2光散乱式粒子検出器4
が出力する電気パルスの波高値Bより大きい。すると、
パルス波高値回路7は、気泡対応パルスを出力するの
で、気泡計数表示部9に気泡の数が表示される。
When the air bubbles pass through the submerged particle detector 11, the peak value A of the electric pulse output from the first light scattering type particle detector 2 is higher than that of the second light scattering type particle detector. 4
Is larger than the peak value B of the output electric pulse. Then
Since the pulse crest value circuit 7 outputs a bubble-corresponding pulse, the number of bubbles is displayed on the bubble count display unit 9.

【0032】以上説明したとおり、試料液体中の粒子の
発する散乱光は、試料液体の温度が低くなっても変わり
なく、一方、試料液体中の気泡の発する散乱光は、試料
液体の温度が低くなれば減少するので、パルス波高値比
較回路7の粒子対応パルスおよび気泡対応パルスの数を
計数すれば粒子、気泡別々に計数できる。
As described above, the scattered light emitted by the particles in the sample liquid does not change even when the temperature of the sample liquid decreases, whereas the scattered light emitted by the bubbles in the sample liquid decreases when the temperature of the sample liquid decreases. If the number of pulse corresponding to particles and the number of pulses corresponding to bubbles in the pulse peak value comparison circuit 7 are counted, particles and bubbles can be separately counted.

【0033】なお、上述の実施の形態では、冷却器2を
使用して、試料液体の温度を高温から低温に変化させて
いるが、要は、気泡の粒径が変化するような温度変化を
与えればよいのであるから、冷却器2に代えて加熱器と
してもよい。ただし、この場合には、第1光散乱式粒子
検出器2が出力する電気パルスの波高値Aが第2光散乱
式粒子検出器4が出力する電気パルスの波高値Bより小
さいときに、パルス波高値比較回路7は、気泡対応パル
スを出力するようにしなければならない。
In the above-described embodiment, the temperature of the sample liquid is changed from a high temperature to a low temperature by using the cooler 2. Since it may be provided, a heater may be used instead of the cooler 2. However, in this case, when the peak value A of the electric pulse output from the first light scattering type particle detector 2 is smaller than the peak value B of the electric pulse output from the second light scattering type particle detector 4, the pulse The peak value comparison circuit 7 must output a bubble-corresponding pulse.

【0034】また、上述の実施の形態では、第1および
第2の粒子検出手段として、光散乱式粒子検出器2,4
を用いているが、要は粒子の大きさに対応した電気的信
号を出力する粒子検出器であればよいのであるから、そ
の他の方式の粒子検出部を用いてもよい。
In the above embodiment, the light scattering particle detectors 2, 4 are used as the first and second particle detecting means.
However, since it is only necessary to use a particle detector that outputs an electrical signal corresponding to the size of the particles, another type of particle detector may be used.

【0035】例えば、流路部に光を照射しておき、この
流路部を粒子が通過することにより減ずる照射光の強さ
を測定して粒子の粒径等を計測する、いわゆる光遮断式
粒子検出器、また図5に示すような、電解液21を絶縁
体でなる隔壁22に穿設されたピンホール23を通過さ
せ、このときの電極24、24間の電気抵抗の変化から
粒子Paの大きさを検知する粒子検出器を用いてもよ
い。
For example, a so-called light-blocking type in which light is applied to a channel portion, and the particle size of the particles is measured by measuring the intensity of irradiation light reduced by the passage of particles through the channel portion. As shown in FIG. 5, the electrolyte solution 21 is passed through a pinhole 23 formed in a partition wall 22 made of an insulator. May be used.

【0036】[0036]

【発明の効果】以上説明したように請求項1の発明によ
れば、気泡及び粒子が混在する試料液体の粒子のみを計
数して、この値を表示することができる
As described above, according to the first aspect of the present invention, only particles of the sample liquid containing bubbles and particles are measured.
You can display this value by counting .

【0037】請求項2の発明によれば、気泡及び粒子が
混在する試料液体の、粒子と気泡とを区別して別々に計
数し、これらの値を表示することができる
According to the second aspect of the present invention, bubbles and particles are
Particles and bubbles of the mixed sample liquid are separately measured.
You can count and display these values .

【0038】請求項3の発明によれば、試料液体の粒子
又は気泡の濃度、比率が低く、また粒子又は気泡の濃度
分布や粒子又は気泡の比率が均一でない場合であって
も、気泡及び粒子が混在する試料液体の、粒子と気泡と
を区別して別々に計数し、これらの値を表示することが
できる
According to the third aspect of the invention, particles of the sample liquid
Or the concentration and ratio of bubbles are low, and the concentration of particles or bubbles
If the distribution or the ratio of particles or bubbles is not uniform
Also, particles and bubbles in the sample liquid containing bubbles and particles
Can be counted separately to show these values.
I can .

【0039】請求項4の発明によれば、気泡及び粒子が
混在する試料液体の、粒子又は気泡を高精度に検出する
ことができる
According to the fourth aspect of the present invention, bubbles and particles are
Highly accurate detection of particles or bubbles in mixed sample liquids
Can be .

【0040】[0040]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る液中粒子検出
装置の構成図
FIG. 1 is a configuration diagram of a submerged particle detection device according to a first embodiment of the present invention .

【図2】本発明の第2の実施の形態に係る液中粒子検出
装置の構成図
FIG. 2 is a configuration diagram of a submerged particle detection device according to a second embodiment of the present invention .

【図3】水に対する空気の溶解度を示す特性図FIG. 3 is a characteristic diagram showing solubility of air in water.

【図4】液中に含まれる粒子の粒径と光散乱強度の関係
を示す特性図
FIG. 4 is a characteristic diagram showing a relationship between a particle size of particles contained in a liquid and a light scattering intensity.

【図5】粒子検出手段の一例の構成図FIG. 5 is a configuration diagram of an example of a particle detection unit.

【符号の説明】[Explanation of symbols]

1,11…液中粒子検出装置、2…第1光散乱式粒子検
出器(第1の粒子検出手段)、3…冷却器(液体温度変
更手段)、4…第2光散乱式粒子検出器(第2の粒子検
出手段)、5…信号処理部(信号処理手段)、6…流量
制御部、7…パルス波高値比較回路(波高値比較回
路)、8…粒子計数表示部、9…気泡計数表示部、10
…流路、12…遅延回路。
Reference numerals 1, 11: liquid particle detecting device, 2: first light scattering type particle detector (first particle detecting means), 3: cooler (liquid temperature changing means), 4: second light scattering type particle detector (Second particle detecting means), 5: signal processing unit (signal processing means), 6: flow rate control unit, 7: pulse peak value comparison circuit (peak value comparison circuit), 8: particle count display unit, 9: bubble Count display, 10
... a flow path, 12 ... a delay circuit.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流路を通過する試料液体中に存在する粒
子や泡などの粒径に対応した信号を出力する第1および
第2の粒子検出手段と、第1および第2の粒子検出手段
の間の流路に設置されて通過する試料液体を所定温度に
冷却又は加熱する液体温度変更手段と、粒子や泡などの
粒径及び粒数を算出する信号処理手段を備え、この信号
処理手段は、前記第1の粒子検出手段の出力信号と前記
第2の粒子検出手段の出力信号を比較し、前記第1の粒
子検出手段の出力信号の波高値が前記第2の粒子検出手
段の出力信号の波高値と略等しいとき、粒子対応信号を
出力する波高値比較回路と、この波高値比較回路の粒子
対応信号を計数して表示する粒子計数表示部からなる
とを特徴とする液中粒子検出装置。
1. First and second particle detecting means for outputting a signal corresponding to the particle diameter of particles or bubbles existing in a sample liquid passing through a flow path, and first and second particle detecting means comprising a fluid temperature changing means for cooling or heating the sample liquid to a predetermined temperature which is installed in the flow path passes between the signal processing means for calculating the particle size and particle number of such particles or bubbles, the signal
The processing means includes an output signal of the first particle detection means and the output signal of the first particle detection means.
The output signal of the second particle detecting means is compared, and the first particle is detected.
The peak value of the output signal of the child detecting means is
When the peak value of the output signal of the stage is approximately equal to the
Output peak value comparison circuit and particles of this peak value comparison circuit
A liquid particle detection device, comprising: a particle counting display unit that counts and displays a corresponding signal .
【請求項2】 流路を通過する試料液体中に存在する粒
子や泡などの粒径に対応した信号を出力する第1および
第2の粒子検出手段と、第1および第2の粒子検出手段
の間の流路に設置されて通過する試料液体を所定温度に
冷却又は加熱する液体温度変更手段と、粒子や泡などの
粒径及び粒数を算出する信号処理手段を備え、この信号
処理手段は、前記第1の粒子検出手段の出力信号と前記
第2の粒子検出手段の出力信号を比較し、前記第1の粒
子検出手段の出力信号の波高値が前記第2の粒子検出手
段の出力信号の波高値と略等しいときに粒子対応信号を
出力し、前記第1の粒子検出手段の出力信号の波高値と
前記第2の粒子検出手段の出力信号の波高値に差がある
ときに気泡対応信号を出力する波高値比較回路と、この
波高値比較回路の粒子対応信号を計数して表示する粒子
計数表示部と、前記波高値比較回路の気泡対応信号を計
数して表示する気泡計数表示部からなることを特徴とす
る液中粒子検出装置。
2. Particles present in a sample liquid passing through a flow path.
First and second signals that output signals corresponding to the particle size of particles and bubbles
Second particle detecting means, first and second particle detecting means
Set the sample liquid passing through the
Cooling or heating liquid temperature changing means and particles or bubbles
Signal processing means for calculating the particle size and the number of particles;
The processing means includes an output signal of the first particle detection means and the output signal of the first particle detection means.
The output signal of the second particle detecting means is compared, and the first particle is detected.
The peak value of the output signal of the child detecting means is
When the peak value of the output signal of the stage is approximately equal to the
And a peak value of an output signal of the first particle detecting means.
There is a difference in the peak value of the output signal of the second particle detection means
A peak value comparison circuit that outputs a bubble response signal when
Particles that count and display the particle corresponding signal of the peak value comparison circuit
The counting display unit and the signal corresponding to the bubble of the peak value comparing circuit are measured.
An apparatus for detecting particles in liquid, comprising a bubble counting and displaying section for counting and displaying .
【請求項3】 前記第1の粒子検出手段と前記波高値比
較回路の間に試料液体が前記第1および第2の粒子検出
手段間を通過する時間だけ、前記第1の粒子検出手段の
出力信号を遅延させる遅延回路を設けた請求項1又は2
記載の液中粒子検出装置。
3. The ratio between the first particle detecting means and the peak value.
The sample liquid is detected between the first and second particles during the comparison circuit.
The first particle detecting means is only used for the time passed between the means.
3. A device according to claim 1, further comprising a delay circuit for delaying the output signal.
The device for detecting particles in liquid according to the above.
【請求項4】 前記第1および第2の粒子検出手段は、
光散乱式粒子検出器である請求項1、2又は3記載の液
中粒子検出装置。
4. The first and second particle detecting means,
4. The liquid particle detection device according to claim 1, which is a light scattering type particle detector .
JP25365796A 1996-09-26 1996-09-26 Liquid particle detector Expired - Fee Related JP3153132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25365796A JP3153132B2 (en) 1996-09-26 1996-09-26 Liquid particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25365796A JP3153132B2 (en) 1996-09-26 1996-09-26 Liquid particle detector

Publications (2)

Publication Number Publication Date
JPH10104150A JPH10104150A (en) 1998-04-24
JP3153132B2 true JP3153132B2 (en) 2001-04-03

Family

ID=17254378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25365796A Expired - Fee Related JP3153132B2 (en) 1996-09-26 1996-09-26 Liquid particle detector

Country Status (1)

Country Link
JP (1) JP3153132B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9809016D0 (en) * 1998-04-29 1998-06-24 Wrc Plc Method for monitoring bubbles in liquid
JP4719587B2 (en) * 2006-02-21 2011-07-06 トライボテックス株式会社 Fine particle counter, fine particle counting method using the same, and lubrication target part diagnosis system including the same
JP6477487B2 (en) * 2013-10-31 2019-03-06 栗田工業株式会社 Method and apparatus for measuring the number of fine particles in ultrapure water
JP6759956B2 (en) * 2016-10-11 2020-09-23 東京電力ホールディングス株式会社 Particle measurement system
WO2020067149A1 (en) * 2018-09-28 2020-04-02 国立大学法人東京大学 Fine particle detecting device
KR102497632B1 (en) * 2021-05-31 2023-02-08 호산테크 주식회사 Apparatus for eliminating nano bubble

Also Published As

Publication number Publication date
JPH10104150A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US4421848A (en) Method of detecting the presence of live organisms in substances
US3984307A (en) Combined particle sorter and segregation indicator
US3458287A (en) Method and means of determining endpoint times in blood clotting tests
KR100295507B1 (en) Particle measuring apparatus
US3524066A (en) Fluid measurement system having sample chamber with opposed reflecting members for causing multiple reflections
Frish et al. Direct measurement of vorticity by optical probe
JP3153132B2 (en) Liquid particle detector
US7005107B2 (en) Apparatus for determining the speed of sedimentation of blood and other parameters correlated thereto
JP3018178B1 (en) Method and apparatus for measuring bubbles using optical fiber probe
JPS60213850A (en) Particle analyzer
US3504183A (en) Particle counter using a variable test volume
JP3263729B2 (en) Apparatus and method for measuring particles in liquid
US5122752A (en) Method of and apparatus for analyzing granular materials
KR100608973B1 (en) Blood cell Deform Sensor
Bazaev et al. Modern methods for measuring parameters of blood coagulation
US10690593B2 (en) Sample analyzer and recording medium recording sample analysis program
SU1124202A1 (en) Method of determination of dispersed composition of particles in liquids containing gas bubbles
JPS56137140A (en) Optical measuring method of blood coagulation
Mishina et al. A Laser Doppler Microscope–Its Signal-Analyzing Systems–
Hurst et al. A piston‐actuated shock‐tube, with laser–Schlieren diagnostics
Mazza et al. The use of fibre optics in viscometry
Ruck et al. Particle‐Induced Limits of Accuracy in Laser Doppler Anemometry
JPS60111963A (en) Method and apparatus for analyzing components of body fluids
JPH02128142A (en) Optical fine particle measuring apparatus
Pulec et al. Demonstration of Non-Uniformity of Velocity Profiles Using 2D PIV

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees