WO2020067149A1 - Fine particle detecting device - Google Patents

Fine particle detecting device Download PDF

Info

Publication number
WO2020067149A1
WO2020067149A1 PCT/JP2019/037583 JP2019037583W WO2020067149A1 WO 2020067149 A1 WO2020067149 A1 WO 2020067149A1 JP 2019037583 W JP2019037583 W JP 2019037583W WO 2020067149 A1 WO2020067149 A1 WO 2020067149A1
Authority
WO
WIPO (PCT)
Prior art keywords
light intensity
detector
particle
complex
particles
Prior art date
Application number
PCT/JP2019/037583
Other languages
French (fr)
Japanese (ja)
Inventor
信宏 茂木
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2020549283A priority Critical patent/JP7333637B2/en
Publication of WO2020067149A1 publication Critical patent/WO2020067149A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry

Definitions

  • the present invention relates to a particle detection device.
  • Non-Patent Document 1 Single Particle Extinction and Scattering
  • the amplitude and phase of a scattered wave are measured by observing the spatial distribution of light intensity in the forward direction created by the interference between the incident wave of the converged laser beam and the scattered wave caused by particles traversing the beam. Measure at the same time. For this reason, it is shown that, after different particle types coexisting in the sample water are discriminated, the number concentration of each particle type by particle size can be measured.
  • a TEM 00 mode laser beam having a Gaussian intensity profile is converged by a condenser lens (so that the spot size at the beam waist is about several microns).
  • the interference intensity pattern of the scattered wave and the incident wave generated by the particles crossing the vicinity of the beam waist is detected by a four-division photodiode, and the time waveform of the signal intensity is measured.
  • the four-division photodiode has the origin at the center of the incident wave, the x-axis passes through the origin, and is parallel to the flow direction of the flow cell, and the flow of the flow cell passes through the origin. They are arranged in the first to fourth quadrants on the xy plane when the axis perpendicular to the direction is the y axis.
  • the actual value of the complex scattering amplitude S (0) of the scatterer including information equivalent to the amplitude and phase of the scattered wave with respect to the incident wave is obtained. Derives the part and the imaginary part.
  • the light intensity (P1 + P2) observed by the photodiodes arranged in the first and second quadrants and the photodiodes arranged in the third and fourth quadrants The imaginary part of the complex scattering amplitude S (0) is located in the first to fourth quadrants based on the difference ⁇ (P1 + P2)-(P3-P4) ⁇ from the observed light intensity (P3 + P4). It is determined based on the light intensity (P1P2 + P3 + P4) observed by the photodiode. Since the complex scattering amplitude S (0) depends not only on the size of the scatterer but also on the complex permittivity, the particle type is empirically classified from the combination of the real part and the imaginary part of the complex scattering amplitude S (0). can do.
  • Natural water in the global environment such as rainwater, river water, seawater, snow-melting water, etc., contains various solid particles (mineral particles, organic substances, viruses, plankton, plastics, etc.) and micellar liquid particles suspended at unknown concentrations. ing.
  • Industrial water such as purified water for drinking water and food preservation, cleaning water for precision equipment, and purified water for medical use, though having a lower concentration than natural water, contains the same fine particles as contaminants.
  • data on the number and concentration of fine particles in water by particle type and particle size are important as indices for understanding water pollution degree, pollution path, and environmental process.
  • the main object of the particle detection device of the present invention is to more appropriately detect solid or liquid / gas particles in a liquid.
  • the particle detecting device of the present invention employs the following means in order to achieve the above-mentioned main object.
  • the fine particle detection device of the present invention A fine particle detection device for detecting fine particles flowing in the flow cell, A laser irradiator that irradiates a laser beam, An optical system that adjusts the laser beam to a degree that can be approximated to a Gaussian beam in the vicinity of the focused spot; A light intensity detector that is disposed behind the condensing spot and detects light intensity; A control device for determining the fine particles based on the light intensity detected by the light intensity detector, With The light intensity detector has an origin at the center of the condensed spot, an x-axis passing through the origin and an axis parallel to the flow direction of the fine particles in the flow cell, and an y-axis passing through the origin and perpendicular to the x-axis.
  • the light intensity detector has the origin at the center of the condensed spot, the axis parallel to the flow direction of the fine particles in the flow cell passing through the origin, and the x-axis passing through the origin.
  • a vertical axis is defined as a y-axis, there are four divided by a first straight line having a predetermined angle of elevation of 15 degrees or more and 75 degrees or less from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It consists of a detector.
  • the dissipated power P ext (AC) and the dissipated power P ext (BD) can be easily calculated, and solids in liquid and fine particles of liquid and gas can be detected more appropriately. It is more preferable that the first straight line and the second straight line are orthogonal straight lines.
  • the light intensity detector includes a first detector belonging to a region on the negative side of the x-axis when the particles in the flow cell flow from the negative direction to the positive direction on the x-axis, and a negative side on the y-axis.
  • a fourth detector belonging to the region a third detector belonging to the region on the positive side of the x-axis, and a fourth detector belonging to the region on the positive side of the y-axis.
  • the control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth detection.
  • particle detector device of the invention that calculates a real part of the complex scattering amplitude S 11 and an imaginary part, comprising a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam, the control device Is a complex scattering based on the sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity minus the reference light intensity detected by the reference detector. or as to calculate the imaginary part of the amplitude S 11.
  • said control device, of the complex scattering amplitude S 11 that previously obtained for known complex dielectric constant of the fine particles Particles flowing in the flow cell may be determined using a relationship consisting of a real part and an imaginary part. In this way, it is possible to more appropriately determine whether or not the fine particles to be observed are known fine particles, and it is possible to more appropriately determine the solid in the liquid and the fine particles of the liquid / gas.
  • control device when the particles flowing in the flow cell is determined to be any of the known fine particles, fine particles by the real part of the complex scattering amplitude S 11 described above calculated using the complex dielectric constant of a known fine particles
  • the volume may be derived.
  • the volume of the fine particles can be detected.
  • the control device In particle detector device of the invention that calculates a real part and an imaginary part of the complex scattering amplitude S 11, the control device, the first light intensity of the difference between the second light intensity and the fourth optical intensity
  • the determination of the fine particles may be performed when the ratio of the difference between the third light intensity and the third light intensity is less than a predetermined value. This makes it possible to eliminate the detection of fine particles for which proper determination cannot be performed, and to more appropriately determine the solids in the liquid and the fine particles of the liquid / gas.
  • the light intensity detector includes a first detector belonging to a region on the negative side of the x-axis when the particles in the flow cell flow from the negative direction to the positive direction on the x-axis, and a negative side on the y-axis.
  • a fourth detector belonging to the region a third detector belonging to the region on the positive side of the x-axis, and a fourth detector belonging to the region on the positive side of the y-axis.
  • the control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth detection.
  • the imaginary part of the complex scattering amplitude S 22 calculated based on the sum of the fourth light intensity detected by the vessel, detected by the third detector and the first light intensity detected by the first detector based on the difference between the third light intensity calculating the real part of the complex scattering amplitude S 22 It may be those based on the real and imaginary parts of the calculated complex scattering amplitude S 22 discriminates particles. In this way, non-spherical solids and liquid / gas fine particles in the liquid can be more appropriately determined.
  • particle detector device of the invention that calculates a real part of the complex scattering amplitude S 22 and an imaginary part, comprising a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam
  • the control device Is a complex scattering based on the sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity minus the reference light intensity detected by the reference detector. or as to calculate the imaginary part of the amplitude S 22.
  • the controller of the complex scattering amplitude S 22 that previously obtained for known complex dielectric constant of the fine particles Particles flowing in the flow cell may be determined using a relationship consisting of a real part and an imaginary part. In this way, it is possible to more appropriately determine whether or not the fine particles to be observed are known fine particles, and it is possible to more appropriately determine the solid in the liquid and the fine particles of the liquid / gas.
  • particle detector device of the invention that calculates a real part of the complex scattering amplitude S 22 and an imaginary part, and stores the real part and the imaginary part of the complex scattering amplitude S 22 of a plurality of fine particles in the flow cell, the plurality of fine particles plotting the complex scattering amplitude S 22 in the complex plane, among the plurality of microparticles plot of the complex scattering amplitude S 22, the complex scattering amplitude of the fine particles is estimated to particle volume are the same are different but complex refractive index S 22 select may be one that calculates the complex refractive index and particle volume range for the complex scattering amplitude S 22 of the selected particles. In this way, even for unknown particles in the environment, useful information for identifying the particle type can be obtained.
  • FIG. 3 is an explanatory diagram illustrating an arrangement of a photodiode E for observation light. It is a flowchart which shows an example of the observation process performed when the control device 60 of the fine particle detection device 20 of an embodiment detects a fine particle.
  • Radius is an explanatory diagram showing an example of the relationship between the complex permittivity and the complex scattering amplitude S 11 of the fine particles of 0.05 .mu.m ⁇ 0.3 [mu] m.
  • FIG. 4 is an explanatory diagram showing definitions of a coordinate system and a unit vector of each coordinate.
  • FIG. 3 is an explanatory diagram schematically illustrating an incident wave of a Gaussian beam.
  • the particle size and the complex refractive index is an explanatory diagram showing the real part of the complex scattering amplitude S 11 as a real part and the theoretical value of the complex scattering amplitude S 11 of the experimental example according to the known polystyrene standard particles.
  • the particle size and the complex refractive index is an explanatory diagram showing the imaginary part of the complex scattering amplitude S 11 as the imaginary part of the complex scattering amplitude S 11 and the theoretical value of the experimental example according to the known polystyrene standard particles.
  • FIG. 9 is an explanatory diagram showing an example of a measured waveform of a dissipated power P ext (AC) of a fine particle having a real part Re (S 11 ) of the complex scattering amplitude S 11 larger than 0.
  • FIG. 7 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext (AC) of a microbubble whose real part Re (S 11 ) of the complex scattering amplitude S 11 is smaller than 0.
  • FIG. 14 is an explanatory diagram plotting the absolute value of the F value and the particle size dependence of the argument for the same particle type as in FIG. 13.
  • FIG. 15 is an explanatory diagram plotting the absolute value of the F value and the particle size dependence of the argument for the same particle type as in FIG. 14.
  • Simulation is an explanatory diagram showing an example of applying the result parameter estimation algorithm with an assumption of fractal aggregates shape of microspheres generated S 22 data. It is explanatory drawing which shows an example of the experimental result with respect to the precipitation sample of Tokyo. It is explanatory drawing which shows an example of the experimental result with respect to the precipitation sample of Okinawa.
  • FIG. 9 is an explanatory diagram showing an example of parameter estimation results assuming the particle shape of fractal agglomerates of microspheres for data of Category # 1 which is regarded as soot in a precipitation sample in Tokyo.
  • FIG. 9 is an explanatory diagram showing an example of parameter estimation results assuming the particle shape of fractal agglomerates of microspheres for data of Category # 1 which is regarded as soot in a precipitation sample in Tokyo.
  • FIG. 9 is an explanatory diagram showing an example of parameter estimation results assuming the particle shape of fractal aggregates of microspheres with respect to data of Category # 1 which is considered to be soot in a precipitation sample in Okinawa.
  • FIG. 26 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to the data of Category # 2 considered to be non-absorbable particles in FIG. 25.
  • 27 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to data of Category # 2 which is considered to be non-absorbable particles in FIG. 26.
  • FIG. FIG. 27 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to data of Category # 3 which is considered to be non-absorbable particles in FIG. 26.
  • FIG. 1 is an explanatory diagram schematically showing a configuration of a particle detection device 20 according to the embodiment.
  • the particle detection device 20 of the embodiment includes a laser irradiation device 22 that irradiates laser light, and an optical system 30 that guides the laser light from the laser irradiation device 22 to the irradiation unit of the flow cell 10 or guides the reference light.
  • the observation light photodiode 40 disposed on the side of the laser light traveling direction viewed from the flow cell 10, the reference light photodiode E for detecting the reference light, the observation light photodiode 40 and the reference light photodiode E And a control device 60 for controlling the entire apparatus.
  • the laser irradiation device 22 is preferably capable of irradiating an ideal Gaussian (TEM 00 ) mode laser beam, for example, a linearly polarized HeNe laser (red HeNe laser: JDSU, model 1137P, 632.8 nm, ⁇ 10 mW). ) Can be used.
  • TEM 00 ideal Gaussian
  • JDSU red HeNe laser: JDSU, model 1137P, 632.8 nm, ⁇ 10 mW.
  • the optical system 30 is an optical isolator 31 (for example, TH, IO-3D-633-VLP) for preventing reflected light from returning to the laser irradiation device 22, and for controlling a beam split ratio between observation light and reference light.
  • a half-wave plate 32 for example, TH, WPH05M-633 mounted on a rotary mount, a polarization beam splitter 33 (for example, TH, CCM1-PBS25-633 / M) for dividing observation light and reference light,
  • a beam expander for example, TH, GBE-10A for expanding the beam diameter of the observation light (collimated beam) from the polarizing beam splitter 33, and a condensing lens (for example, TH, GBE-10A) for converging the observation light with the expanded beam diameter.
  • the optical system 30 also includes a broadband dielectric mirror 36 (for example, TH, BB111-E02) for guiding the reference light from the polarization beam splitter 33 to the reference light photodiode E.
  • a broadband dielectric mirror 36 for example, TH, BB111-E02
  • the observation light photodiode 40 detects the intensity of the observation light, and is constituted by four photodiodes A to D (for example, OSI, SPOT-9DMI) divided into four.
  • FIG. 2 is an explanatory diagram illustrating the arrangement of the observation light photodiodes 40.
  • the photodiode A is orthogonal to the x axis and the y axis by 45 degrees.
  • the photodiodes B to D are arranged on a plane at a position on the upstream side of the flow of the flow cell 10 among the four divided planes divided by the straight line, and the photodiodes B to D are arranged from the plane on which the photodiode A is arranged in the traveling direction of the observation light. They are arranged clockwise in this order. That is, the photodiode A is arranged on the upstream side (minus side of the x-axis) of the flow of the flow cell 10, the photodiode C is arranged on the downstream side (plus side of the x-axis), and the photodiode B is arranged on the minus side of the y-axis.
  • the photodiode D is arranged on the plus side of the y-axis.
  • the distance from the beam waist position to the photocathode such that the exit beam diameter (1 / e 2 ) of the divergent Gaussian beam is slightly smaller than the photocathode diameter. Adjust It is not desirable that the distance is made shorter than necessary because the mixing of scattered light that is not the object of observation only increases. In the embodiment, when 50 mm is used as the focal length of the condenser lens 35, this distance is set to 40 mm.
  • the reference light photodiode E detects the intensity of the reference light, and has the same light receiving sensitivity and inter-terminal capacitance as the four photodiodes A to D of the observation light photodiode 40 in order to match the noise characteristics.
  • OSI, PIN-6D is preferably used.
  • the stage 50 includes an x-direction actuator 52 and a y-direction actuator 54 for adjusting the positions of the observation light photodiode 40 and the reference light photodiode E in the x and y directions.
  • the x-direction actuator 52 and the y-axis The direction actuator 54 causes the center of the observation photodiode 40 to coincide with the center of the divergent beam.
  • the x-direction actuator 52 and the y-direction actuator 54 can use, for example, piezo motors.
  • the control device 60 is configured as, for example, a microcomputer mainly configured with a CPU, and includes a ROM, a RAM, an input / output port, and the like in addition to the CPU.
  • FIG. 3 is a flowchart illustrating an example of an observation process performed when the control device 60 of the particle detection device 20 according to the embodiment detects a particle.
  • an operation when detecting a minute bubble will be described.
  • the observation processing first, light intensities P (A) to P (D), P (E) detected by the four photodiodes A to D of the observation light photodiode 40 and the reference light photodiode E are acquired. (step S100), dissipated power P ext (Tot), P ext (a-C), calculates the P ext (B-D) (step S110).
  • dissipation means a change in the time-average intensity of the incident field due to interference between the incident field and the forward scattered field behind the fine particles
  • dissipated power means its energy.
  • the dissipated power P ext (Tot) is the sum of the dissipated powers of the four photodiodes A to D.
  • step S120 it is determined as the absolute value of the ratio of the calculated dissipation power P ext (BD) to the dissipation power P ext ( AC ) (
  • a value J is calculated (step S120), and it is determined whether the calculated determination value J is less than 0.2 (step S130). When the determination value J is 0.2 or more, it is determined that observation is not possible, and the observation processing ends. The determination of whether or not observation is possible based on whether or not the determination value J is less than 0.2 will be described later.
  • the determination value J is less than 0.2, it is determined that observation is possible, and the real part Re (S 11 ) and the imaginary part of the complex scattering amplitude S 11 are determined using the dissipated powers P ext (Tot) and P ext (AC). Im (S 11 ) is calculated (step S140). This calculation will also be described later. Then, the real part Re (S 11 ) and the imaginary part Im (S 11 ) of the calculated complex scattering amplitude S 11 are converted into the real part Re (S) of the complex scattering amplitude S 11 of the observation target fine particles (hereinafter referred to as target fine particles). 11) and determines whether or not the match the imaginary part Im (S 11) (step S150, S160).
  • Figure 4 is a radius of an explanatory view showing an example of the relationship between the complex permittivity and the complex scattering amplitude S 11 of the fine particles of 0.05 .mu.m ⁇ 0.3 [mu] m.
  • microbubbles (air) having a dielectric constant smaller than water as fine particles, and a complex dielectric constant having a dielectric constant larger than water are 1.4 + 0.0i, 1.5 + 0.0i, 1.7 + 0.0i, 2.0 + 1.
  • Five kinds of fine particles of 0i, 2.0 + 0.5i were used.
  • the real part Re (S 11 ) of the complex scattering amplitude S 11 has a positive value for fine particles (solid particles such as metal) having a larger dielectric constant than water, and has a smaller dielectric constant than water (fine bubbles). (Gas particles such as (air)) has a negative value. Determination in step S150, the real part Re (S in the real part Re (S 11) and the imaginary part Im (S 11) of the target particles, such as shown in FIG. 4 complex scattering amplitude S 11 of the calculated complex scattering amplitude S 11 11 ) and the imaginary part Im (S 11 ) are determined to be acceptable or not.
  • the target particles is very small bubbles, or the real part Re of the complex scattering amplitude S 11 that calculated (S 11) and the imaginary part Im (S 11) matches the acceptable degree in fine bubbles shown in FIG. 4 That is, it is determined based on whether it is not.
  • the observation process ends.
  • the particulate is determined to be subject microparticles is determined in step S150, S160, the volume v of the particles was calculated from the real part Re of the complex scattering amplitude S 11 (S 11) (step S170), ends the observation processing I do. The calculation of the volume v of the fine particles will be described later.
  • ⁇ Definition of light scattering theory and the complex scattering amplitude S 11> a plane wave is assumed as an incident wave in a problem of scattering of an electromagnetic wave due to fine particles isolated in a uniform medium. This means that at a position far away (compared to the wavelength) from the electric dipole which is the radiation source of the wave, it behaves as a spherical wave spreading outward from the radiation source, and the spherical wave coming from the source far away from the fine particles has a radius of curvature. This is because it can be approximated as a plane wave much larger than the fine particles.
  • E ′ (r, t) E ′ 0 ei (k ⁇ r ⁇ t) as a function of the position r and the time t.
  • E 0 is a complex vector on a plane perpendicular to the wave vector k and can be decomposed into two independent polarization components.
  • the traveling direction of the incident wave is set to the + z direction, and the incident field is represented by Expression (1).
  • the incident field and the scattering field have a linear relationship due to the linearity of the governing equation (Maxwell equation) of the electromagnetic field. For these two reasons, the relationship between the polarization components of the incident field and the scattered field can be expressed by equation (2) using a 2 ⁇ 2 complex scattering amplitude matrix S depending on the characteristics of the fine particles.
  • the scattering field E sca (r) is a spherical wave
  • the polarization component is represented by a spherical coordinate system.
  • FIG. 5 shows the definition of the coordinate system and the unit vector of each coordinate.
  • the polarization component of the incident wave E inc0 and the polarization component of the scattered field that are parallel on the xy plane interfere with each other (according to Fresnel-Arago's law).
  • Equation (4) forms the basis of the principle of particle measurement by the SPES method.
  • a TEM 00 mode laser beam having a Gaussian intensity profile (hereinafter, Gaussian beam) is used as an incident field E inc (r).
  • the Gaussian beam behaves as a plane wave near the beam waist and behaves as a spherical wave spreading from the beam waist center point farther from the beam waist. Therefore, the fine particles existing in the cross section near the beam waist of the Gaussian beam are excited by the local plane wave.
  • a Gaussian beam incident wave that spreads on a spherical surface within a finite solid angle in the forward direction and a wave vector coincide with each other and have a common polarization component interfere with the incident field ( (Fig. 6).
  • a phase and amplitude of the scattered waves is determined by the source locations of the scattered field (position of the fine particles) and fine particles of the complex scattering amplitude S 11, it is different from the interference intensity distribution on the detection surface placed within a finite solid angle of forward direction Observed.
  • a Gaussian beam diverging behind the beam waist is received by a multi-element photodetector (here, a four-division photodiode), and the intensity of each photocathode during the time when the particle to be measured crosses the beam waist.
  • a multi-element photodetector here, a four-division photodiode
  • the intensity of each photocathode during the time when the particle to be measured crosses the beam waist from the relationship between the time waveform of, (relative to the incident field) amplitude and phase scatter field, i.e. it is an object to determine the real and imaginary part of the complex scattering amplitude S 11.
  • z 0 is called Rayleigh length [m]
  • approximate distance begins to transition to a spherical wave wavefront is approximated by infinity from the plane wave approximation near the beam waist
  • Is interpreted as z 0 is represented by Expression (7) by ⁇ 0 and the wavelength.
  • Expression (6) can be approximated as Expression (8).
  • the incident field to which the fine particles are exposed is expressed by Expression (9) from Expressions (5) to (8).
  • the photodetector is placed sufficiently far than the spot size omega 0 of the wavelength and the beam waist, and the solid angle thereof photocathode spanned is small.
  • the light receiving power (observation signal) of the four-division photodiode photocathode placed as shown in FIG. 2 is formulated using E sca of Expression (12) and E inc of Expression (13).
  • Receiving power density at the position R ⁇ shiguma PD on the photocathode [Wm -2] is the formula (14).
  • the first term is the contribution of the incident field
  • the second term is the contribution of the scattered field
  • the third term is the contribution of interference (dissipation) between the incident field and the scattered field.
  • the light receiving power of each photocathode is equal to the area on the photocathode of equation (14).
  • the photocathode may be assumed to be infinitely wide in the area calculation of Expression (15), and the integration range of x and y is Each may be (- ⁇ , + ⁇ ⁇ ⁇ ⁇ ).
  • Equation (12) a mathematical expression of a complex scalar quantity (the left side of equation (19)) is obtained. Equation (12), and calculates equation (13) based on, x p appearing in the phase term exp, when subjected to approximation to ignore the secondary small term of y p, the following equation (19) Be guided. However, equation (20) was used for rearranging notations in equation (19). Here, when the position (x, y) on the photocathode is represented by polar coordinates and the expression of b is used, the expression (19) is expressed by the expression (21).
  • dissipated powers P ext can be expressed by the equations (22) to (24) as the area of the dissipated power density on the photocathode.
  • equation (21) In substituting equation (21) into each of the right sides of equations (22), (23), and (24) to calculate and arrange the integrals, the following complex integral formulas (25) and (26) are used. Used.
  • Expression (26) when used, the right sides of Expressions (23) and (24) are expanded as Expressions (35) and (36), respectively. In addition, it set as Formula (37) and Formula (38).
  • Equation (39) the observed amount P ext (BD) and the observed amount P ext (the ratio of a-C), the beam dimensionless coordinates (zeta particulate on waist section, eta) only dependent, it can be seen that does not depend on the characteristics of the microparticles, such as the complex scattering amplitude S 11.
  • the coordinate ⁇ (t) in the x direction along the flow of the fine particles can be restricted by the waveform of the observed amount P ext ( AC ). Therefore, the observed amount P ext (BD) / P ext ( AC ) can be used as an index of the coordinate ⁇ of the fine particle in the y direction. Based on this index, it is possible to extract only the fine particles that cross the vicinity of the beam center (
  • the function (equation 43) in equation (41) defines the waveform of P ext (AC) ( ⁇ ) at
  • the term on the right side erfi in equation (43) is an odd function and monotonically increasing, and the increase in its absolute value in the
  • ⁇ 1 region is canceled by exp ( ⁇ 2 ⁇ 2 ). Therefore, f ( ⁇ ) has one minimum point and one maximum point (symmetrical with respect to the origin) in each of the positive and negative ⁇ regions, and f (0) 0.
  • the maximal point and the minimal point of f ( ⁇ ⁇ ) numerically obtained are expressed by equation (44).
  • dissipating structure factor (equation (54)) defining a dimensionless quantity that depends on the physical properties and geometry of the particles, from the equation (53), the complex scattering amplitude S 11 is essentially to be seen from the observation It can be simply expressed as the product of the contribution of the complex dielectric constant and the particle volume v, which are the physical quantities of the fine particles, and the dimensionless quantity F, as in Expression (55).
  • the internal electric field E (r ') is affected by the incident field Einc (r'). ) (Born approximation).
  • F 1 in the Born approximation.
  • the order of the real part and the imaginary part of the complex value F may be expressed by equation (56), respectively.
  • the Born approximation is useful as a coarse approximation for many, rapid interpretations.
  • each equation the real and imaginary parts of equation (55) (57), write an equation (58), the ratio of the real part and the imaginary part of the complex scattering amplitude S 11 is the complex dielectric
  • the rate and the dissipation structure factor have the relationship of equation (59).
  • the ratio of the real part and the imaginary part of the complex scattering amplitude S 11 is equal to the ratio of the real part and the imaginary part of the dissipative structure factor F, Expression (60) is obtained.
  • the calculation of the real part Re (S 11 ) and the imaginary part Im (S 11 ) of the complex scattering amplitude S 11 in step S140 in the observation processing of FIG. 3 can be performed by the equations (45) and (46). Understand. Further, it can be understood that the calculation of the volume v of the fine particles (fine bubbles) in step S170 in the observation processing of FIG. 3 can be performed by equation (57).
  • Example 1 Experimental example using polystyrene particles of known particle size> A sample in which polystyrene particles of a known particle size (STADEX series, manufactured by JSR Corporation) were suspended in pure water was passed through the flow cell 10 to evaluate the performance of the fine particle detector 20.
  • the spot size ⁇ 0 at the beam waist was derived from the flow velocity at the center of the flow cell 10 determined by the flow rate driven by the tube pump, and the mode value of the waveform width of the dissipated power P ext ( AC ).
  • FIG. 1 Experimental example using polystyrene particles of known particle size> A sample in which polystyrene particles of a known particle size (STADEX series, manufactured by JSR Corporation) were suspended in pure water was passed through the flow cell 10 to evaluate the performance of the fine particle detector 20.
  • the spot size ⁇ 0 at the beam waist was derived from the flow velocity at the center of the flow cell 10 determined by the flow rate driven by the tube pump, and the mode value of the waveform width of the
  • the spot size ⁇ 0 calculated from the mode value of the waveform width and the central flow velocity as understood from the figure is about 2.64 ⁇ m. This value is close to the spot size (about 2.5 ⁇ m) estimated from the paraxial ray theory based on the beam parameters of the laser irradiation device 22 (HeNe laser), the magnification of the beam expander 34, and the focal length of the condenser lens 35. (However, the influence of aberrations associated with the wall surface equivalent of the flow cell 10 was neglected).
  • Figure 8 is an explanatory diagram the particle size and the complex refractive index indicates the real part of the complex scattering amplitude S 11 as a real part and the theoretical value of the complex scattering amplitude S 11 of the experimental example according to the known polystyrene standard particles
  • Figure 9 is an explanatory diagram the particle size and the complex refractive index indicates the imaginary part of the complex scattering amplitude S 11 as the imaginary part of the complex scattering amplitude S 11 and the theoretical value of the experimental example according to the known polystyrene standard particles.
  • polystyrene standard particles those having a diameter of 202 nm, 254 nm, 294 nm, 402 nm, and 510 nm were used. In the experimental example, as shown, both the real part and the imaginary part agree well with the theoretical values.
  • FIG. 10 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext (AC) of a particle whose real part Re (S 11 ) of the complex scattering amplitude S 11 is larger than 0.
  • FIG. 9 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext ( AC ) of a microbubble in which the real part Re (S 11 ) of the scattering amplitude S 11 is smaller than a value 0.
  • the real part Re (S 11 ) of the complex scattering amplitude S 11 has a positive value for fine particles (solid particles such as metal) having a larger dielectric constant than water, and has a smaller dielectric constant than water (fine bubbles). (Gas particles such as (air)) has a negative value. For this reason, in the case of the microbubbles, the maximum and the minimum are inverted with respect to solid particles such as metal. Note that the second half of the waveform of the dissipated power P ext ( AC ) of the microbubbles is systematically disturbed, which may be due to the bubbles being deformed by some interaction with the laser.
  • the photodiode A is located upstream (minus side of the x-axis) of the flow of the flow cell 10
  • the photodiode C is located downstream (plus side of the x-axis), and the minus side of the y-axis.
  • a photodiode D on the positive side of the y-axis.
  • fine particles by the real and imaginary parts of the calculated complex scattering amplitude S 11 determines whether a target particle. Thereby, it is possible to determine only the target particles among the particles flowing through the flow cell 10.
  • the dissipated power P ext (a + bcd) and the dissipated power P ext (a + db- Since it is only necessary to calculate the dissipated power P ext (AC) and the dissipated power P ext (BD) as compared with the case where c) needs to be calculated, it can be easily calculated. .
  • the particles flowing in the flow cell 10 is determined to be subject microparticles, because to calculate the volume v of the particles on the basis of the real part of the complex scattering amplitude S 11, it is possible to detect the size of the fine particles.
  • the four photodiodes A to D of the observation light photodiode 40 are arranged such that an axis parallel to the flow direction of the flow cell 10 is an x axis and an axis perpendicular to the flow direction of the flow cell 10 is y.
  • an axis parallel to the flow direction of the flow cell 10 is an x axis
  • an axis perpendicular to the flow direction of the flow cell 10 is y.
  • the four photodiodes A to D are divided into a first straight line having a predetermined angle of 15 to 75 degrees from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It may be arranged on a four-divided plane.
  • the observation may be performed when J is less than a predetermined value less than 0.2 (for example, 0.15 or 0.1). In this case, the fine particles can be determined with higher accuracy.
  • the volume v of the particle is calculated, but the volume v of the particle may not be calculated.
  • the light intensities P (A) to P (D), P () detected by the four photodiodes A to D and the reference light photodiode E between the observation light photodiode 40 and the control device 60.
  • the particle detector system 20 described above has focused on the complex scattering amplitude S 11 because that is targeted to the spherical particles, such as micro-bubble as the target particles, when the target particle is a non-spherical particles it may be a replacement for the complex scattering amplitude S 11 to the complex scattering amplitude S 22.
  • the particle detector 120 of the second embodiment has the same hardware configuration as the particle detector 120 of the first embodiment illustrated in FIG. In order to avoid redundant description, description of the hardware configuration of the particle detection device 120 according to the second embodiment will be omitted.
  • dissipated power P ext Tot
  • dissipated power P ext A-C
  • dissipation power P ext It is assumed that a preamplifier electronic circuit for calculating (BD) is provided.
  • the particle detection apparatus 120 of the second embodiment since the detection of the particulate solid non-small bubbles (including non-spherical shape) as the target particles, the complex the complex scattering amplitude S 11 in the description of the first embodiment replaced by a scattering amplitude S 22 will be described.
  • the control device 60 executes an observation process illustrated in FIG.
  • the control device 60 firstly operates the dissipated power P ext (Tot) and the dissipated power calculated by the preamplifier electronic circuit provided between the observation light photodiode 40 and the control device 60.
  • P ext (AC) and dissipation power P ext (BD) are obtained (step S210).
  • ) is determined.
  • the value J is calculated (step S220), and it is determined whether the calculated determination value J is less than 0.2 (step S230). Determining whether observation is possible based on whether the determination value J is less than 0.2 has been described in the first embodiment.
  • step S230 If it is determined in step S230 that the determination value J is less than 0.2, the real part Re (S 22 ) of the complex scattering amplitude S 22 is calculated using the dissipated powers P ext (Tot) and P ext (AC). the imaginary part Im (S 22) and calculates (step S240), the real part Re (S 22) and the imaginary part Im (S 22) of the calculated complex scattering amplitude S 22 and stores (step S250). Then, it is determined whether or not the observation is completed (step S260).
  • step S230 determines that the unobservable, the real part Re (S 22) of the complex scattering amplitude S 22 and the imaginary part Im (S 22) without calculating a It is determined whether or not the observation has been completed (step S260), and if it is determined that the observation has not been completed, the process returns to step S210.
  • the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 are calculated for the fine particles having the judgment value J of less than 0.2 from the start of the observation to the end of the observation.
  • the process of storing the data is repeatedly executed. Note that the determination of the end of observation in step S260 may be performed when instructed by the operator, when a predetermined number of particles are detected, or when the observation target cannot be detected for a predetermined time. it can.
  • the calculation of the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 will be described later.
  • step S270 the complex scattering amplitude S22 of all the observed fine particles is plotted on a complex plane (step S270), and it is estimated that the particles are particles of the same material (a material having the same complex refractive index).
  • the particle to be selected is selected (step S280). This selection can be made by the operator selecting the fine particles plotted on the complex plane. As shown in FIG. 4 and FIGS. 13 and 14 described later, the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 on the complex plane have the same complex refractive index. Appears parabolically.
  • fine particles appearing in a parabolic shape are fine particles of the same material (a material having the same complex refractive index) and select them.
  • the plotted fine particles may be individually selected, or may be selected by surrounding the plotted fine particles with a closed region. Then, the complex refractive index of the selected microparticle and the volume range of the selected microparticle are calculated (step S290). Then, it is determined whether or not to end the process (step S300). If it is determined that the process is not to be ended, the process returns to step S280 to select fine particles presumed to be the same material. finish.
  • the fine particles can be selected for each of the plurality of materials, and the complex refractive index and the volume range of the selected fine particles can be calculated. It should be noted that the determination of the termination may be performed when the operator gives a termination instruction.
  • Equation (62) forms the basis of the particle measurement principle by the SPES method.
  • the light receiving power (observation signal) of the four-division photodiode photocathode placed as shown in FIG. 2 is formulated using E sca of equation (64) and E inc of equation (13).
  • Receiving power density at the position R ⁇ shiguma PD on the photocathode [Wm -2] is the formula (14).
  • Equation (66) a mathematical expression of a complex scalar quantity (the left side of Expression (66)) is obtained. Equation (64), and calculates equation (13) based on, x p appearing in the phase term exp, when subjected to approximation to ignore the secondary small term of y p, the following equation (66) Be guided. However, equation (20) was used for rearranging notations in equation (66). Here, when the position (x, y) on the photocathode is represented by polar coordinates and the expression of b is used, expression (66) is expressed by expression (67).
  • dissipated powers P ext can be expressed by the equations (22) to (24) as the area of the dissipated power density on the photocathode.
  • equation (21) In substituting equation (21) into each of the right sides of equations (22), (23), and (24) to calculate and arrange the integrals, the following complex integral formulas (25) and (26) are used. Used.
  • Expression (26) when used, the right sides of Expressions (23) and (24) are expanded as Expressions (72) and (73), respectively. In addition, it set as Formula (37) and Formula (38).
  • Equation (39) the observed amount P ext (BD) and the observed amount P ext (the ratio of a-C) only dependent, it can be seen that does not depend on the characteristics of the microparticles, such as the complex scattering amplitude S 22.
  • the coordinate ⁇ (t) in the x direction along the flow of the fine particles can be restricted by the waveform of the observation amount P ext ( AC ). Therefore, the observed amount P ext (BD) / P ext ( AC ) can be used as an index of the coordinate ⁇ of the fine particle in the y direction. Based on this index, it is possible to extract only the fine particles that cross the vicinity of the beam center (
  • the function (equation 43) in equation (75) defines the waveform of P ext (AC) ( ⁇ ) at
  • the term on the right side erfi in equation (43) is an odd function and monotonically increasing, and the increase in its absolute value in the
  • ⁇ 1 region is canceled by exp ( ⁇ 2 ⁇ 2 ). Therefore, f ( ⁇ ) has one minimum point and one maximum point (symmetrical with respect to the origin) in each of the positive and negative ⁇ regions, and f (0) 0.
  • the maximal point and the minimal point of f ( ⁇ ⁇ ) numerically obtained are expressed by equation (44).
  • the voltage signal V sig (Tot-Ref) is represented by Expression (78).
  • R [AW -1 ] represents the light receiving sensitivity of the photodiode
  • K [VA -1 ] represents the amplification factor of the current-voltage conversion circuit
  • G diff represents the differential amplification factor of the instrumentation amplifier.
  • the superscripts QPD and rPD represent a quadrant photodiode and a reference light photodiode, respectively .
  • is the beam intensity division ratio between the incident light and the reference light. The division ratio ⁇ is adjusted so as to satisfy Expression (79), and two terms including the incident light power P inc in Expression (78) are canceled. By this cancellation, the influence of the noise of the laser beam intensity can be largely eliminated. Even if the cancellation is not perfect, the DC component may be removed when extracting the signal waveform of the particles by the measurement software.
  • the signal V sig ( AC ) is expressed as in equation (84). If the center position of the four-division photodiode is aligned with the beam center, the contributions of the incident light power P inc and the received light power P sca of the scattered field in equation (84) are canceled out by the photocathodes A and C, respectively. Under this canceling condition, Expression (84) is transformed into Expression (85). As can be seen from Expressions (85) and (76), Re (S22) is a measured amount obtained from the signal V sig ( AC ). In the data analysis method of the present apparatus, the complex refractive index and volume of particles are estimated based on bivariate measurement data ⁇ Re (S 22 ), [Im (S 22 )] SC ⁇ .
  • ⁇ Model for calculating the complex scattering amplitude S 22 of the fine particles In order to estimate the model parameters (complex refractive index, volume, shape) of the fine particles from the measurement data of the plurality of fine particles ⁇ Re (S 22 ), [Im (S 22 )] SC ⁇ , the input values of the model parameters are used.
  • forward model for calculating the complex scattering amplitude S 22 is required. The formulation, calculation method and calculation result of the forward model are described below.
  • the problem of scattering of the electromagnetic field of fine particles (or bubbles) made of a non-magnetic and isotropic material is represented by the following integral form (without approximation) derived from Maxwell's equation (without approximation) in the frequency domain. ).
  • this equation can be regarded as an integral equation for the electric field inside the particle. Assuming that the internal electric field of the particle, which is the solution of the integral equation, is obtained (by a numerical method described later), the scattered field by the particle can be written as the second term on the right side of the equation (85) as equation (86).
  • Equation (87) can be used for the Green's function.
  • the dissipation structure factor is a volume average value of an inner product of an internal electric field and an incident field generated in a particle when a plane wave of a unit amplitude (Equation (92)) is incident.
  • E (r ⁇ ) will have an incident field E inc (R ⁇ ) (Born approximation).
  • F 1 in the Born approximation.
  • the wave number of the incident field dissipation structure factor F the refractive index of the medium
  • an analytical solution of the Mie theory is used for spherical particles, and a numerical solution by a discrete dipole method is used for non-spherical particles.
  • the particle orientation during traversal of the beam waist is unknown, so an average over a number of orientations was chosen.
  • Block-Krylov subspace method was introduced to the iterative solution of a large-scale linear equation appearing in the discrete dipole method.
  • An algorithm for FFT acceleration was implemented to speed up the calculation of the matrix-vector product in each iteration (Block-DDA).
  • Block-DDA matrix-vector product in each iteration
  • the particles of various complex refractive index and shape shows the calculation results of the complex scattering amplitude S 22 defined by formula (95) in FIG. 13 and FIG. 14.
  • the value of the complex scattering amplitude S 22 has a value on the specific curve particle species in the complex plane. Attention is first focused on the small particle size limit near the origin in FIGS. F values in the vicinity of the origin from being approximated by Equation (93), the curve of the complex scattering amplitude S 22 extends from the origin in a direction which depends only on the value of the complex refractive index. When the particle diameter increases to some extent away from the origin, the curve starts to bend not only depending on the complex refractive index but also on the particle shape.
  • the curve of the complex scattering amplitude S 22 although fairly close to spherical particles, having a slight shift trend towards the curve of the refractive index is small spherical particles (FIG. 14).
  • the fractal aggregate particles of microspheres (diameter 0.04 ⁇ / U> m) ( aggregate)
  • the curve of the complex scattering amplitude S 22 is in the form close to a straight line extending from the origin.
  • FIGS. 15 and 16 are explanatory diagrams in which the absolute value of the F value and the particle size dependence of the argument are plotted for the same particle type as in FIGS. 13 and 14.
  • the dissipative structure factor F takes a value close to the real number 1. , Does not depend much on the particle size.
  • the difference between the amplitude and phase of the incident field and the internal electric field increases with the particle size as the difference in the refractive index from the medium increases.
  • the argument arg (F) of the dissipation structure factor F shows a particle size dependence as shown in FIGS.
  • the particle surface area is remarkably large with respect to the particle volume, and the incident field easily penetrates into the particle volume. small. Therefore, the smaller situations than the particle size or wavelength comparable, F value without departing significantly from the small ⁇ limit value of the formula (93), the curve of the complex scattering amplitude S 22 extends from the origin It has a shape close to a straight line.
  • the particle shape is preliminarily selected from several types of candidates and is not included in the model parameters . It is assumed that the occurrence probabilities of each element of the data have a normal distribution independent of each other. At this time, the probability distribution (likelihood function) of the data under the condition of the model parameter can be expressed by Expression (100).
  • ⁇ Re (S 22) j, [Im (S 22) j] SC ⁇ are the model parameters (m r, m i, ⁇ j) calculated by the forward model for particles of ⁇ Re (S 22), [ Im (S 22 )] SC ⁇ .
  • ⁇ Statistical error of measurement data consists of contribution of relative error and background noise.
  • the relative error is caused by the deviation of the crossing position of the particle from the center of the beam waist
  • the background noise is caused by the noise of the electronic circuit and the noise of the laser light source.
  • the magnitude of each contribution of the relative error and the background noise can be estimated from waveform simulations and experiments.
  • the posterior probability p of the model parameter can be expressed as Expression (101) by the likelihood function L and the prior probability p0 .
  • 17 and 19 shows the real and imaginary part of the complex index of refraction
  • 18 and 20 show the volume equivalent particle size d v of the first data point from the smaller real part of the complex refractive index.
  • FIG. 21 shows a list of parameter estimation results (values at 5%, 50%, and 95% points of the probability density distribution) of other spherical particles having a complex refractive index including these particles.
  • the real and imaginary parts and the volume of the complex refractive index can be estimated to be almost correct.
  • m 1.5 + particle volume in the case of 0.1i (d v, 1st) as can be remarkably observed in the real part of the refractive index (m r), in that there is a correlation parameter between (degenerate) Please be careful.
  • the uncertainty width of the parameter estimation that is, the width of the posterior distribution becomes wider as the degeneracy between different parameters increases.
  • the degree of degeneracy between the parameters depends on the region of the particle volume included in the input data point group (Equation (98)).
  • FIG. 25 shows the experimental results of a rain sample in Tokyo
  • FIG. 26 shows the experimental results of a rain sample in Okinawa.
  • Fullerene soot (Alfa Aesar, stock # 40971), which is one of the standard samples of soot particles, is superimposed on the measurement data of the precipitation sample.
  • Fullerene soot has a high [ImS 22 ] SC / ReS 22 ratio because the imaginary part of the complex refractive index is large.
  • particles that appear to be soot having an [ImS 22 ] SC / ReS 22 ratio close to Fullerene soot and particles that appear to be non-absorbent having a low [ImS 22 ] SC / ReS 22 ratio are mixed.
  • the data group found soot on the complex plane of the S 22 data the Category 1 Distant, among the data points appear to non-absorbent, the Category to [ImS 22] SC / ReS 22 ratio is relatively large data group 2.
  • a data group whose [ImS 22 ] SC / ReS 22 ratio is relatively small is referred to as Category 3.
  • Category classification is performed visually and subjectively, several representative data points are appropriately selected from each Category (markers in the figure), and they are input to the parameter estimation algorithm (Equation (91)).
  • Used as Category 1 is defined as a data point that satisfies [ImS 22 ] SC / ReS 22 > 1, and as a representative data point, first, data that satisfies [ImS 22 ] SC ⁇ 0.34 is linearly fitted, and the regression line is obtained. Four points where the ReS 22 value was 0.04, 0.08, 0.12, and 0.16 were selected above. The reason why the [ImS 22 ] SC value was given an upper limit in Category 1 data analysis was that the target of analysis was that the volume equivalent particle size, whose parameter estimation result was hardly affected by the particle size and shape of the selected data point, was smaller than the wavelength. Is also limited to small particles (see FIGS. 23 and 24).
  • FIG. 29 and FIG. 30 show the results of parameter estimation assuming spherical particles for the data of Category 2, which is considered to be non-absorbable particles in FIG. 25 and FIG.
  • FIG. 31 shows the results of parameter estimation assuming spherical particles for the data of Category 3 which is considered to be non-absorbable particles in FIG.
  • the fine particle detection device 120 it is understood that, even with unknown particles in the environment, useful information for identifying the particle type can be obtained by the data analysis algorithm.
  • the particle volume is also determined, and the number of detections per unit time can be converted into a number concentration. Therefore, from the data shown in FIGS. Several concentrations can also be derived.
  • the photodiode A is located on the upstream side (minus side of the x-axis) of the flow of the flow cell 10
  • the photodiode C is located on the downstream side (plus side of the x-axis)
  • the y-axis is on the downstream side.
  • a photodiode B is arranged on the minus side
  • a photodiode D is arranged on the plus side of the y-axis.
  • the light intensities P (A) to P (D) and P (E) detected by the four photodiodes A to D and the reference light photodiode E are input, and the dissipated power P ext (Tot) is calculated.
  • a circuit for a circuit for calculating the dissipated power P ext (a-C), a pre-amplifier electronic circuit and a circuit for calculating the dissipated power P ext (B-D) is provided.
  • Preamplifier electronics dissipation from the power P ext (Tot), dissipated power P ext (A-C), the real part Re (S 22) and imaginary of the complex scattering amplitude S 22 based on the dissipated power P ext (B-D)
  • the part Im (S 22 ) is calculated.
  • the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 of the plurality of fine particles calculated in this way are stored.
  • the four photodiodes A to D of the observation light photodiode 40 are arranged such that the axis parallel to the flow direction of the flow cell 10 is the x-axis and the axis perpendicular to the flow direction of the flow cell 10. Is the y axis, they are arranged on a four-divided plane divided by two straight lines perpendicular to the x axis and the y axis at 45 degrees.
  • the four photodiodes A to D are divided into a first straight line having a predetermined angle of 15 to 75 degrees from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It may be arranged on a four-divided plane.
  • the present invention can be used in the manufacturing industry of fine particle detection devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A fine particle detecting device for detecting fine particles flowing through a flow cell is provided with: a laser radiator which radiates a laser beam; an optical system which prepares the laser beam to the extent that it is possible to approximate a Gaussian beam in the vicinity of a focusing spot; a light intensity detector which is disposed behind the focusing spot to detect light intensity; and a control device which identifies the fine particles on the basis of the light intensity detected by the light intensity detector. When the center of the focusing spot is an origin, an axis passing through the original parallel to the direction of flow of the fine particles in the flow cell is an x-axis, and an axis passing through the original perpendicular to the x-axis is a y-axis, the light intensity detector is configured from four detectors which are divided by means of a first straight line having an angle of elevation from the y-axis that is a prescribed angle at least equal to 15 degrees and at most equal to 75 degrees, and a second straight line having x-axis symmetry with the first straight line.

Description

微粒子検出装置Particle detector
 本発明は、微粒子検出装置に関する。 The present invention relates to a particle detection device.
 従来、この種の技術としては、SPES法(Single Particle Extinction and Scattering)が提案されている(非特許文献1参照)。SPES法では、収束させたレーザー光の入射波と、そのビームを横断する粒子による散乱波との干渉が作り出す、前方方向における光強度の空間分布を観測することにより、散乱波の振幅と位相を同時に測定する。このため、試料水中に共存する異なる粒子種を判別したうえで各々の粒子種の粒径別数濃度を測定できることが示される。 Conventionally, as this type of technology, a SPES method ( Single Particle Extinction and Scattering) has been proposed (see Non-Patent Document 1). In the SPES method, the amplitude and phase of a scattered wave are measured by observing the spatial distribution of light intensity in the forward direction created by the interference between the incident wave of the converged laser beam and the scattered wave caused by particles traversing the beam. Measure at the same time. For this reason, it is shown that, after different particle types coexisting in the sample water are discriminated, the number concentration of each particle type by particle size can be measured.
 SPES法では、ガウシアン強度プロファイルをもつTEM00モードのレーザービームを、集光レンズで(ビームウエストにおけるスポットサイズが数ミクロン程度になるように)収束させる。ビームウエスト付近を横断する粒子が作り出す、散乱波と入射波の干渉強度パターンを4分割フォトダイオードで検出し、その信号強度の時間波形を測定する。ここで、4分割フォトダイオードは、入射波に対して垂直な平面において、入射波の中心を原点とし、原点を通ってフローセルの流れ方向に平行な軸をx軸、原点を通ってフローセルの流れ方向に垂直な軸をy軸としたときのxy平面における第1象限~第4象限に配置されている。 In the SPES method, a TEM 00 mode laser beam having a Gaussian intensity profile is converged by a condenser lens (so that the spot size at the beam waist is about several microns). The interference intensity pattern of the scattered wave and the incident wave generated by the particles crossing the vicinity of the beam waist is detected by a four-division photodiode, and the time waveform of the signal intensity is measured. Here, in the plane divided perpendicularly to the incident wave, the four-division photodiode has the origin at the center of the incident wave, the x-axis passes through the origin, and is parallel to the flow direction of the flow cell, and the flow of the flow cell passes through the origin. They are arranged in the first to fourth quadrants on the xy plane when the axis perpendicular to the direction is the y axis.
 そして、フローセルを流れる微粒子がレーザーを横断する最中の測定光強度の時間波形から、入射波に対する散乱波の振幅と位相と等価な情報を含む、散乱体の複素散乱振幅S(0)の実部と虚部を導出する。複素散乱振幅S(0)の実部については、第1象限と第2象限に配置されたフォトダイオードにより観測された光強度(P1+P2)と第3象限と第4象限に配置されたフォトダイオードにより観測された光強度(P3+P4)との差分{(P1+P2)-(P3-P4)}に基づいて求め、複素散乱振幅S(0)の虚部については、第1~第4象限に配置されたフォトダイオードにより観測された光強度(P1P2+P3+P4)に基づいて求めている。なお、複素散乱振幅S(0)は散乱体の大きさだけでなく複素誘電率にも依存するため、複素散乱振幅S(0)の実部と虚部の組み合わせから粒子種を経験的に分類することができる。 Then, from the time waveform of the measured light intensity while the fine particles flowing through the flow cell traverse the laser, the actual value of the complex scattering amplitude S (0) of the scatterer including information equivalent to the amplitude and phase of the scattered wave with respect to the incident wave is obtained. Derives the part and the imaginary part. For the real part of the complex scattering amplitude S (0), the light intensity (P1 + P2) observed by the photodiodes arranged in the first and second quadrants and the photodiodes arranged in the third and fourth quadrants The imaginary part of the complex scattering amplitude S (0) is located in the first to fourth quadrants based on the difference {(P1 + P2)-(P3-P4)} from the observed light intensity (P3 + P4). It is determined based on the light intensity (P1P2 + P3 + P4) observed by the photodiode. Since the complex scattering amplitude S (0) depends not only on the size of the scatterer but also on the complex permittivity, the particle type is empirically classified from the combination of the real part and the imaginary part of the complex scattering amplitude S (0). can do.
 雨水・河川水・海水・融雪氷水などの地球環境中の自然水には、多種多様な固体粒子(鉱物粒子・有機物・ウイルス・プランクトン・プラスチックなど)やミセル状の液体粒子が未知濃度で懸濁している。飲料水・食品保存用精製水、精密機器の洗浄用水、医療用精製水などの産業用水にも、自然水よりも濃度は少ないものの、同様な微粒子が汚染物質として混入している。このように、水中に存在する微粒子の種類と粒径別の数濃度のデータは、水の汚染度・汚染経路・環境学的プロセスを理解するための指標として重要である。 Natural water in the global environment, such as rainwater, river water, seawater, snow-melting water, etc., contains various solid particles (mineral particles, organic substances, viruses, plankton, plastics, etc.) and micellar liquid particles suspended at unknown concentrations. ing. Industrial water such as purified water for drinking water and food preservation, cleaning water for precision equipment, and purified water for medical use, though having a lower concentration than natural water, contains the same fine particles as contaminants. As described above, data on the number and concentration of fine particles in water by particle type and particle size are important as indices for understanding water pollution degree, pollution path, and environmental process.
 近年、人工的に発生させ水中に注入した高濃度の粒径1μm以下の気泡(ファインバブル)が、衣類・陶器・配管の表面の汚れの洗浄促進作用、魚介類の養殖促進作用、生鮮魚介類の保存促進(酸化抑制)作用、農作物の栽培促進作用など、多くの有用な効果をもつことが明らかになり、ファインバブル水の研究とその応用は、様々な産業分野で盛んになりつつある。 In recent years, high-concentration air bubbles (fine bubbles) having a particle diameter of 1 μm or less, which are artificially generated and injected into water, have an effect of promoting washing of soil on clothes, pottery, and piping, an effect of promoting aquaculture of fish and shellfish, an effect of fresh seafood. It has been revealed that it has many useful effects, such as the promotion of preservation (oxidation suppression) and the cultivation of agricultural crops, and the research and application of fine bubble water are becoming active in various industrial fields.
 しかし、これまで、水中に共存している多種の固体・液体の微粒子とファインバブルを互いに明確に判別したうえで、各粒子種・気泡の粒径別数濃度を前処理無しで実時間測定できる技術がなく、水中の微粒子の汚染モニタリングおよび環境水中のファインバブルの品質評価を実施することが困難であった。このため、環境水・産業用水いずれについても前処理無しで、複素屈折率の値が互いに異なる物質からなる微粒子およびファインバブルを互いに明確に判別し、それぞれの粒径別数濃度の実時間測定を可能にする技術が望まれている。 However, until now, fine particles of various solids and liquids coexisting in water and fine bubbles can be clearly distinguished from each other, and the number concentration of each particle type / bubble by particle size can be measured in real time without pretreatment. Without technology, it was difficult to monitor contamination of fine particles in water and evaluate the quality of fine bubbles in environmental water. For this reason, fine particles and fine bubbles made of substances having different complex refractive indices are clearly distinguished from each other without any pretreatment for environmental water and industrial water, and real-time measurement of the number concentration of each particle size is performed. There is a need for enabling technology.
 本発明の微粒子検出装置は、液体中の固体や液体・気体の微粒子をより適正に検出することを主目的とする。 The main object of the particle detection device of the present invention is to more appropriately detect solid or liquid / gas particles in a liquid.
 本発明の微粒子検出装置は、上述の主目的を達成するために以下の手段を採った。 微粒子 The particle detecting device of the present invention employs the following means in order to achieve the above-mentioned main object.
 本発明の微粒子検出装置は、
 フローセルに流れる微粒子を検出する微粒子検出装置であって、
 レーザービームを照射するレーザー照射器と、
 レーザービームを集光スポット近傍でガウシアンビームに近似できる程度に調製する光学系と、
 前記集光スポットより後方に配置されて光強度を検出する光強度検出器と、
 前記光強度検出器により検出された光強度に基づいて微粒子の判別を行なう制御装置と、
 を備え、
 前記光強度検出器は、前記集光スポットの中心を原点とし、原点を通って前記フローセルにおける微粒子の流れ方向に平行な軸をx軸とし、原点を通ってx軸に垂直な軸をy軸としたときに、y軸からの仰角が15度以上75度以下の所定角の第1直線と前記第1直線にx軸対称な第2直線とにより区分される4つの検出器により構成されている、
 ことを特徴とする。
The fine particle detection device of the present invention,
A fine particle detection device for detecting fine particles flowing in the flow cell,
A laser irradiator that irradiates a laser beam,
An optical system that adjusts the laser beam to a degree that can be approximated to a Gaussian beam in the vicinity of the focused spot;
A light intensity detector that is disposed behind the condensing spot and detects light intensity;
A control device for determining the fine particles based on the light intensity detected by the light intensity detector,
With
The light intensity detector has an origin at the center of the condensed spot, an x-axis passing through the origin and an axis parallel to the flow direction of the fine particles in the flow cell, and an y-axis passing through the origin and perpendicular to the x-axis. In this case, there are four detectors which are divided by a first straight line having a predetermined angle whose elevation angle from the y-axis is not less than 15 degrees and not more than 75 degrees and a second straight line symmetrical to the first straight line with respect to the x-axis. Yes,
It is characterized by the following.
 この本発明の微粒子検出装置では、光強度検出器は、集光スポットの中心を原点とし、原点を通ってフローセルにおける微粒子の流れ方向に平行な軸をx軸とし、原点を通ってx軸に垂直な軸をy軸としたときに、y軸からの仰角が15度以上75度以下の所定角の第1直線と前記第1直線にx軸対称な第2直線とにより区分される4つの検出器により構成されている。このため、xy軸に対して第1象限から第4象限に4つの検出器により構成されているものに比して、消散パワーPext(A-C)や消散パワーPext(B-D)を簡易に計算することができ、液体中の固体や液体・気体の微粒子をより適正に検出することができる。なお、第1直線と第2直線は直交する直線であることがより好ましい。 In the particle detecting apparatus of the present invention, the light intensity detector has the origin at the center of the condensed spot, the axis parallel to the flow direction of the fine particles in the flow cell passing through the origin, and the x-axis passing through the origin. When a vertical axis is defined as a y-axis, there are four divided by a first straight line having a predetermined angle of elevation of 15 degrees or more and 75 degrees or less from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It consists of a detector. For this reason, as compared with a configuration in which four detectors are provided in the first to fourth quadrants with respect to the xy axis, the dissipated power P ext (AC) and the dissipated power P ext (BD) Can be easily calculated, and solids in liquid and fine particles of liquid and gas can be detected more appropriately. It is more preferable that the first straight line and the second straight line are orthogonal straight lines.
 本発明の微粒子検出装置において、前記光強度検出器は、フローセルにおける微粒子がx軸において負方向から正方向に流れるときx軸の負側を領域に属する第1検出器と、y軸の負側を領域に属する第2検出器と、x軸の正側を領域に属する第3検出器と、y軸の正側を領域に属する第4検出器の4つの検出器により構成されており、前記制御装置は、前記第1検出器により検出された第1光強度と前記第2検出器により検出された第2光強度と前記第3検出器により検出された第3光強度と前記第4検出器により検出された第4光強度との和に基づいて複素散乱振幅S11の虚部を計算し、前記第1検出器により検出された第1光強度と前記第3検出器により検出された第3光強度との差分に基づいて複素散乱振幅S11の実部を計算し、計算した複素散乱振幅S11の実部と虚部とに基づいて微粒子の判別を行なうものが好ましい。こうすれば、より適正に液体中の固体や液体・気体の微粒子を判別することができる。 In the particle detecting device of the present invention, the light intensity detector includes a first detector belonging to a region on the negative side of the x-axis when the particles in the flow cell flow from the negative direction to the positive direction on the x-axis, and a negative side on the y-axis. , A fourth detector belonging to the region, a third detector belonging to the region on the positive side of the x-axis, and a fourth detector belonging to the region on the positive side of the y-axis. The control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth detection. based on the sum of the fourth light intensity detected by the vessel to calculate the imaginary part of the complex scattering amplitude S 11, detected by the third detector and the first light intensity detected by the first detector based on the difference between the third light intensity calculating the real part of the complex scattering amplitude S 11 , It is preferable to perform the determination of the fine particles on the basis of the real and imaginary parts of the calculated complex scattering amplitude S 11. In this way, it is possible to more appropriately determine the solid in the liquid or the fine particles of the liquid or gas.
 複素散乱振幅S11の実部と虚部とを計算する態様の本発明の微粒子検出装置において、レーザービームから分離した参照用レーザービームの光強度を検出する参照用検出器を備え、前記制御装置は、前記第1光強度と前記第2光強度と前記第3光強度と前記第4光強度との和から前記参照用検出器により検出された参照光強度を減じたものに基づいて複素散乱振幅S11の虚部を計算するものとしてもよい。 In particle detector device of the invention that calculates a real part of the complex scattering amplitude S 11 and an imaginary part, comprising a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam, the control device Is a complex scattering based on the sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity minus the reference light intensity detected by the reference detector. or as to calculate the imaginary part of the amplitude S 11.
 複素散乱振幅S11の実部と虚部とを計算する態様の本発明の微粒子検出装置において、前記制御装置は、既知の複素誘電率の微粒子に対して予め得られた複素散乱振幅S11の実部と虚部とからなる関係を用いてフローセルに流れる微粒子を判別するものとしてもよい。こうすれば、観測対象の微粒子が既知の微粒子であるか否かの判定をより適正に行なうことができ、より適正に液体中の固体や液体・気体の微粒子を判別することができる。この場合、前記制御装置は、フローセルに流れる微粒子が既知の微粒子のいずれかであると判定したときには、既知の微粒子の複素誘電率を用いて前記計算した複素散乱振幅S11の実部により微粒子の体積を導出するものとしてもよい。こうすれば、微粒子の体積を検出することができる。 In particle detector device of the invention that calculates a real part of the complex scattering amplitude S 11 and an imaginary part, said control device, of the complex scattering amplitude S 11 that previously obtained for known complex dielectric constant of the fine particles Particles flowing in the flow cell may be determined using a relationship consisting of a real part and an imaginary part. In this way, it is possible to more appropriately determine whether or not the fine particles to be observed are known fine particles, and it is possible to more appropriately determine the solid in the liquid and the fine particles of the liquid / gas. In this case, the control device, when the particles flowing in the flow cell is determined to be any of the known fine particles, fine particles by the real part of the complex scattering amplitude S 11 described above calculated using the complex dielectric constant of a known fine particles The volume may be derived. In this case, the volume of the fine particles can be detected.
 複素散乱振幅S11の実部と虚部とを計算する態様の本発明の微粒子検出装置において、前記制御装置は、前記第2光強度と前記第4光強度との差分の前記第1光強度と前記第3光強度との差分に対する比が所定値未満のときに微粒子の判別を行なうものとしてもよい。こうすれば、適正な判別を行なうことができない微粒子の検出を排除することができ、より適正に液体中の固体や液体・気体の微粒子を判別することができる。 In particle detector device of the invention that calculates a real part and an imaginary part of the complex scattering amplitude S 11, the control device, the first light intensity of the difference between the second light intensity and the fourth optical intensity The determination of the fine particles may be performed when the ratio of the difference between the third light intensity and the third light intensity is less than a predetermined value. This makes it possible to eliminate the detection of fine particles for which proper determination cannot be performed, and to more appropriately determine the solids in the liquid and the fine particles of the liquid / gas.
 本発明の微粒子検出装置において、前記光強度検出器は、フローセルにおける微粒子がx軸において負方向から正方向に流れるときx軸の負側を領域に属する第1検出器と、y軸の負側を領域に属する第2検出器と、x軸の正側を領域に属する第3検出器と、y軸の正側を領域に属する第4検出器の4つの検出器により構成されており、前記制御装置は、前記第1検出器により検出された第1光強度と前記第2検出器により検出された第2光強度と前記第3検出器により検出された第3光強度と前記第4検出器により検出された第4光強度との和に基づいて複素散乱振幅S22の虚部を計算し、前記第1検出器により検出された第1光強度と前記第3検出器により検出された第3光強度との差分に基づいて複素散乱振幅S22の実部を計算し、計算した複素散乱振幅S22の実部と虚部とに基づいて微粒子の判別を行なうものとしてもよい。こうすれば、より適正に液体中の非球形状の固体や液体・気体の微粒子を判別することができる。 In the particle detecting device of the present invention, the light intensity detector includes a first detector belonging to a region on the negative side of the x-axis when the particles in the flow cell flow from the negative direction to the positive direction on the x-axis, and a negative side on the y-axis. , A fourth detector belonging to the region, a third detector belonging to the region on the positive side of the x-axis, and a fourth detector belonging to the region on the positive side of the y-axis. The control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth detection. the imaginary part of the complex scattering amplitude S 22 calculated based on the sum of the fourth light intensity detected by the vessel, detected by the third detector and the first light intensity detected by the first detector based on the difference between the third light intensity calculating the real part of the complex scattering amplitude S 22 It may be those based on the real and imaginary parts of the calculated complex scattering amplitude S 22 discriminates particles. In this way, non-spherical solids and liquid / gas fine particles in the liquid can be more appropriately determined.
 複素散乱振幅S22の実部と虚部とを計算する態様の本発明の微粒子検出装置において、レーザービームから分離した参照用レーザービームの光強度を検出する参照用検出器を備え、前記制御装置は、前記第1光強度と前記第2光強度と前記第3光強度と前記第4光強度との和から前記参照用検出器により検出された参照光強度を減じたものに基づいて複素散乱振幅S22の虚部を計算するものとしてもよい。 In particle detector device of the invention that calculates a real part of the complex scattering amplitude S 22 and an imaginary part, comprising a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam, the control device Is a complex scattering based on the sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity minus the reference light intensity detected by the reference detector. or as to calculate the imaginary part of the amplitude S 22.
 複素散乱振幅S22の実部と虚部とを計算する態様の本発明の微粒子検出装置において、前記制御装置は、既知の複素誘電率の微粒子に対して予め得られた複素散乱振幅S22の実部と虚部とからなる関係を用いてフローセルに流れる微粒子を判別するものとしてもよい。こうすれば、観測対象の微粒子が既知の微粒子であるか否かの判定をより適正に行なうことができ、より適正に液体中の固体や液体・気体の微粒子を判別することができる。 In particle detector device of the invention that calculates a real part and an imaginary part of the complex scattering amplitude S 22, the controller of the complex scattering amplitude S 22 that previously obtained for known complex dielectric constant of the fine particles Particles flowing in the flow cell may be determined using a relationship consisting of a real part and an imaginary part. In this way, it is possible to more appropriately determine whether or not the fine particles to be observed are known fine particles, and it is possible to more appropriately determine the solid in the liquid and the fine particles of the liquid / gas.
 複素散乱振幅S22の実部と虚部とを計算する態様の本発明の微粒子検出装置において、フローセルにおける複数の微粒子の複素散乱振幅S22の実部と虚部を記憶し、前記複数の微粒子の複素散乱振幅S22を複素平面にプロットし、プロットした複数の微粒子の複素散乱振幅S22のうち、粒子体積は異なるが複素屈折率が同じであると推定される微粒子の複素散乱振幅S22を選択し、前記選択した微粒子の複素散乱振幅S22に対して複素屈折率と粒子体積範囲とを演算するものとしてもよい。こうすれば、環境中の未知粒子についても、その粒子種を同定するのに有用な情報を得ることができる。 In particle detector device of the invention that calculates a real part of the complex scattering amplitude S 22 and an imaginary part, and stores the real part and the imaginary part of the complex scattering amplitude S 22 of a plurality of fine particles in the flow cell, the plurality of fine particles plotting the complex scattering amplitude S 22 in the complex plane, among the plurality of microparticles plot of the complex scattering amplitude S 22, the complex scattering amplitude of the fine particles is estimated to particle volume are the same are different but complex refractive index S 22 select may be one that calculates the complex refractive index and particle volume range for the complex scattering amplitude S 22 of the selected particles. In this way, even for unknown particles in the environment, useful information for identifying the particle type can be obtained.
実施形態の微粒子検出装置20の構成の概略を示す説明図である。It is an explanatory view showing the outline of composition of particulate detection device 20 of an embodiment. 観測光用フォトダイオードEの配置を説明する説明図である。FIG. 3 is an explanatory diagram illustrating an arrangement of a photodiode E for observation light. 実施形態の微粒子検出装置20の制御装置60により微粒子を検出する際に実行される観測処理の一例を示すフローチャートである。It is a flowchart which shows an example of the observation process performed when the control device 60 of the fine particle detection device 20 of an embodiment detects a fine particle. 半径が0.05μm~0.3μmの微粒子の複素誘電率と複素散乱振幅S11との関係の一例を示す説明図である。Radius is an explanatory diagram showing an example of the relationship between the complex permittivity and the complex scattering amplitude S 11 of the fine particles of 0.05 .mu.m ~ 0.3 [mu] m. 座標系と各座標の単位ベクトルの定義を示す説明図である。FIG. 4 is an explanatory diagram showing definitions of a coordinate system and a unit vector of each coordinate. ガウシアンビームの入射波を模式的に説明する説明図である。FIG. 3 is an explanatory diagram schematically illustrating an incident wave of a Gaussian beam. 直径510nmのポリスチレン粒子の試料の消散パワーPext(A-C)時間波形の極大・極小の時間差(波形幅) [0.4μs単位]を示すグラフである。It is a graph which shows the dissipated power P ext (AC) time difference (waveform width) [0.4 μs unit] of the time waveform of a sample of polystyrene particles having a diameter of 510 nm. 粒径と複素屈折率とが既知のポリスチレン標準粒子による実験例の複素散乱振幅S11の実部と理論値としての複素散乱振幅S11の実部とを示す説明図である。The particle size and the complex refractive index is an explanatory diagram showing the real part of the complex scattering amplitude S 11 as a real part and the theoretical value of the complex scattering amplitude S 11 of the experimental example according to the known polystyrene standard particles. 粒径と複素屈折率とが既知のポリスチレン標準粒子による実験例の複素散乱振幅S11の虚部と理論値としての複素散乱振幅S11の虚部とを示す説明図である。The particle size and the complex refractive index is an explanatory diagram showing the imaginary part of the complex scattering amplitude S 11 as the imaginary part of the complex scattering amplitude S 11 and the theoretical value of the experimental example according to the known polystyrene standard particles. 複素散乱振幅S11の実部Re(S11)が0より大きい微粒子の消散パワーPext(A-C)の測定波形の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of a measured waveform of a dissipated power P ext (AC) of a fine particle having a real part Re (S 11 ) of the complex scattering amplitude S 11 larger than 0. 複素散乱振幅S11の実部Re(S11)が0より小さい微小バブルの消散パワーPext(A-C)の測定波形の一例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext (AC) of a microbubble whose real part Re (S 11 ) of the complex scattering amplitude S 11 is smaller than 0. 第2実施形態の微粒子検出装置120の制御装置60により微粒子を検出する際に実行される観測処理の一例を示すフローチャートである。It is a flow chart which shows an example of observation processing performed at the time of detecting a particulate by control device 60 of particulate detection device 120 of a 2nd embodiment. 複素散乱振幅S11の体積等か直径dへの依存性を示す実験結果を示す説明図である。It is an explanatory diagram showing experimental results showing the dependence of the volume and whether the diameter d v of the complex scattering amplitude S 11. 複素散乱振幅S11の体積等か直径dへの依存性を示す実験結果を示す説明図である。It is an explanatory diagram showing experimental results showing the dependence of the volume and whether the diameter d v of the complex scattering amplitude S 11. 図13と同じ粒子種についてのF値の絶対値と偏角の粒径依存性をプロットした説明図である。FIG. 14 is an explanatory diagram plotting the absolute value of the F value and the particle size dependence of the argument for the same particle type as in FIG. 13. 図14と同じ粒子種についてのF値の絶対値と偏角の粒径依存性をプロットした説明図である。FIG. 15 is an explanatory diagram plotting the absolute value of the F value and the particle size dependence of the argument for the same particle type as in FIG. 14. 球形粒子についてのパラメータ推定値の同時確率分布の一例における複素屈折率の実部と虚部を示す説明図である。It is explanatory drawing which shows the real part and imaginary part of complex refractive index in an example of the joint probability distribution of the parameter estimation value about a spherical particle. 球形粒子についてのパラメータ推定値の同時確率分布の一例における複素屈折率の実部と小さい方から1番目のデータ点の体積等価粒径dを示す説明図である。It is an explanatory view showing a volume equivalent particle size d v of the first data point from the smaller real part of the complex refractive index of an exemplary joint probability distribution of the parameter estimates for the spherical particles. 球形粒子についてのパラメータ推定値の同時確率分布の一例における複素屈折率の実部と虚部を示す説明図である。It is explanatory drawing which shows the real part and imaginary part of complex refractive index in an example of the joint probability distribution of the parameter estimation value about a spherical particle. 球形粒子についてのパラメータ推定値の同時確率分布の一例における複素屈折率の実部と小さい方から1番目のデータ点の体積等価粒径dを示す説明図である。It is an explanatory view showing a volume equivalent particle size d v of the first data point from the smaller real part of the complex refractive index of an exemplary joint probability distribution of the parameter estimates for the spherical particles. 複素屈折率の球形粒子のパラメータ推定結果の一覧表を示す説明図である。It is explanatory drawing which shows the list | wrist of the parameter estimation result of the spherical particle of a complex refractive index. 非吸収性の立方体粒子についてシミュレーションしたS22データに球形粒子を仮定したパラメータ推定アルゴリズムを適用してみた結果の一覧表を示す説明図である。It is an explanatory view showing a list of results in S 22 data of simulation for non-absorbable cubic grains tried to apply the parameter estimation algorithm with an assumption of spherical particles. シミュレーションで生成したS22データに微小球のフラクタル凝集体形状を仮定したパラメータ推定アルゴリズムを適用した結果の一例を示す説明図である。Simulation is an explanatory diagram showing an example of applying the result parameter estimation algorithm with an assumption of fractal aggregates shape of microspheres generated S 22 data. シミュレーションで生成したS22データに微小球のフラクタル凝集体形状を仮定したパラメータ推定アルゴリズムを適用した結果の一例を示す説明図である。Simulation is an explanatory diagram showing an example of applying the result parameter estimation algorithm with an assumption of fractal aggregates shape of microspheres generated S 22 data. 東京の降水試料に対する実験結果の一例を示す説明図である。It is explanatory drawing which shows an example of the experimental result with respect to the precipitation sample of Tokyo. 沖縄の降水試料に対する実験結果の一例を示す説明図である。It is explanatory drawing which shows an example of the experimental result with respect to the precipitation sample of Okinawa. 東京の降水試料における煤とみられるCategory 1のデータについて微小球のフラクタル凝集体の粒子形状を仮定したパラメータ推定結果の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of parameter estimation results assuming the particle shape of fractal agglomerates of microspheres for data of Category # 1 which is regarded as soot in a precipitation sample in Tokyo. 沖縄の降水試料における煤とみられるCategory 1のデータについて微小球のフラクタル凝集体の粒子形状を仮定したパラメータ推定結果の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of parameter estimation results assuming the particle shape of fractal aggregates of microspheres with respect to data of Category # 1 which is considered to be soot in a precipitation sample in Okinawa. 図25の非吸収性の粒子とみられるCategory 2のデータについて球形粒子を仮定したパラメータ推定の結果の一例を示す説明図である。FIG. 26 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to the data of Category # 2 considered to be non-absorbable particles in FIG. 25. 図26の非吸収性の粒子とみられるCategory 2のデータについて球形粒子を仮定したパラメータ推定の結果の一例を示す説明図である。27 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to data of Category # 2 which is considered to be non-absorbable particles in FIG. 26. FIG. 図26の非吸収性の粒子とみられるCategory 3のデータについて球形粒子を仮定したパラメータ推定の結果の一例を示す説明図である。FIG. 27 is an explanatory diagram showing an example of a result of parameter estimation assuming spherical particles with respect to data of Category # 3 which is considered to be non-absorbable particles in FIG. 26.
 次に、本発明を実施するための形態について説明する。図1は、実施形態の微粒子検出装置20の構成の概略を示す説明図である。実施形態の微粒子検出装置20は、図示するように、レーザー光を照射するレーザー照射装置22と、レーザー照射装置22からのレーザー光をフローセル10の照射部に導いたり参照光を導く光学系30と、フローセル10から見てレーザー光の進行方向側に配置された観測光用フォトダイオード40と、参照光を検出する参照光用フォトダイオードEと、観測光用フォトダイオード40および参照光用フォトダイオードEが配置されたステージ50と、装置全体を制御する制御装置60と、を備える。 Next, an embodiment for carrying out the present invention will be described. FIG. 1 is an explanatory diagram schematically showing a configuration of a particle detection device 20 according to the embodiment. As shown in the figure, the particle detection device 20 of the embodiment includes a laser irradiation device 22 that irradiates laser light, and an optical system 30 that guides the laser light from the laser irradiation device 22 to the irradiation unit of the flow cell 10 or guides the reference light. , The observation light photodiode 40 disposed on the side of the laser light traveling direction viewed from the flow cell 10, the reference light photodiode E for detecting the reference light, the observation light photodiode 40 and the reference light photodiode E And a control device 60 for controlling the entire apparatus.
 レーザー照射装置22は、理想的なガウシアン(TEM00)モードのレーザービームを照射することができるのが好ましく、例えば、直線偏光HeNeレーザー(赤色HeNeレーザー:JDSU,model 1137P,632.8nm,<10mW)などを用いることができる。 The laser irradiation device 22 is preferably capable of irradiating an ideal Gaussian (TEM 00 ) mode laser beam, for example, a linearly polarized HeNe laser (red HeNe laser: JDSU, model 1137P, 632.8 nm, <10 mW). ) Can be used.
 光学系30は、反射光がレーザー照射装置22に戻るのを防止するための光アイソレーター31(例えばTH,IO-3D-633-VLP)と、観測光と参照光のビーム分割比を制御するために回転マウントに搭載された1/2波長板32(例えばTH,WPH05M-633)と、観測光と参照光とを分割する偏光ビームスプリッタ33(例えばTH,CCM1-PBS25-633/M)と、偏光ビームスプリッタ33からの観測光(コリメートビーム)のビーム径を拡大するビームエキスパンダ34(例えばTH,GBE-10A)と、ビーム径の拡大した観測光を収束させる集光レンズ35(例えばTH,AL2550H,φ=25mm,f=50mm)と、を備える。SPES法では、集光スポット近傍の電場の空間分布も理想的なガウシアンビームで近似できることが必要であるため、集光レンズ35には、ストレール比が値1に近い無収差性能が求められる。また、光学系30は、偏光ビームスプリッタ33からの参照光を参照光用フォトダイオードEに導く広帯域誘電体ミラー36(例えばTH,BB111-E02)も備える。 The optical system 30 is an optical isolator 31 (for example, TH, IO-3D-633-VLP) for preventing reflected light from returning to the laser irradiation device 22, and for controlling a beam split ratio between observation light and reference light. A half-wave plate 32 (for example, TH, WPH05M-633) mounted on a rotary mount, a polarization beam splitter 33 (for example, TH, CCM1-PBS25-633 / M) for dividing observation light and reference light, A beam expander (for example, TH, GBE-10A) for expanding the beam diameter of the observation light (collimated beam) from the polarizing beam splitter 33, and a condensing lens (for example, TH, GBE-10A) for converging the observation light with the expanded beam diameter. AL2550H, φ = 25 mm, f = 50 mm). In the SPES method, it is necessary that the spatial distribution of the electric field in the vicinity of the converging spot can be approximated by an ideal Gaussian beam. The optical system 30 also includes a broadband dielectric mirror 36 (for example, TH, BB111-E02) for guiding the reference light from the polarization beam splitter 33 to the reference light photodiode E.
 観測光用フォトダイオード40は、観測光の強度を検出するものであり、4分割された4つのフォトダイオードA~D(例えばOSI,SPOT-9DMI)により構成されている。図2は、観測光用フォトダイオード40の配置を説明する説明図である。フォトダイオードAは、フローセル10の流れ方向に平行な軸をx軸とし、フローセル10の流れ方向に垂直な軸をy軸としたときに、x軸およびy軸に対して45度の直交する2直線により分割される4分割平面のうちフローセル10の流れの上流側の位置の平面に配置されており、フォトダイオードB~Dは、このフォトダイオードAが配置された平面から観測光の進行方向から見て時計回りにこの順に配置されている。即ち、フローセル10の流れの上流側(x軸のマイナス側)にフォトダイオードAが配置され、下流側(x軸のプラス側)にフォトダイオードCが配置され、y軸のマイナス側にフォトダイオードBが配置され、y軸のプラス側にフォトダイオードDが配置されている。観測光用フォトダイオード40では、ビーム断面全体を観測する必要から、発散ガウシアンビームの射出ビーム径(1/e)が光電面直径よりも若干小さくなるようにビームウエスト位置から光電面までの距離を調節する。必要以上に距離を近づけることは、観測対象ではない散乱光の混入が大きくなるだけなので望ましくない。実施形態では集光レンズ35の焦点距離として50mmを用いたときにこの距離を40mmとした。 The observation light photodiode 40 detects the intensity of the observation light, and is constituted by four photodiodes A to D (for example, OSI, SPOT-9DMI) divided into four. FIG. 2 is an explanatory diagram illustrating the arrangement of the observation light photodiodes 40. When the axis parallel to the flow direction of the flow cell 10 is the x axis and the axis perpendicular to the flow direction of the flow cell 10 is the y axis, the photodiode A is orthogonal to the x axis and the y axis by 45 degrees. The photodiodes B to D are arranged on a plane at a position on the upstream side of the flow of the flow cell 10 among the four divided planes divided by the straight line, and the photodiodes B to D are arranged from the plane on which the photodiode A is arranged in the traveling direction of the observation light. They are arranged clockwise in this order. That is, the photodiode A is arranged on the upstream side (minus side of the x-axis) of the flow of the flow cell 10, the photodiode C is arranged on the downstream side (plus side of the x-axis), and the photodiode B is arranged on the minus side of the y-axis. Are arranged, and the photodiode D is arranged on the plus side of the y-axis. In the observation light photodiode 40, since it is necessary to observe the entire beam cross section, the distance from the beam waist position to the photocathode such that the exit beam diameter (1 / e 2 ) of the divergent Gaussian beam is slightly smaller than the photocathode diameter. Adjust It is not desirable that the distance is made shorter than necessary because the mixing of scattered light that is not the object of observation only increases. In the embodiment, when 50 mm is used as the focal length of the condenser lens 35, this distance is set to 40 mm.
 参照光用フォトダイオードEは、参照光の強度を検出するものであり、観測光用フォトダイオード40の4つのフォトダイオードA~Dとノイズ特性を一致させるため、受光感度と端子間容量がほぼ同一のもの(例えばOSI,PIN-6D)を用いるのが好ましい。 The reference light photodiode E detects the intensity of the reference light, and has the same light receiving sensitivity and inter-terminal capacitance as the four photodiodes A to D of the observation light photodiode 40 in order to match the noise characteristics. (For example, OSI, PIN-6D) is preferably used.
 ステージ50は、観測光用フォトダイオード40と参照光用フォトダイオードEとをx方向およびy方向に位置調整するためのx方向用アクチュエータ52とy方向用アクチュエータ54とを備える。SPES法では、観測用フォトダイオード40の中心と発散ビームの中心とが一致している(例えば数μm以内の同軸誤差で一致している)ことが必要であるため、x方向用アクチュエータ52とy方向用アクチュエータ54とにより、観測用フォトダイオード40の中心と発散ビームの中心とを一致させるのである。なお、x方向用アクチュエータ52とy方向用アクチュエータ54は、例えばピエゾモータを用いることができる。 The stage 50 includes an x-direction actuator 52 and a y-direction actuator 54 for adjusting the positions of the observation light photodiode 40 and the reference light photodiode E in the x and y directions. In the SPES method, since the center of the observation photodiode 40 and the center of the diverging beam need to coincide (for example, coincide with a coaxial error of several μm or less), the x-direction actuator 52 and the y-axis The direction actuator 54 causes the center of the observation photodiode 40 to coincide with the center of the divergent beam. Note that the x-direction actuator 52 and the y-direction actuator 54 can use, for example, piezo motors.
 制御装置60は、例えばCPUを中心として構成されたマイクロコンピュータとして構成されており、CPUの他に、ROMやRAM,入出力ポートなどを備える。 The control device 60 is configured as, for example, a microcomputer mainly configured with a CPU, and includes a ROM, a RAM, an input / output port, and the like in addition to the CPU.
 次に、こうして構成された実施形態の微粒子検出装置20の動作について説明する。図3は、実施形態の微粒子検出装置20の制御装置60により微粒子を検出する際に実行される観測処理の一例を示すフローチャートである。以下の説明では、一例として微小バブルを検出する際の動作として説明する。観測処理では、まず、観測光用フォトダイオード40の4つのフォトダイオードA~Dと参照光用フォトダイオードEとにより検出された光強度P(A)~P(D),P(E)を取得し(ステップS100)、消散パワーPext(Tot),Pext(A-C),Pext(B-D)を計算する(ステップS110)。ここで、「消散」とは、微粒子の後方における入射場と前方散乱場の干渉に起因する入射場の時間平均強度の変化のことを意味し、「消散パワー」はそのエネルギーを意味する。消散パワーPext(Tot)は4つのフォトダイオードA~Dにおける消散パワーの和であり、フォトダイオードA~Dにより検出された光強度P(A)~P(D)の和から参照光用フォトダイオードEにより検出された光強度P(E)を減じること(Pext(Tot)=P(A)+P(B)+P(C)+P(D)-P(E))により計算することができる。消散パワーPext(A-C)は、フォトダイオードAにおける消散パワーPext(A)からフォトダイオードCにおける消散パワーPext(C)を減じたもの(Pext(A-C)=Pext(A)-Pext(C))であり、フォトダイオードAにおける光強度P(A)からフォトダイオードCにおける光強度P(C)を減じること(Pext(A-C)=P(A)-P(C))により計算することができる。消散パワーPext(B-D)は、フォトダイオードBにおける消散パワーPext(B)からフォトダイオードDにおける消散パワーPext(D)を減じたもの(Pext(B-D)=Pext(B)-Pext(D))であり、フォトダイオードBにおける光強度P(B)からフォトダイオードDにおける光強度P(D)を減じること(Pext(B-D)=P(B)-P(D))により計算することができる。 Next, the operation of the particle detecting device 20 according to the embodiment configured as described above will be described. FIG. 3 is a flowchart illustrating an example of an observation process performed when the control device 60 of the particle detection device 20 according to the embodiment detects a particle. In the following description, as an example, an operation when detecting a minute bubble will be described. In the observation processing, first, light intensities P (A) to P (D), P (E) detected by the four photodiodes A to D of the observation light photodiode 40 and the reference light photodiode E are acquired. (step S100), dissipated power P ext (Tot), P ext (a-C), calculates the P ext (B-D) (step S110). Here, “dissipation” means a change in the time-average intensity of the incident field due to interference between the incident field and the forward scattered field behind the fine particles, and “dissipated power” means its energy. The dissipated power P ext (Tot) is the sum of the dissipated powers of the four photodiodes A to D. The reference light photo is obtained from the sum of the light intensities P (A) to P (D) detected by the photodiodes A to D. It can be calculated by subtracting the light intensity P (E) detected by the diode E (P ext (Tot) = P (A) + P (B) + P (C) + P (D) -P (E)). . The dissipated power P ext ( AC ) is obtained by subtracting the dissipated power P ext (C) of the photodiode C from the dissipated power P ext (A) of the photodiode A (P ext ( AC ) = P ext ( A) −P ext (C)), and subtracting the light intensity P (C) at the photodiode C from the light intensity P (A) at the photodiode A (P ext ( AC ) = P (A) − P (C)). The dissipated power P ext (BD) is obtained by subtracting the dissipated power P ext (D) of the photodiode D from the dissipated power P ext (B) of the photodiode B (P ext (BD) = P ext ( B) −P ext (D)), and subtracting the light intensity P (D) at the photodiode D from the light intensity P (B) at the photodiode B (P ext (BD) = P (B) − P (D)).
 次に、計算した消散パワーPext(B-D)の消散パワーPext(A-C)に対する比の絶対値(|Pext(B-D)/Pext(A-C)|)として判定値Jを計算し(ステップS120)、計算した判定値Jが0.2未満であるか否かを判定する(ステップS130)。判定値Jが0.2以上のときには観測不可と判断し、観測処理を終了する。判定値Jが0.2未満であるか否かにより観測の可否を判断することについては後述する。 Next, it is determined as the absolute value of the ratio of the calculated dissipation power P ext (BD) to the dissipation power P ext ( AC ) (| P ext (BD) / P ext ( AC ) |). A value J is calculated (step S120), and it is determined whether the calculated determination value J is less than 0.2 (step S130). When the determination value J is 0.2 or more, it is determined that observation is not possible, and the observation processing ends. The determination of whether or not observation is possible based on whether or not the determination value J is less than 0.2 will be described later.
 判定値Jが0.2未満のときには観測可能と判断し、消散パワーPext(Tot),Pext(A-C)を用いて複素散乱振幅S11の実部Re(S11)と虚部Im(S11)とを計算する(ステップS140)。この計算についても後述する。そして、計算した複素散乱振幅S11の実部Re(S11)と虚部Im(S11)とを観測対象の微粒子(以下、対象微粒子という)の複素散乱振幅S11の実部Re(S11)と虚部Im(S11)に一致しているか否かを判定する(ステップS150、S160)。図4は、半径が0.05μm~0.3μmの微粒子の複素誘電率と複素散乱振幅S11との関係の一例を示す説明図である。図4では、微粒子として誘電率が水より小さい微小バブル(空気)、誘電率が水より大きい複素誘電率が1.4+0.0i,1.5+0.0i,1.7+0.0i,2.0+1.0i,2.0+0.5iの5種の微粒子を用いた。図示するように、複素散乱振幅S11の実部Re(S11)は、水より誘電率が大きな微粒子(金属などの固体粒子)では正の値となり、水より誘電率が小さな微粒子(微小バブル(空気)などの気体粒子)では負の値となる。ステップS150の判定は、計算した複素散乱振幅S11の実部Re(S11)と虚部Im(S11)が図4に示すような対象微粒子の複素散乱振幅S11の実部Re(S11)と虚部Im(S11)に許容できる程度に一致しているか否かにより行なう。対象微粒子が微小バブルである場合を考えると、計算した複素散乱振幅S11の実部Re(S11)と虚部Im(S11)が図4に示す微小バブルに許容できる程度に一致するか否かにより判定するのである。ステップS150,S160の判定で微粒子が対象微粒子ではないと判定したときには、観測処理を終了する。一方、ステップS150,S160の判定で微粒子が対象微粒子であると判定したときには、複素散乱振幅S11の実部Re(S11)から微粒子の体積vを計算し(ステップS170)、観測処理を終了する。微粒子の体積vの計算についても後述する。 When the determination value J is less than 0.2, it is determined that observation is possible, and the real part Re (S 11 ) and the imaginary part of the complex scattering amplitude S 11 are determined using the dissipated powers P ext (Tot) and P ext (AC). Im (S 11 ) is calculated (step S140). This calculation will also be described later. Then, the real part Re (S 11 ) and the imaginary part Im (S 11 ) of the calculated complex scattering amplitude S 11 are converted into the real part Re (S) of the complex scattering amplitude S 11 of the observation target fine particles (hereinafter referred to as target fine particles). 11) and determines whether or not the match the imaginary part Im (S 11) (step S150, S160). Figure 4 is a radius of an explanatory view showing an example of the relationship between the complex permittivity and the complex scattering amplitude S 11 of the fine particles of 0.05 .mu.m ~ 0.3 [mu] m. In FIG. 4, microbubbles (air) having a dielectric constant smaller than water as fine particles, and a complex dielectric constant having a dielectric constant larger than water are 1.4 + 0.0i, 1.5 + 0.0i, 1.7 + 0.0i, 2.0 + 1. Five kinds of fine particles of 0i, 2.0 + 0.5i were used. As shown in the figure, the real part Re (S 11 ) of the complex scattering amplitude S 11 has a positive value for fine particles (solid particles such as metal) having a larger dielectric constant than water, and has a smaller dielectric constant than water (fine bubbles). (Gas particles such as (air)) has a negative value. Determination in step S150, the real part Re (S in the real part Re (S 11) and the imaginary part Im (S 11) of the target particles, such as shown in FIG. 4 complex scattering amplitude S 11 of the calculated complex scattering amplitude S 11 11 ) and the imaginary part Im (S 11 ) are determined to be acceptable or not. Considering the case where the target particles is very small bubbles, or the real part Re of the complex scattering amplitude S 11 that calculated (S 11) and the imaginary part Im (S 11) matches the acceptable degree in fine bubbles shown in FIG. 4 That is, it is determined based on whether it is not. When it is determined in steps S150 and S160 that the microparticle is not the target microparticle, the observation process ends. On the other hand, when the particulate is determined to be subject microparticles is determined in step S150, S160, the volume v of the particles was calculated from the real part Re of the complex scattering amplitude S 11 (S 11) (step S170), ends the observation processing I do. The calculation of the volume v of the fine particles will be described later.
 次に、消散パワーPext(Tot),Pext(A-C)と複素散乱振幅S11との関係、定値Jが0.2未満であるか否かにより観測の可否を判断することができること、微粒子(微小バブル)の体積vの計算について以下に説明する。 Next, dissipated power P ext (Tot), P ext (A-C) and the relationship between the complex scattering amplitude S 11, the value J can be determined whether the observed by whether less than 0.2 The calculation of the volume v of the fine particles (fine bubbles) will be described below.
<光散乱理論と複素散乱振幅S11の定義>
 一様媒質中に孤立して存在する微粒子による電磁波の散乱問題では多くの場合、入射波として平面波を仮定する。これは、波の放射源となる電気双極子から(波長に比べて)遠く離れた位置では、放射源から外側に広がる球面波としてふるまい、微粒子の遠方の波源からくる球面波はその曲率半径が微粒子に比べてはるかに大きく平面波として近似できるためである。 周波数ω、波数ベクトルkの単色平面波は、位置rと時間tの関数としてE’(r,t)=E’i(k・r-ωt)と表される。ここでは単色波を考えるため、e-ωtの項は暗黙に仮定し、原点r=0における電場をEとおく。このとき単色平面波の電場は、時間領域ではなく周波数領域の変数として、E(r)=Eik・rと表せる。ただしEは波数ベクトルkに垂直な平面上の複素数ベクトルで2つの独立な偏光成分に分解できる。ここでは入射波の進行方向を+z方向とし、入射場を、式(1)と表わす。
<Definition of light scattering theory and the complex scattering amplitude S 11>
In many cases, a plane wave is assumed as an incident wave in a problem of scattering of an electromagnetic wave due to fine particles isolated in a uniform medium. This means that at a position far away (compared to the wavelength) from the electric dipole which is the radiation source of the wave, it behaves as a spherical wave spreading outward from the radiation source, and the spherical wave coming from the source far away from the fine particles has a radius of curvature. This is because it can be approximated as a plane wave much larger than the fine particles. A monochromatic plane wave having a frequency ω and a wave vector k is expressed as E ′ (r, t) = E ′ 0 ei (k · r−ωt) as a function of the position r and the time t. Here, since a monochromatic wave is considered, the term e −ωt is implicitly assumed, and the electric field at the origin r = 0 is set to E 0 . At this time, the electric field of the monochromatic plane wave can be expressed as E (r) = E 0 e ik · r as a variable not in the time domain but in the frequency domain. However, E 0 is a complex vector on a plane perpendicular to the wave vector k and can be decomposed into two independent polarization components. Here, the traveling direction of the incident wave is set to the + z direction, and the incident field is represented by Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、原点r=0付近に置かれた微粒子による散乱場Esca(r)は、原点より波長に比べて十分遠方(far-field)においては、波数ベクトルに垂直な2つの独立な偏光成分を持つ球面波としてふるまう。また、電磁場の支配方程式(Maxwell方程式)の線型性により入射場と散乱場は線形関係にある。この2つの理由から、入射場と散乱場の偏光成分の関係は、微粒子の特性に依存する2×2の複素散乱振幅行列Sにより式(2)と表わせる。ただし散乱場Esca(r)は球面波であるため、偏光成分を球座標系で表している。座標系と各座標の単位ベクトルの定義を図5に示す。特に、前方方向θ=0においては、入射波Einc0の偏光成分とxy平面上で平行となる散乱場の偏光成分は互いに干渉する(Fresnel-Aragoの法則より)。微粒子の後方における入射場と前方(θ=0)散乱場の干渉に起因する、入射場の時間平均強度の変化のことを「消散(extinction)」とよぶ。θ=0の前方散乱場についてはφは任意に選べるためφ=0とおくと、Escaθ=0=Esca,xとなる。この表記のもと、x-直線偏光した入射場と干渉する散乱場の成分は、デカルト座標系において、式(3)と表わされる。 On the other hand, the scattering field E sca (r) due to the fine particles placed near the origin r = 0 has two independent polarization components perpendicular to the wave vector at far-field far from the origin. It acts as a spherical wave. Also, the incident field and the scattering field have a linear relationship due to the linearity of the governing equation (Maxwell equation) of the electromagnetic field. For these two reasons, the relationship between the polarization components of the incident field and the scattered field can be expressed by equation (2) using a 2 × 2 complex scattering amplitude matrix S depending on the characteristics of the fine particles. However, since the scattering field E sca (r) is a spherical wave, the polarization component is represented by a spherical coordinate system. FIG. 5 shows the definition of the coordinate system and the unit vector of each coordinate. In particular, in the forward direction θ = 0, the polarization component of the incident wave E inc0 and the polarization component of the scattered field that are parallel on the xy plane interfere with each other (according to Fresnel-Arago's law). The change in the time-average intensity of the incident field due to the interference between the incident field and the forward (θ = 0) scattered field behind the particle is called “extinction”. Since φ can be arbitrarily selected for the forward scattered field of θ = 0, if φ = 0 is set, E sca and θ = 0 = E sca, x . Under this notation, the component of the scattered field that interferes with the x-linearly polarized incident field is represented by equation (3) in a Cartesian coordinate system.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 一般に、入射場と散乱場の波数ベクトルが一致する条件では、波面上における入射場の電場ベクトル成分と平行な散乱場の電場ベクトル成分については式(3)と同等の関係が成り立つ。そのため、式(3)両辺の下添字xを、入射場と散乱場の共通波面上のある任意の方向ベクトル成分の表記として解釈する。また、非球形粒子では一般にS11(θ=0)とS22(θ=0)は異なるが、多数の粒子配向の平均を考えるときにはその区別は必要ない。したがって以降は、特に断らない限り、直線偏光入射場と干渉する散乱場を表すときS11(θ=0)のことを単にS11と書き、電場の下付き添え字xを省いた式(4)の表記を用いる。この関係式(式(4))は、入射場と共通する波数ベクトルと偏光成分の散乱場について、散乱場の位相と振幅が粒子の特性に依存する複素散乱振幅S11で表されることを意味する。式(4)はSPES法による粒子測定原理の根幹をなす。 In general, under the condition that the wave vectors of the incident field and the scattered field match, the relationship equivalent to the equation (3) holds for the electric field vector component of the scattered field parallel to the electric field vector component of the incident field on the wavefront. Therefore, the subscript x of both sides of Expression (3) is interpreted as a notation of an arbitrary direction vector component on a common wavefront of the incident field and the scattered field. In general, S 11 (θ = 0) and S 22 (θ = 0) are different for non-spherical particles, but when considering the average of many particle orientations, it is not necessary to distinguish them. Therefore, hereinafter, unless otherwise specified, when expressing a scattering field that interferes with a linearly polarized incident field, S 11 (θ = 0) is simply written as S 11 and the subscript x of the electric field is omitted (4) ) Is used. This relationship (equation (4)), for the scattered field of the wave vector and the polarization component in common with the incident field, that the phase and amplitude of the scattered field is represented by the complex scattering amplitude S 11 that depends on the properties of the particles means. Equation (4) forms the basis of the principle of particle measurement by the SPES method.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
<複素散乱振幅S11とSPES観測量との関係>
 SPES法では、ガウシアン強度プロファイルをもつTEM00モードのレーザービーム(以下ガウシアンビーム)を入射場Einc(r)として用いる。ガウシアンビームは、ビームウエスト付近では平面波としてふるまい、ビームウエストより遠方では、ビームウエスト中心点から広がる球面波としてふるまう性質がある。このため、ガウシアンビームのビームウエスト付近の断面内に存在する微粒子は局所的な平面波により励起される。そこから球面波として広がる遠方散乱場のうち、前方方向の有限立体角内で球面上に広がるガウスビーム入射波と波数ベクトルが一致し共通する偏光成分をもつものが、その入射場と干渉する(図6)。散乱場の波源位置(微粒子の位置)および微粒子の複素散乱振幅S11で決まる散乱波の位相と振幅に応じて、前方方向の有限立体角内に置かれた検出面上では異なる干渉強度分布が観測される。
<Relationship of the complex scattering amplitude S 11 and the SPES observed amount>
In the SPES method, a TEM 00 mode laser beam having a Gaussian intensity profile (hereinafter, Gaussian beam) is used as an incident field E inc (r). The Gaussian beam behaves as a plane wave near the beam waist and behaves as a spherical wave spreading from the beam waist center point farther from the beam waist. Therefore, the fine particles existing in the cross section near the beam waist of the Gaussian beam are excited by the local plane wave. Of the far scattered field that spreads out as a spherical wave from it, a Gaussian beam incident wave that spreads on a spherical surface within a finite solid angle in the forward direction and a wave vector coincide with each other and have a common polarization component interfere with the incident field ( (Fig. 6). Depending on the phase and amplitude of the scattered waves is determined by the source locations of the scattered field (position of the fine particles) and fine particles of the complex scattering amplitude S 11, it is different from the interference intensity distribution on the detection surface placed within a finite solid angle of forward direction Observed.
 SPES法では、ビームウエスト後方で発散するガウシアンビームを多素子型光検出器(こここでは4分割型フォトダイオード)で受光し、被測定粒子がビームウエストを横断する最中における各光電面の強度の時間波形の関係から、散乱場の(入射場に相対的な)振幅と位相、すなわち複素散乱振幅S11の実部と虚部を決定することが目的である。以下、複素散乱振幅S11とSPESの観測量との関係を定式化する。まず、+z方向に伝搬する直線偏光したガウシアンビーム入射場Einc(r)について、その電場ベクトルの偏光成分(式(5)中では入射場記号のイタリック体)は式(5)のように表される。 In the SPES method, a Gaussian beam diverging behind the beam waist is received by a multi-element photodetector (here, a four-division photodiode), and the intensity of each photocathode during the time when the particle to be measured crosses the beam waist. from the relationship between the time waveform of, (relative to the incident field) amplitude and phase scatter field, i.e. it is an object to determine the real and imaginary part of the complex scattering amplitude S 11. Hereinafter, we formulate the relationship between the observed quantity of the complex scattering amplitude S 11 and SPES. First, for a linearly polarized Gaussian beam incident field E inc (r) propagating in the + z direction, the polarization component of the electric field vector (italic type of the incident field symbol in equation (5)) is expressed as in equation (5). Is done.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここでzはRayleigh長[m]とよばれ、光軸上でビームウエストから測って、波面がビームウエスト近傍で近似される平面波から無限遠方で近似される球面波に遷移し始めるおおよその距離と解釈される。zはωと波長により式(7)と表わされる。ビームウエストから遠方の位置z≫λにおいては、式(6)は式(8)のように近似できる。 Here z 0 is called Rayleigh length [m], as measured from the beam waist on the optical axis, approximate distance begins to transition to a spherical wave wavefront is approximated by infinity from the plane wave approximation near the beam waist Is interpreted as z 0 is represented by Expression (7) by ω 0 and the wavelength. At a position z≫λ far from the beam waist, Expression (6) can be approximated as Expression (8).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ガウシアンビームの入射場と前方散乱場との干渉を定式化するにあたり、ビームウエスト断面上のビーム中心位置を位置ベクトルの原点r=0にとる。ビームウエスト断面上の位置r=(x,y,0)において、微粒子がさらされる入射場は、式(5)~式(8)より、式(9)と表わされる。また、光検出器は波長やビームウエストのスポットサイズωに比べて十分遠方に置かれており、かつその光電面が張る立体角は小さいと仮定する。式(4)、式(9)より、r=(x,y,0)から球面波として広がる微粒子の散乱場は、前方に置かれた光検出器の光電面上ΣPDでは、式(10)のように表せる。 In formulating the interference between the Gaussian beam incident field and the forward scattered field, the beam center position on the beam waist section is set to the origin r = 0 of the position vector. At the position r p = (x p , y p , 0) on the beam waist cross section, the incident field to which the fine particles are exposed is expressed by Expression (9) from Expressions (5) to (8). Further, it is assumed that the photodetector is placed sufficiently far than the spot size omega 0 of the wavelength and the beam waist, and the solid angle thereof photocathode spanned is small. From Equations (4) and (9), the scattering field of the fine particles spreading as a spherical wave from r p = (x p , y p , 0) indicates that on the photoelectric surface of the photodetector placed in front Σ PD It can be expressed as in equation (10).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(10)の近似等号は、原点から見て検出器が張る小さな立体角範囲内では複素散乱振幅S11を一定値と仮定する近似を意味している。式(10)において、式(11)の数学的近似を用いると、 光電面r∈ΣPDにおける散乱場は式(12)と表わされる。一方、光電面r∈ΣPDにおける入射場は、式(5)でz→+∞とする近似により、式(13)と表わされる。 Approximate equality of formula (10) is within a small solid angle range detectors spanned when viewed from the origin means a assumed approximate a constant value of complex scattering amplitude S 11. In the formula (10), using a mathematical approximation equation (11), the scattered field in the photoelectric surface R∈shiguma PD is expressed as Equation (12). On the other hand, the incident field at photocathode R∈shiguma PD is the approximation to the formula (5) z → + ∞, denoted formula (13).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 これから、図2のように置かれた4分割型フォトダイオード光電面の受光パワー(観測信号)を、式(12)のEscaと式(13)のEincを用いて定式化する。光電面上の位置r∈ΣPDにおける受光パワー密度[Wm-2]は式(14)となる。式(14)の右辺の、第1項は入射場の寄与、第2項は散乱場の寄与、第3項は入射場と散乱場の干渉(消散)の寄与である。各光電面の受光パワーは、式(14)の光電面上の面積分となる。 From this, the light receiving power (observation signal) of the four-division photodiode photocathode placed as shown in FIG. 2 is formulated using E sca of Expression (12) and E inc of Expression (13). Receiving power density at the position R∈shiguma PD on the photocathode [Wm -2] is the formula (14). In the right side of equation (14), the first term is the contribution of the incident field, the second term is the contribution of the scattered field, and the third term is the contribution of interference (dissipation) between the incident field and the scattered field. The light receiving power of each photocathode is equal to the area on the photocathode of equation (14).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 4分割型フォトダイオード全体ΣPD=ΣA+B+C+Dによる入射場の受光パワーPincは、式(13)より、式(15)となる。光電面におけるガウシアンビームのスポットサイズω(z)が光電面半径よりも十分小さいとき、式(15)の面積分計算において光電面は無限に広いと仮定してよく、xおよびyの積分範囲はそれぞれ(-∞,+∞)とおいてよい。この近似をつかうと、式(15)の解析的積分を実行でき、式(6)をつかって結果を表すと、Pinc=Pとなる。これは入射場の受光パワーがビームパワーに等しいことを意味する。 From the equation (13), the received light power P inc of the incident field due to the entire four-segmented photodiode Σ PD = Σ A + B + C + D is given by equation (15). When the spot size ω (z) of the Gaussian beam on the photocathode is sufficiently smaller than the radius of the photocathode, the photocathode may be assumed to be infinitely wide in the area calculation of Expression (15), and the integration range of x and y is Each may be (-∞, + そ れ ぞ れ). Using this approximation, the analytic integration of equation (15) can be performed, and expressing the result using equation (6) results in P inc = P. This means that the received power of the incident field is equal to the beam power.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 4分割型フォトダイオード全体ΣPD=ΣA+B+C+Dによる散乱場の受光パワーPscaは、式(12)を用いると式(16)となる。最後の式では、光電面が張る微小立体角範囲ではS11は一定値であると仮定した。ここでビームウエスト断面上の微粒子の位置座標について、式(17)のような無次元パラメータで表すことにすると、式(16)は式(18)と書ける。 The received light power P sca of the scattered field due to the entire four-segment photodiode 4 PD = Σ A + B + C + D is given by equation (16) using equation (12). In the last formula, in small solid angle range in which the photoelectric surface is put is assumed to S 11 is a constant value. Here, if the position coordinates of the fine particles on the beam waist cross section are represented by a dimensionless parameter such as Expression (17), Expression (16) can be written as Expression (18).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 最後に、式(14)における消散場の寄与の面積分を計算する。その準備としてまず、複素スカラー量(式(19)の左辺)の数学表現を求めておく。式(12)、式(13)をもとに計算し、expの位相項の中に現れるx,yの2次の微小項を無視する近似を施すと、以下の式(19)が導かれる。ただし、式(19)において表記の整理のため式(20)を用いた。ここで光電面上の位置(x、y)を極座標で表し、bの式を用いると、式(19)は式(21)と表わされる。 Finally, the contribution of the dissipation field in the equation (14) is calculated. As a preparation, first, a mathematical expression of a complex scalar quantity (the left side of equation (19)) is obtained. Equation (12), and calculates equation (13) based on, x p appearing in the phase term exp, when subjected to approximation to ignore the secondary small term of y p, the following equation (19) Be guided. However, equation (20) was used for rearranging notations in equation (19). Here, when the position (x, y) on the photocathode is represented by polar coordinates and the expression of b is used, the expression (19) is expressed by the expression (21).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(21)をもとに、4分割型フォトダイオードの光電面が受光する消散パワーPexpを計算しよう。Pextについて導出したい観測量は以下の3つである。
(1)ΣA+B+C+Dが受ける全消散パワー
   Pext(Tot)=Pext(A)+Pext(B)+Pext(C)+Pext(D)
(2)ΣAとΣCとが受ける消散パワーの差
   Pext(A-C)=Pext(A)-Pext(C)
(3)ΣBとΣDとが受ける消散パワーの差
   Pext(B-D)=Pext(B)-Pext(D)
Based on the equation (21), 4 photocathode of the divided photodiode is trying to calculate the dissipated power P exp for receiving. Observed quantities to be derived for P ext are the following three.
(1) Total power dissipated by ΣA + B + C + D P ext (Tot) = P ext (A) + P ext (B) + P ext (C) + P ext (D)
(2) Difference of dissipated power received by ΣA and ΣC P ext (AC) = P ext (A) -P ext (C)
(3) Difference of dissipated power received by ΣB and ΣD P ext (BD) = P ext (B) −P ext (D)
 これらの消散パワーPextはそれぞれ、消散パワー密度の光電面上の面積分として式(22)~式(24)で表せる。式(21)を式(22),式(23),式(24)のそれぞれの右辺に代入して積分を計算・整理するにあたり、以下の複素積分の公式(25),式(26)を用いる。 These dissipated powers P ext can be expressed by the equations (22) to (24) as the area of the dissipated power density on the photocathode. In substituting equation (21) into each of the right sides of equations (22), (23), and (24) to calculate and arrange the integrals, the following complex integral formulas (25) and (26) are used. Used.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 これらの公式はそれぞれ、複素平面状の矩形領域{Re(z)=-t,tIm(z)=0,c},{Re(z)=0,tIm(z)=0,c}の境界で定義される閉経路で複素関数f(z)=z・exp(-a)を積分し、それに留数定理を適用しt→∞とすることで導出できる。式(26)のerfc(z)は複素変数の相補誤差関数(complementary error function)である。式(25)を用いると式(22)の右辺は式(27)のように展開される。ここで、式(27)では式(28)および式(29)を用いた。ただし、式(29)では式(30)および式(31)を用いた。 These formulas respectively represent the boundaries of the complex plane rectangular region {Re (z) =-t, tIm (z) = 0, c}, {Re (z) = 0, tIm (z) = 0, c}. Can be derived by integrating the complex function f (z) = z · exp (−a 2 z 2 ) in the closed path defined by and applying the residue theorem to t → ∞. Erfc (z) in equation (26) is the complementary error function of the complex variable. Using Expression (25), the right side of Expression (22) is expanded as Expression (27). Here, equation (28) and equation (29) are used in equation (27). However, equation (30) and equation (31) were used in equation (29).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 微粒子がビーム中心位置(ζ,η)=(0,0)にあるとき、式(27)の観測量Pext(Tot)への寄与としてPext(Tot)はゼロとなりPext(Tot)のみが残り、式(32)となる。式(6)の関係によれば、式(32)右辺のカギ括弧内の量はビーム中心位置(ζ,η)=(0,0)における入射場のパワー密度に等しい。さらに微粒子の「消散断面積Cext」の定義式の一つとしての式(33)を用いると、直感的に解釈可能な式(34)を得る。式(34)は、上述のパワー密度である平面波の入射場について、光エネルギー観測量に基づいた微粒子の消散断面積の定義式である。ガウシアンビームの入射場においては、ビーム中心位置(ζ,η)=(0,0)の場合にのみこの関係式が成立することが示された。 Particles beam center position (zeta, eta) = When in the (0,0), wherein the observed amount of (27) P ext P as contributions to (Tot) ext (Tot) 2 is zero P ext (Tot) Only 1 remains, resulting in equation (32). According to the relationship of equation (6), the quantity in the square brackets on the right side of equation (32) is equal to the power density of the incident field at the beam center position (ζ, η) = (0, 0). Further, by using Expression (33) as one of the defining expressions of the “dissipation cross-sectional area C ext ” of the fine particles, Expression (34) that can be interpreted intuitively is obtained. Formula (34) is a definition formula of the extinction cross-section of the fine particles based on the observed light energy for the plane wave incident field having the above-mentioned power density. In the Gaussian beam incident field, it was shown that this relational expression holds only when the beam center position (ζ, η) = (0, 0).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 一方、式(26)を用いると式(23)(24)の右辺はそれぞれ式(35)および式(36)のように展開される。なお、式(37)および式(38)のようにおいた。 On the other hand, when Expression (26) is used, the right sides of Expressions (23) and (24) are expanded as Expressions (35) and (36), respectively. In addition, it set as Formula (37) and Formula (38).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 本装置の設定では、時間とともに微粒子は+x方向に移動するため、ζ=ζ(t)とおく。Pextの観測信号波形から抽出できる情報を探るため、まず、式(35)と(36)の比をとると式(39)となり、観測量Pext(B-D)と観測量Pext(A-C)の比は、ビームウエスト断面上の微粒子の無次元座標(ζ,η)のみに依存し、複素散乱振幅S11など微粒子の特性にはよらないことが分かる。 In the setting of the present apparatus, since fine particles move in the + x direction with time, ζ = ζ (t). In order to search for information that can be extracted from the observed signal waveform of P ext , first, by taking the ratio of Equations (35) and (36), Equation (39) is obtained, and the observed amount P ext (BD) and the observed amount P ext ( the ratio of a-C), the beam dimensionless coordinates (zeta particulate on waist section, eta) only dependent, it can be seen that does not depend on the characteristics of the microparticles, such as the complex scattering amplitude S 11.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 また、のちに説明するように、微粒子の流れに沿うx方向の座標ζ(t)は、観測量Pext(A-C)の波形から制約できる。そのため観測量Pext(B-D)/Pext(A-C)は、微粒子のy方向の座標ηの指標として利用できるのである。この指標に基づき、ビーム中心付近を横断する(|η|≪1)微粒子のみを抽出することができる。この場合には、観測量Pextは、式(40)~式(42)となる。 Further, as will be described later, the coordinate ζ (t) in the x direction along the flow of the fine particles can be restricted by the waveform of the observed amount P ext ( AC ). Therefore, the observed amount P ext (BD) / P ext ( AC ) can be used as an index of the coordinate η of the fine particle in the y direction. Based on this index, it is possible to extract only the fine particles that cross the vicinity of the beam center (| η | ≪1). In this case, the observed amount P ext is represented by Expressions (40) to (42).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式(41)のerfi(z)は虚数誤差関数(imaginary error function)である。式(40)は特にビーム中心ζ=0においては式(32)と同じになる。式(41)におけるの関数(式43))により、|η|≪1におけるPext(A-C)(ζ)の波形が規定される。式(43)の右辺erfiの項は奇関数かつ単調増加であり、|ζ|≫1領域におけるその絶対値の増大はexp(-2ζ)に打ち消される。そのため、f(ζ)は正負それぞれのζ領域において(原点からみて対称な)極小点と極大点を1個ずつもち、かつf(0)=0となる。数値的に求めたf(ζ)の極大点と極小点は式(44)である。 Erfi (z) in equation (41) is an imaginary error function. Equation (40) is the same as equation (32) especially when the beam center ζ = 0. The function (equation 43) in equation (41) defines the waveform of P ext (AC) (ζ) at | η | ≪1. The term on the right side erfi in equation (43) is an odd function and monotonically increasing, and the increase in its absolute value in the | ζ | ≫1 region is canceled by exp (−2ζ 2 ). Therefore, f (ζ) has one minimum point and one maximum point (symmetrical with respect to the origin) in each of the positive and negative ζ regions, and f (0) = 0. The maximal point and the minimal point of f (求 め) numerically obtained are expressed by equation (44).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 式(39)の数値計算によれば、Pext(A-C)が極値をとる位置ζ=ζ+αにおいて|Pext(B-D)/Pext(A-C)|<0.2ならば|η|<0.2が満たされ、このとき、近似等式(40),式(41)の誤差は、それぞれの厳密な等式(27),式(35)と比べて2%未満であることが分かった。このことから、本明細書では、Pext(A-C)観測波形の極大位置において|Pext(B-D)/Pext(A-C)|<0.2を満たす粒子検出イベントのみを抽出したうえで、等式(40),式(41)を仮定し、Pext(A-C)とPext(Tot)の波形振幅から微粒子の複素散乱振幅S11を導出することにする。この方法により、微粒子のS11の実部と虚部を導出する式は式(45)と式(46)である。ただし式(45)、式(46)において、式(47)、式(48)のように観測波形の振幅を定義した。 According to the numerical calculation of Expression (39), | P ext (BD) / P ext ( AC ) | <0.2 at a position ζ = ζ + α where P ext ( AC ) takes an extreme value. Then, | η | <0.2 is satisfied. At this time, the error of the approximate equations (40) and (41) is 2% smaller than the strict equations (27) and (35). Was found to be less than. Thus, in the present specification, in the maximum position of P ext (A-C) measured waveform | P ext (B-D) / P ext (A-C) | < only particle detection event satisfying 0.2 after having extracted the equation (40), assuming the equation (41), is to derive the P ext (a-C) and P ext complex scattering amplitude S 11 from the waveform amplitude of the fine particles of (Tot). This method, equation to derive the real part of S 11 and the imaginary part of the fine particles is Formula (45) and equation (46). However, in Expressions (45) and (46), the amplitude of the observed waveform is defined as in Expressions (47) and (48).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
<粒子特性と複素散乱振幅S11との関係>
磁性体のかつ等方的な物性の物質からなる微粒子(あるいは気泡)の電磁場の散乱問題は、周波数領域において、マクスウェル方程式から(近似なしで)導出される以下の積分形式(式(49))で表せる。
<Relationship between the particle characteristics and the complex scattering amplitude S 11>
The problem of the scattering of the electromagnetic field of fine particles (or bubbles) made of a magnetic and isotropic material is represented by the following integral form (without approximation) derived from Maxwell's equation (without approximation) in the frequency domain. Can be represented by
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここで考えている非磁性体では、複素屈折率の2乗が複素誘電率に等しいという関係がある。また、媒質は非吸収性であると仮定する(可視域では水についてもこの仮定は近似的に正しい)。式(49)においてr∈vのとき、この式は粒子内部の電場についての積方法で)求まったとすると、微粒子による散乱場は、式(49)の右辺第二項として式(50)と書ける。微粒子が原点近傍にあり、観測点が粒子サイズや波長に比べて原点から十分遠く離れている条件では(far-field)、グリーン関数に以下の近似式が使える。 非 In the non-magnetic material considered here, there is a relation that the square of the complex refractive index is equal to the complex permittivity. It is also assumed that the medium is non-absorbing (this assumption is approximately correct for water in the visible range). If r∈v in equation (49), and this equation is obtained by the product method for the electric field inside the particle, the scattering field due to the fine particles can be written as equation (50) as the second term on the right side of equation (49). . Under the condition that the particles are near the origin and the observation point is far enough from the origin compared to the particle size and wavelength (far-field), the following approximation can be used for the Green's function.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 今、SPES法の測定系の状況を当てはめ、第1方向へ伝搬し第2方向に電場が直線偏光した入射場による、前方方向への散乱場を考える。式(50)、式(51)から、第1方向へ伝搬する散乱場の、入射場と共通する第2方向の偏光成分は式(52)と表わせる。 Now, by applying the situation of the measurement system of the SPES method, consider a forward scattered field due to an incident field that propagates in the first direction and the electric field is linearly polarized in the second direction. From Expressions (50) and (51), the polarization component of the scattered field propagating in the first direction in the second direction common to the incident field can be expressed by Expression (52).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 一般性を失わずに、入射場の振幅の絶対値が1の場合を考えると、式(52)を式(3)と比較することで、前方方向(θ=0)の複素散乱振幅S11は、微粒子の内部電場E(r’)を用いて一般に式(53)と表されることがわかる。ここで、消散構造因子(式(54))という、微粒子の物性や幾何学構造に依存する無次元量を定義すると、式(53)から、複素散乱振幅S11は、観測から知りたい本質的な微粒子の物理量である複素誘電率および粒子体積vと、無次元量Fの寄与の積として式(55)のように簡潔に表すことができる。 Considering the case where the absolute value of the amplitude of the incident field is 1 without losing generality, the complex scattering amplitude S 11 in the forward direction (θ = 0) can be obtained by comparing equation (52) with equation (3). It can be seen that is generally represented by the formula (53) using the internal electric field E (r ′) of the fine particles. Here, as dissipating structure factor (equation (54)), defining a dimensionless quantity that depends on the physical properties and geometry of the particles, from the equation (53), the complex scattering amplitude S 11 is essentially to be seen from the observation It can be simply expressed as the product of the contribution of the complex dielectric constant and the particle volume v, which are the physical quantities of the fine particles, and the dimensionless quantity F, as in Expression (55).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 特に、サイズが波長と同程度かそれよりも小さく、かつ複素誘電率が1に近いような光学的に薄い(optically soft)粒子では、内部電場E(r’)が入射場Einc(r’)に等しいとみなせる場合がある(Born近似)。式(54)の内部電場に入射場を代入すると導かれるように、Born近似ではF=1となる。Born近似がよくあてはまるわけではない一般の粒子でも、サイズが波長と同程度かそれよりも小さい場合には、複素数値Fの実部と虚部のオーダーはそれぞれ式(56)、であることが多く、迅速な解釈のための粗い近似としてBorn近似は有用である。 In particular, for optically soft particles whose size is about the same as or smaller than the wavelength and whose complex permittivity is close to 1, the internal electric field E (r ') is affected by the incident field Einc (r'). ) (Born approximation). As can be derived by substituting the incident field into the internal electric field in equation (54), F = 1 in the Born approximation. Even for general particles for which the Born approximation does not apply well, if the size is about the same as or smaller than the wavelength, the order of the real part and the imaginary part of the complex value F may be expressed by equation (56), respectively. The Born approximation is useful as a coarse approximation for many, rapid interpretations.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 任意の微粒子(あるいは気泡)について、式(55)の実部と虚部はそれぞれ式(57)、式(58)と書け、複素散乱振幅S11の実部と虚部の比は、複素誘電率と消散構造因子とは式(59)の関係をもつ。特に複素誘電率の虚部が0の非吸収性の物質からなる微粒子については、複素散乱振幅S11の実部と虚部の比は消散構造因子Fの実部と虚部の比に等しく、式(60)となる。以上のように、データ解釈では、無次元量の消散構造因子Fが、微粒子の物理特性に依存してどのような値をとるか知ることがカギとなる。 For any particle (or bubbles), each equation the real and imaginary parts of equation (55) (57), write an equation (58), the ratio of the real part and the imaginary part of the complex scattering amplitude S 11 is the complex dielectric The rate and the dissipation structure factor have the relationship of equation (59). Especially for particles imaginary part of the complex dielectric constant is made of a non-absorptive material 0, the ratio of the real part and the imaginary part of the complex scattering amplitude S 11 is equal to the ratio of the real part and the imaginary part of the dissipative structure factor F, Expression (60) is obtained. As described above, in data interpretation, it is key to know what value the dimensionless amount of dissipation structure factor F takes depending on the physical properties of the fine particles.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 以上の説明により、図3の観測処理におけるステップS130で判定値J(J=|Pext(B-D)/Pext(A-C)|)が0.2以上のときに観測不可と判断し、判定値Jが0.2未満のときにだけ観測を行なうのは、判定値Jが0.2未満のときには、近似等式(40),式(41)の誤差がそれぞれの厳密な等式(27),式(35)と比べて2%未満となることに基づくのが解る。 As described above, when the determination value J (J = | P ext (BD) / P ext ( AC ) |) is 0.2 or more in step S130 in the observation processing of FIG. 3, it is determined that observation is not possible. The reason why observation is performed only when the judgment value J is less than 0.2 is that when the judgment value J is less than 0.2, the errors of the approximate equations (40) and (41) are strictly equal. It can be seen that it is based on the fact that it is less than 2% as compared with the equations (27) and (35).
 また、図3の観測処理におけるステップS140の複素散乱振幅S11の実部Re(S11)と虚部Im(S11)の計算は、式(45)と式(46)により行なうことができるのが解る。さらに、図3の観測処理におけるステップS170の微粒子(微小バブル)の体積vの計算は、式(57)により行なうことができるのが解る。 Further, the calculation of the real part Re (S 11 ) and the imaginary part Im (S 11 ) of the complex scattering amplitude S 11 in step S140 in the observation processing of FIG. 3 can be performed by the equations (45) and (46). Understand. Further, it can be understood that the calculation of the volume v of the fine particles (fine bubbles) in step S170 in the observation processing of FIG. 3 can be performed by equation (57).
 次に、実施形態の微粒子検出装置20での実験例について説明する。
<実験例1:粒径既知のポリスチレン粒子による実験例>
 粒径が既知のポリスチレン粒子(JSR社製,STADEXシリーズ)を純水に懸濁させた試料をフローセル10に流し、微粒子検出装置20の性能評価を行った。ビームウエストにおけるスポットサイズωは、チューブポンプで駆動する流量から決まるフローセル10の中心の流速と、消散パワーPext(A-C)の波形幅の最頻値から導出した。図7は、直径510nmのポリスチレン粒子の試料の消散パワーPext(A-C)時間波形の極大・極小の時間差(波形幅) [0.4μs単位]を示すグラフである。図から解る波形幅の最頻値と中心流速から計算されるスポットサイズωは約2.64μmとなる。この値はレーザー照射装置22(HeNeレーザー)のビームパラメータおよび、ビームエキスパンダ34の拡大率、集光レンズ35の焦点距離から近軸光線理論により推定されるスポットサイズ(約2.5μm)に近い値である(ただし、フローセル10の壁面等価に伴う収差の影響は無視した)。流速と波形幅によるスポットサイズ推定値がこの推定値よりも若干大きいのは、フローセル壁面による球面収差の影響かもしれない。ω=2.64μmを仮定し、複素散乱振幅S11の測定結果を理論と比較した。図8は、粒径と複素屈折率とが既知のポリスチレン標準粒子による実験例の複素散乱振幅S11の実部と理論値としての複素散乱振幅S11の実部とを示す説明図であり、図9は、粒径と複素屈折率とが既知のポリスチレン標準粒子による実験例の複素散乱振幅S11の虚部と理論値としての複素散乱振幅S11の虚部とを示す説明図である。ポリスチレン標準粒子としては、直径202nm、254nm、294nm、402nm、510nmのものを用いた。実験例は、図示するように、実部・虚部ともに理論値によく一致する。
Next, an experimental example using the particle detection device 20 of the embodiment will be described.
<Experimental example 1: Experimental example using polystyrene particles of known particle size>
A sample in which polystyrene particles of a known particle size (STADEX series, manufactured by JSR Corporation) were suspended in pure water was passed through the flow cell 10 to evaluate the performance of the fine particle detector 20. The spot size ω 0 at the beam waist was derived from the flow velocity at the center of the flow cell 10 determined by the flow rate driven by the tube pump, and the mode value of the waveform width of the dissipated power P ext ( AC ). FIG. 7 is a graph showing a time difference (waveform width) [0.4 μs unit] between the maximum and minimum of the dissipation power P ext (AC) of the sample of polystyrene particles having a diameter of 510 nm. The spot size ω 0 calculated from the mode value of the waveform width and the central flow velocity as understood from the figure is about 2.64 μm. This value is close to the spot size (about 2.5 μm) estimated from the paraxial ray theory based on the beam parameters of the laser irradiation device 22 (HeNe laser), the magnification of the beam expander 34, and the focal length of the condenser lens 35. (However, the influence of aberrations associated with the wall surface equivalent of the flow cell 10 was neglected). The fact that the spot size estimated value based on the flow velocity and the waveform width is slightly larger than the estimated value may be due to the influence of spherical aberration due to the flow cell wall surface. assuming ω 0 = 2.64μm, was compared with the theoretical results of measurement of the complex scattering amplitude S 11. Figure 8 is an explanatory diagram the particle size and the complex refractive index indicates the real part of the complex scattering amplitude S 11 as a real part and the theoretical value of the complex scattering amplitude S 11 of the experimental example according to the known polystyrene standard particles, Figure 9 is an explanatory diagram the particle size and the complex refractive index indicates the imaginary part of the complex scattering amplitude S 11 as the imaginary part of the complex scattering amplitude S 11 and the theoretical value of the experimental example according to the known polystyrene standard particles. As polystyrene standard particles, those having a diameter of 202 nm, 254 nm, 294 nm, 402 nm, and 510 nm were used. In the experimental example, as shown, both the real part and the imaginary part agree well with the theoretical values.
<実験例2:ファインバブル水による実験例>
 図10は、複素散乱振幅S11の実部Re(S11)が値0より大きい粒子の消散パワーPext(A-C)の測定波形の一例を示す説明図であり、図11は、複素散乱振幅S11の実部Re(S11)が値0より小さい微小バブルの消散パワーPext(A-C)の測定波形の一例を示す説明図である。上述したように、複素散乱振幅S11の実部Re(S11)は、水より誘電率が大きな微粒子(金属などの固体粒子)では正の値となり、水より誘電率が小さな微粒子(微小バブル(空気)などの気体粒子)では負の値となる。このため、微小バブルでは、金属などの固体粒子に対して極大と極小が反転する。なお、微小バブルの消散パワーPext(A-C)の波形の後半が系統的に乱れているが、これはレーザーとの何らかの相互作用により気泡が変形を受けているためではないかと考えられる。
<Experimental example 2: Experimental example using fine bubble water >
FIG. 10 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext (AC) of a particle whose real part Re (S 11 ) of the complex scattering amplitude S 11 is larger than 0. FIG. FIG. 9 is an explanatory diagram showing an example of a measured waveform of the extinction power P ext ( AC ) of a microbubble in which the real part Re (S 11 ) of the scattering amplitude S 11 is smaller than a value 0. As described above, the real part Re (S 11 ) of the complex scattering amplitude S 11 has a positive value for fine particles (solid particles such as metal) having a larger dielectric constant than water, and has a smaller dielectric constant than water (fine bubbles). (Gas particles such as (air)) has a negative value. For this reason, in the case of the microbubbles, the maximum and the minimum are inverted with respect to solid particles such as metal. Note that the second half of the waveform of the dissipated power P ext ( AC ) of the microbubbles is systematically disturbed, which may be due to the bubbles being deformed by some interaction with the laser.
 以上説明した実施形態の微粒子検出装置20では、フローセル10の流れの上流側(x軸のマイナス側)にフォトダイオードA、下流側(x軸のプラス側)にフォトダイオードC、y軸のマイナス側にフォトダイオードB、y軸のプラス側にフォトダイオードDをそれぞれ配置する。そして、微粒子の検出する際に、消散パワーPext(Tot)(Pext(Tot)=P(A)+P(B)+P(C)+P(D)-P(E))、消散パワーPext(A-C)(Pext(A-C)=Pext(A)-Pext(C))、消散パワーPext(B-D)(Pext(B-D)=Pext(B)-Pext(D))を計算し、消散パワーPext(A-C)に基づいて複素散乱振幅S11の実部を計算し、消散パワーPext(Tot)に基づいて複素散乱振幅S11の虚部を計算する。そして、計算した複素散乱振幅S11の実部と虚部とにより微粒子が対象微粒子であるか否かを判定する。これにより、フローセル10に流れる微粒子のうち微粒子が対象微粒子であるものだけを判別することができる。この際、xy軸に対して第1象限から第4象限に各4つのフォトダイオードa~dを配置するものでは消散パワーPext(a+b-c-d)と消散パワーPext(a+d-b-c)とを計算する必要があるものに比して、消散パワーPext(A-C)と消散パワーPext(B-D)とを計算するだけでよいから、簡易に計算することができる。 In the particle detector 20 of the embodiment described above, the photodiode A is located upstream (minus side of the x-axis) of the flow of the flow cell 10, the photodiode C is located downstream (plus side of the x-axis), and the minus side of the y-axis. And a photodiode D on the positive side of the y-axis. When detecting the fine particles, the dissipated power P ext (Tot) (P ext (Tot) = P (A) + P (B) + P (C) + P (D) -P (E)) and the dissipated power P ext ( AC ) (P ext ( AC ) = P ext (A) -P ext (C)), dissipated power P ext (BD) (P ext (BD) = P ext (B) -P ext (D)) is calculated and dissipated power P ext (a-C) on the basis to calculate the real part of the complex scattering amplitude S 11, dissipated power P ext (complex scattering based on Tot) amplitude S 11 Compute the imaginary part of. Then, fine particles by the real and imaginary parts of the calculated complex scattering amplitude S 11 determines whether a target particle. Thereby, it is possible to determine only the target particles among the particles flowing through the flow cell 10. At this time, in the case where four photodiodes a to d are arranged in the first to fourth quadrants with respect to the xy axis, the dissipated power P ext (a + bcd) and the dissipated power P ext (a + db- Since it is only necessary to calculate the dissipated power P ext (AC) and the dissipated power P ext (BD) as compared with the case where c) needs to be calculated, it can be easily calculated. .
 また、判定値J(J=|Pext(B-D)/Pext(A-C)|)が0.2以上のときには観測不可とし、判定値Jが0.2未満のときにだけ観測することにより、微粒子が対象微粒子であるか否かの判別の精度を高くすることができる。 Also, when the judgment value J (J = | P ext (BD) / P ext ( AC ) |) is 0.2 or more, observation is not possible, and observation is performed only when the judgment value J is less than 0.2. By doing so, it is possible to increase the accuracy of determining whether or not the fine particles are the target fine particles.
 更に、フローセル10に流れる微粒子が対象微粒子であると判定したときには、複素散乱振幅S11の実部に基づいて微粒子の体積vを計算するから、微粒子の大きさも検出することができる。 Further, when the particles flowing in the flow cell 10 is determined to be subject microparticles, because to calculate the volume v of the particles on the basis of the real part of the complex scattering amplitude S 11, it is possible to detect the size of the fine particles.
 実施形態の微粒子検出装置20では、観測光用フォトダイオード40の4つのフォトダイオードA~Dを、フローセル10の流れ方向に平行な軸をx軸とし、フローセル10の流れ方向に垂直な軸をy軸としたときに、x軸およびy軸に対して45度の直交する2直線により分割される4分割平面に配置した。しかし、4つのフォトダイオードA~Dを、y軸からの仰角が15度以上75度以下の所定角の第1直線とこの第1直線にx軸対称な第2直線とにより区分される4つの4分割平面に配置するものとしてもよい。 In the particle detector 20 of the embodiment, the four photodiodes A to D of the observation light photodiode 40 are arranged such that an axis parallel to the flow direction of the flow cell 10 is an x axis and an axis perpendicular to the flow direction of the flow cell 10 is y. When placed on an axis, they were arranged on a four-divided plane divided by two straight lines orthogonal to each other at 45 degrees to the x-axis and the y-axis. However, the four photodiodes A to D are divided into a first straight line having a predetermined angle of 15 to 75 degrees from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It may be arranged on a four-divided plane.
 実施形態の微粒子検出装置20では、判定値J(J=|Pext(B-D)/Pext(A-C)|)が0.2未満のときに観測するものとしたが、判定値Jが0.2未満の所定値(例えば、0.15や0.1など)未満のときに観測するものとしてもよい。こうすれば、より精度良く微粒子を判別することができる。 In the particle detector 20 of the embodiment, the observation is made when the judgment value J (J = | P ext (BD) / P ext ( AC ) |) is less than 0.2. The observation may be performed when J is less than a predetermined value less than 0.2 (for example, 0.15 or 0.1). In this case, the fine particles can be determined with higher accuracy.
 実施形態の微粒子検出装置20では、微粒子の体積vを計算するものとしたが、微粒子の体積vを計算しないものとしてもよい。 In the particle detecting device 20 of the embodiment, the volume v of the particle is calculated, but the volume v of the particle may not be calculated.
 実施形態の微粒子検出装置20では、制御装置60により、観測光用フォトダイオード40の4分割された4つのフォトダイオードA~Dと参照光用フォトダイオードEとにより検出された光強度P(A)~P(D),P(E)に基づいて、消散パワーPext(Tot)(Pext(Tot)=P(A)+P(B)+P(C)+P(D)-P(E))、消散パワーPext(A-C)(Pext(A-C)=Pext(A)-Pext(C))、消散パワーPext(B-D)(Pext(B-D)=Pext(B)-Pext(D))を演算するものとした。しかし、観測光用フォトダイオード40と制御装置60との間に、4つのフォトダイオードA~Dと参照光用フォトダイオードEとにより検出された光強度P(A)~P(D),P(E)を入力し、消散パワーPext(Tot)(Pext(Tot)=P(A)+P(B)+P(C)+P(D)-P(E))を演算する回路と、消散パワーPext(A-C)(Pext(A-C)=Pext(A)-Pext(C))を演算する回路と、消散パワーPext(B-D)(Pext(B-D)=Pext(B)-Pext(D))を演算する回路と、を備えるプリアンプ電子回路を備えるものとしてもよい。 In the particle detection device 20 of the embodiment, the controller 60 controls the light intensity P (A) detected by the four divided photodiodes A to D of the observation light photodiode 40 and the reference light photodiode E. Based on -P (D), P (E), the dissipated power P ext (Tot) (P ext (Tot) = P (A) + P (B) + P (C) + P (D) -P (E)) , Dissipated power P ext ( AC ) (P ext ( AC ) = P ext (A) -P ext (C)), dissipated power P ext (BD) (P ext (BD) = P ext (B) −P ext (D)) was calculated. However, the light intensities P (A) to P (D), P () detected by the four photodiodes A to D and the reference light photodiode E between the observation light photodiode 40 and the control device 60. E), a circuit for calculating the dissipated power P ext (Tot) (P ext (Tot) = P (A) + P (B) + P (C) + P (D) -P (E)), and a dissipated power P ext (a-C) and a circuit for calculating the (P ext (a-C) = P ext (a) -P ext (C)), dissipated power P ext (B-D) ( P ext (B-D ) = P ext (B) −P ext (D)).
 上述の実施形態の微粒子検出装置20では、対象微粒子として微小バブルのような球形状の粒子を対象としているため複素散乱振幅S11に着目したが、対象微粒子が非球形状の粒子の場合には複素散乱振幅S11を複素散乱振幅S22に置き換えるものとしてもよい。 In an embodiment of the particle detector system 20 described above has focused on the complex scattering amplitude S 11 because that is targeted to the spherical particles, such as micro-bubble as the target particles, when the target particle is a non-spherical particles it may be a replacement for the complex scattering amplitude S 11 to the complex scattering amplitude S 22.
 次に、本発明の第2の実施形態としての微粒子検出装置120について説明する。第2実施形態の微粒子検出装置120は、図1に例示する第1実施形態の微粒子検出装置120と同一のハード構成をしている。重複する説明を回避するため、第2実施形態の微粒子検出装置120のハード構成についての説明は省略する。なお、第2実施形態の微粒子検出装置120では、観測光用フォトダイオード40と制御装置60との間に、消散パワーPext(Tot)、消散パワーPext(A-C)、消散パワーPext(B-D)を演算するプリアンプ電子回路を備えるものとする。また、第2実施形態の微粒子検出装置120では、微小バブル以外の固形の微粒子(非球形状を含む)を対象微粒子として検出することから、第1実施形態の説明における複素散乱振幅S11を複素散乱振幅S22に置き換えて説明する。 Next, a particle detector 120 according to a second embodiment of the present invention will be described. The particle detector 120 of the second embodiment has the same hardware configuration as the particle detector 120 of the first embodiment illustrated in FIG. In order to avoid redundant description, description of the hardware configuration of the particle detection device 120 according to the second embodiment will be omitted. In the particle detection device 120 of the second embodiment, between the observation light photodiode 40 and the control unit 60, dissipated power P ext (Tot), dissipated power P ext (A-C), dissipation power P ext It is assumed that a preamplifier electronic circuit for calculating (BD) is provided. Further, the particle detection apparatus 120 of the second embodiment, since the detection of the particulate solid non-small bubbles (including non-spherical shape) as the target particles, the complex the complex scattering amplitude S 11 in the description of the first embodiment replaced by a scattering amplitude S 22 will be described.
 第2実施形態の微粒子検出装置120では、制御装置60は図12に例示する観測処理を実行する。第2実施形態の観測処理では、制御装置60は、まず、観測光用フォトダイオード40と制御装置60との間に設けられたプリアンプ電子回路により演算された消散パワーPext(Tot)、消散パワーPext(A-C)、消散パワーPext(B-D)を取得する(ステップS210)。続いて、取得した消散パワーPext(B-D)の消散パワーPext(A-C)に対する比の絶対値(|Pext(B-D)/Pext(A-C)|)として判定値Jを計算し(ステップS220)、計算した判定値Jが0.2未満であるか否かを判定する(ステップS230)。判定値Jが0.2未満であるか否かにより観測の可否を判断することについては第1実施形態で説明した。 In the particle detection device 120 according to the second embodiment, the control device 60 executes an observation process illustrated in FIG. In the observation process of the second embodiment, the control device 60 firstly operates the dissipated power P ext (Tot) and the dissipated power calculated by the preamplifier electronic circuit provided between the observation light photodiode 40 and the control device 60. P ext (AC) and dissipation power P ext (BD) are obtained (step S210). Subsequently, the absolute value of the ratio of the obtained dissipated power P ext (BD) to the dissipated power P ext ( AC ) (| P ext (BD) / P ext ( AC ) |) is determined. The value J is calculated (step S220), and it is determined whether the calculated determination value J is less than 0.2 (step S230). Determining whether observation is possible based on whether the determination value J is less than 0.2 has been described in the first embodiment.
 ステップS230で判定値Jが0.2未満であると判定したときには、消散パワーPext(Tot),Pext(A-C)を用いて複素散乱振幅S22の実部Re(S22)と虚部Im(S22)とを計算し(ステップS240)、計算した複素散乱振幅S22の実部Re(S22)と虚部Im(S22)とを記憶する(ステップS250)。そして観測終了であるか否かを判定し(ステップS260)、観測終了ではないと判定したときには、消散パワーPext(Tot)、消散パワーPext(A-C)、消散パワーPext(B-D)を取得するステップS210に戻る。ステップS230で判定値Jが0.2以上であると判定したときには観測不可と判断し、複素散乱振幅S22の実部Re(S22)や虚部Im(S22)を計算することなく、観測終了であるか否かを判定し(ステップS260)、観測終了ではないと判定したときにはステップS210に戻る。したがって、観測開始してから観測終了するまで、判定値Jが0.2未満となる微粒子に対し、複素散乱振幅S22の実部Re(S22)と虚部Im(S22)とを計算して記憶する処理を繰り返す実行することになる。なお、ステップS260の観測終了の判定は、操作者により指示されたときや、所定数の微粒子を検出したとき、所定時間に亘って観測対象を検出することができなくなったときなどを考えることができる。複素散乱振幅S22の実部Re(S22)と虚部Im(S22)の計算については後述する。 If it is determined in step S230 that the determination value J is less than 0.2, the real part Re (S 22 ) of the complex scattering amplitude S 22 is calculated using the dissipated powers P ext (Tot) and P ext (AC). the imaginary part Im (S 22) and calculates (step S240), the real part Re (S 22) and the imaginary part Im (S 22) of the calculated complex scattering amplitude S 22 and stores (step S250). Then, it is determined whether or not the observation is completed (step S260). If it is determined that the observation is not completed, the dissipation power P ext (Tot), the dissipation power P ext (AC), and the dissipation power P ext (B− The process returns to step S210 for acquiring D). In the case where the determination value J is determined to be 0.2 or more, step S230 determines that the unobservable, the real part Re (S 22) of the complex scattering amplitude S 22 and the imaginary part Im (S 22) without calculating a It is determined whether or not the observation has been completed (step S260), and if it is determined that the observation has not been completed, the process returns to step S210. Therefore, the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 are calculated for the fine particles having the judgment value J of less than 0.2 from the start of the observation to the end of the observation. The process of storing the data is repeatedly executed. Note that the determination of the end of observation in step S260 may be performed when instructed by the operator, when a predetermined number of particles are detected, or when the observation target cannot be detected for a predetermined time. it can. The calculation of the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 will be described later.
 ステップS260で観測終了であると判定したときには、観測した全微粒子の複素散乱振幅S22を複素平面にプロットし(ステップS270)、同一材料(同一の複素屈折率の材料)の微粒子であると推定される微粒子を選択する(ステップS280)。この選択は、複素平面にプロットした微粒子に対して操作者が選択することにより行なうことができる。同一の複素屈折率の材料は、図4や後述する図13,図14に示すように、複素散乱振幅S22の実部Re(S22)と虚部Im(S22)は複素平面上では放物線状に現われる。このため、放物線状に現われる微粒子を同一材料(同一の複素屈折率の材料)の微粒子であると推定して選択すればよい。選択の手法としては、プロットされた微粒子を個別に選択してもよいし、プロットされた微粒子に対して閉鎖領域により囲むことにより選択するものとしてもよい。そして、選択した微粒子の複素屈折率と選択した微粒子の体積範囲を計算する(ステップS290)。そして、処理を終了するか否かを判定し(ステップS300)、終了しないと判定したときには同一材料の微粒子であると推定される微粒子を選択するステップS280に戻り、終了すると判定したときには観測処理を終了する。したがって、複数の材料による微粒子が観測されている場合、複数の材料毎に微粒子を選択し、選択した微粒子の複素屈折率と体積範囲を計算することができる。なお、終了の判定は、操作者が終了指示したときに行なうことを考えることができる。 If it is determined in step S260 that the observation has been completed, the complex scattering amplitude S22 of all the observed fine particles is plotted on a complex plane (step S270), and it is estimated that the particles are particles of the same material (a material having the same complex refractive index). The particle to be selected is selected (step S280). This selection can be made by the operator selecting the fine particles plotted on the complex plane. As shown in FIG. 4 and FIGS. 13 and 14 described later, the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 on the complex plane have the same complex refractive index. Appears parabolically. For this reason, it is only necessary to presume that fine particles appearing in a parabolic shape are fine particles of the same material (a material having the same complex refractive index) and select them. As a selection method, the plotted fine particles may be individually selected, or may be selected by surrounding the plotted fine particles with a closed region. Then, the complex refractive index of the selected microparticle and the volume range of the selected microparticle are calculated (step S290). Then, it is determined whether or not to end the process (step S300). If it is determined that the process is not to be ended, the process returns to step S280 to select fine particles presumed to be the same material. finish. Therefore, when fine particles of a plurality of materials are observed, the fine particles can be selected for each of the plurality of materials, and the complex refractive index and the volume range of the selected fine particles can be calculated. It should be noted that the determination of the termination may be performed when the operator gives a termination instruction.
 微粒子の複素散乱振幅S22の実部Re(S22)と虚部Im(S22)の計算や、同一材料の微粒子であると推定される微粒子の選択手法、選択した微粒子の複素屈折率と体積範囲の計算手法について説明する。 Calculation of the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 of the fine particles, the method of selecting fine particles presumed to be fine particles of the same material, the complex refractive index of the selected fine particles, A method for calculating the volume range will be described.
<光散乱理論と複素散乱振幅S22の定義>
 一様媒質中に孤立して存在する微粒子による電磁波の散乱問題においては、上述したように、入射波の進行方向が+z方向であるときの入射場は式(1)と表わされ、入射場と散乱場の偏光成分の関係は、微粒子の特性に依存する2×2の複素散乱振幅行列Sにより式(2)と表わせる。θ=0の前方散乱場についてはφは任意に選べるためφ=0とおくと、式(2)においてEscaθ=0=Esca,yとなる。この表記のもと、y-直線偏光した入射場と干渉する散乱場の成分は、デカルト座標系において、次式(61)と表わされる。
<Definition of light scattering theory and the complex scattering amplitude S 22>
In the problem of scattering of electromagnetic waves due to fine particles isolated in a uniform medium, as described above, the incident field when the traveling direction of the incident wave is in the + z direction is expressed by Expression (1). The relationship between the field and the polarization component of the scattering field can be expressed by equation (2) using a 2 × 2 complex scattering amplitude matrix S depending on the characteristics of the fine particles. Since φ can be arbitrarily selected for the forward scattered field of θ = 0, if φ = 0 is set, E sca and θ = 0 = E sca, y in equation (2). Under this notation, the component of the scattered field that interferes with the y-linearly polarized incident field is represented by the following equation (61) in a Cartesian coordinate system.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 一般に、入射場と散乱場の波数ベクトルが一致する条件では、波面上における入射場の電場ベクトル成分と平行な散乱場の電場ベクトル成分については式(61)と同等の関係が成り立つ。そのため、式(61)両辺の下添字yを、入射場と散乱場の共通波面上のある任意の方向ベクトル成分の表記として解釈する。また、非球形粒子では一般にS11(θ=0)とS22(θ=0)は異なるが、多数の粒子配向の平均を考えるときにはその区別は必要ない。したがって以降は、特に断らない限り、直線偏光入射場と干渉する散乱場を表すときS22(θ=0)のことを単にS22と書き、電場の下付き添え字yを省いた式(62)の表記を用いる。この関係式(式(62))は、入射場と共通する波数ベクトルと偏光成分の散乱場について、散乱場の位相と振幅が微粒子の特性に依存する複素散乱振幅S22で表されることを意味する。式(62)はSPES法による粒子測定原理の根幹をなす。 In general, under the condition that the wave vectors of the incident field and the scattered field match, the relationship equivalent to the equation (61) holds for the electric field vector component of the scattered field parallel to the electric field vector component of the incident field on the wavefront. Therefore, the subscript y of both sides of Expression (61) is interpreted as a notation of an arbitrary direction vector component on a common wavefront of the incident field and the scattered field. In general, S 11 (θ = 0) and S 22 (θ = 0) are different for non-spherical particles, but when considering the average of many particle orientations, it is not necessary to distinguish them. Therefore, hereinafter, unless otherwise specified, when expressing a scattering field that interferes with a linearly polarized incident field, S 22 (θ = 0) is simply written as S 22, and the equation (62) omitting the subscript y of the electric field is omitted. ) Is used. This relationship (equation (62)), for the scattered field of the wave vector and the polarization component in common with the incident field, that the phase and amplitude of the scattered field is represented by the complex scattering amplitude S 22 that depends on the characteristics of the fine particles means. Equation (62) forms the basis of the particle measurement principle by the SPES method.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
<複素散乱振幅S22とSPES観測量との関係>
 +z方向に伝搬する直線偏光したガウシアンビーム入射場Einc(r)について、その電場ベクトルの偏光成分(式(5)中では入射場記号のイタリック体)は式(5)のように表され、ガウシアンビームの入射場と前方散乱場との干渉を定式化するにあたり、ビームウエスト断面上のビーム中心位置を位置ベクトルの原点r=0にとると、ビームウエスト断面上の位置r=(x,y,0)において、微粒子がさらされる入射場は、式(5)~式(8)より、式(9)と表わされることは上述した。光検出器は波長やビームウエストのスポットサイズωに比べて十分遠方に置かれており、かつその光電面が張る立体角は小さいと仮定する。式(62)、式(9)より、r=(x,y,0)から球面波として広がる微粒子の散乱場は、前方に置かれた光検出器の光電面上ΣPDでは、次式(63)のように表せる。
<Relationship of the complex scattering amplitude S 22 and the SPES observed amount>
With respect to the linearly polarized Gaussian beam incident field E inc (r) propagating in the + z direction, the polarization component of the electric field vector (italic type of the incident field symbol in equation (5)) is expressed as in equation (5). In formulating the interference between the incident field of the Gaussian beam and the forward scattered field, if the position of the beam center on the beam waist section is set to the origin r = 0 of the position vector, the position r p = (x p , Y p , 0), the incident field to which the fine particles are exposed is expressed by the expression (9) from the expressions (5) to (8). It is assumed that the photodetector is located far enough from the wavelength and the spot size ω 0 of the beam waist, and that the solid angle formed by the photocathode is small. From the equations (62) and (9), the scattering field of the fine particles spreading as a spherical wave from r p = (x p , y p , 0) indicates that on the photoelectric surface of the photodetector placed in front Σ PD It can be expressed as the following equation (63).
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 式(63)の近似等号は、原点から見て検出器が張る小さな立体角範囲内では複素散乱振幅S22を一定値と仮定する近似を意味している。式(63)において、式(11)の数学的近似を用いると、 光電面r∈ΣPDにおける散乱場は式(64)と表わされる。一方、光電面r∈ΣPDにおける入射場は、式(5)でz→+∞とする近似により、式(13)と表わされる。 Approximate equality of formula (63) is within a small solid angle range detectors spanned when viewed from the origin is a complex scattering amplitude S 22 means assumed approximate a constant value. In Expression (63), using the mathematical approximation of Expression (11), the scattered field at the photocathode r 面PD is expressed by Expression (64). On the other hand, the incident field at photocathode R∈shiguma PD is the approximation to the formula (5) z → + ∞, denoted formula (13).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 これから、図2のように置かれた4分割型フォトダイオード光電面の受光パワー(観測信号)を、式(64)のEscaと式(13)のEincを用いて定式化する。光電面上の位置r∈ΣPDにおける受光パワー密度[Wm-2]は式(14)となる。4分割型フォトダイオード全体ΣPD=ΣA+B+C+Dによる入射場の受光パワーPincは、式(13)より、式(15)となる。光電面におけるガウシアンビームのスポットサイズω(z)が光電面半径よりも十分小さいとき、式(15)の面積分計算において光電面は無限に広いと仮定してよく、xおよびyの積分範囲はそれぞれ(-∞,+∞)とおいてよい。この近似をつかうと、式(15)の解析的積分を実行でき、式(6)をつかって結果を表すと、Pinc=Pとなる。これは入射場の受光パワーがビームパワーに等しいことを意味する。 From this, the light receiving power (observation signal) of the four-division photodiode photocathode placed as shown in FIG. 2 is formulated using E sca of equation (64) and E inc of equation (13). Receiving power density at the position R∈shiguma PD on the photocathode [Wm -2] is the formula (14). From the equation (13), the received light power P inc of the incident field due to the entire four-segmented photodiode Σ PD = Σ A + B + C + D is given by equation (15). When the spot size ω (z) of the Gaussian beam on the photocathode is sufficiently smaller than the radius of the photocathode, the photocathode may be assumed to be infinitely wide in the area calculation of Expression (15), and the integration range of x and y is Each may be (-∞, + そ れ ぞ れ). Using this approximation, the analytic integration of equation (15) can be performed, and expressing the result using equation (6) results in P inc = P. This means that the received power of the incident field is equal to the beam power.
 4分割型フォトダイオード全体ΣPD=ΣA+B+C+Dによる散乱場の受光パワーPscaは、式(12)を用いると式(16)となる。最後の式では、光電面が張る微小立体角範囲ではS22は一定値であると仮定した。ここでビームウエスト断面上の微粒子の位置座標について、式(17)のような無次元パラメータで表すことにすると、式(16)は式(65)と書ける。 The received light power P sca of the scattered field due to the entire four-segment photodiode 4 PD = Σ A + B + C + D is given by equation (16) using equation (12). In the last formula, in small solid angle range in which the photoelectric surface is put is assumed to S 22 is a constant value. Here, if the position coordinates of the fine particles on the beam waist cross section are expressed by a dimensionless parameter such as Expression (17), Expression (16) can be written as Expression (65).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 最後に、式(14)における消散場の寄与の面積分を計算する。その準備としてまず、複素スカラー量(式(66)の左辺)の数学表現を求めておく。式(64)、式(13)をもとに計算し、expの位相項の中に現れるx,yの2次の微小項を無視する近似を施すと、以下の式(66)が導かれる。ただし、式(66)において表記の整理のため式(20)を用いた。ここで光電面上の位置(x、y)を極座標で表し、bの式を用いると、式(66)は式(67)と表わされる。 Finally, the contribution of the dissipation field in the equation (14) is calculated. As a preparation, first, a mathematical expression of a complex scalar quantity (the left side of Expression (66)) is obtained. Equation (64), and calculates equation (13) based on, x p appearing in the phase term exp, when subjected to approximation to ignore the secondary small term of y p, the following equation (66) Be guided. However, equation (20) was used for rearranging notations in equation (66). Here, when the position (x, y) on the photocathode is represented by polar coordinates and the expression of b is used, expression (66) is expressed by expression (67).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 式(67)をもとに、4分割型フォトダイオードの光電面が受光する消散パワーPexpを計算しよう。Pextについて導出したい観測量は以下の3つである。
(1)ΣA+B+C+Dが受ける全消散パワー
   Pext(Tot)=Pext(A)+Pext(B)+Pext(C)+Pext(D)
(2)ΣAとΣCとが受ける消散パワーの差
   Pext(A-C)=Pext(A)-Pext(C)
(3)ΣBとΣDとが受ける消散パワーの差
   Pext(B-D)=Pext(B)-Pext(D)
Based on the equation (67), 4 photocathode of the divided photodiode is trying to calculate the dissipated power P exp for receiving. Observed quantities to be derived for P ext are the following three.
(1) Total power dissipated by ΣA + B + C + D P ext (Tot) = P ext (A) + P ext (B) + P ext (C) + P ext (D)
(2) Difference of dissipated power received by ΣA and ΣC P ext (AC) = P ext (A) -P ext (C)
(3) Difference of dissipated power received by ΣB and ΣD P ext (BD) = P ext (B) −P ext (D)
 これらの消散パワーPextはそれぞれ、消散パワー密度の光電面上の面積分として式(22)~式(24)で表せる。式(21)を式(22),式(23),式(24)のそれぞれの右辺に代入して積分を計算・整理するにあたり、以下の複素積分の公式(25),式(26)を用いる。 These dissipated powers P ext can be expressed by the equations (22) to (24) as the area of the dissipated power density on the photocathode. In substituting equation (21) into each of the right sides of equations (22), (23), and (24) to calculate and arrange the integrals, the following complex integral formulas (25) and (26) are used. Used.
 これらの公式はそれぞれ、複素平面状の矩形領域{Re(z)=-t,tIm(z)=0,c},{Re(z)=0,tIm(z)=0,c}の境界で定義される閉経路で複素関数f(z)=z・exp(-a)を積分し、それに留数定理を適用しt→∞とすることで導出できる。式(26)のerfc(z)は複素変数の相補誤差関数(complementary error function)である。式(25)を用いると式(22)の右辺は式(27)のように展開される。ここで、式(27)では式(68)および式(69)を用いた。ただし、式(29)では式(30)および式(31)を用いた。 These formulas respectively represent the boundaries of the complex plane rectangular region {Re (z) =-t, tIm (z) = 0, c}, {Re (z) = 0, tIm (z) = 0, c}. Can be derived by integrating the complex function f (z) = z · exp (−a 2 z 2 ) in the closed path defined by and applying the residue theorem to t → ∞. Erfc (z) in equation (26) is the complementary error function of the complex variable. Using Expression (25), the right side of Expression (22) is expanded as Expression (27). Here, equation (68) and equation (69) are used in equation (27). However, equation (30) and equation (31) were used in equation (29).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 微粒子がビーム中心位置(ζ,η)=(0,0)にあるとき、式(27)の観測量Pext(Tot)への寄与としてPext(Tot)はゼロとなりPext(Tot)のみが残り、式(70)となる。式(6)の関係によれば、式(70)右辺のカギ括弧内の量はビーム中心位置(ζ,η)=(0,0)における入射場のパワー密度に等しい。さらに微粒子の「消散断面積Cext」の定義式の一つとしての式(71)を用いると、直感的に解釈可能な式(34)を得る。式(34)は、上述のパワー密度である平面波の入射場について、光エネルギー観測量に基づいた微粒子の消散断面積の定義式である。ガウシアンビームの入射場においては、ビーム中心位置(ζ,η)=(0,0)の場合にのみこの関係式が成立することが示された。 Particles beam center position (zeta, eta) = When in the (0,0), wherein the observed amount of (27) P ext P as contributions to (Tot) ext (Tot) 2 is zero P ext (Tot) Only 1 remains, resulting in equation (70). According to the relationship of Expression (6), the amount in the brackets on the right side of Expression (70) is equal to the power density of the incident field at the beam center position (中心, η) = (0, 0). Further, by using the expression (71) as one of the defining expressions of the “dissipation cross-sectional area C ext ” of the fine particles, the expression (34) that can be interpreted intuitively is obtained. Formula (34) is a definition formula of the extinction cross-section of the fine particles based on the observed light energy for the plane wave incident field having the above-mentioned power density. In the Gaussian beam incident field, it was shown that this relational expression holds only when the beam center position (ζ, η) = (0, 0).
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 一方、式(26)を用いると式(23)(24)の右辺はそれぞれ式(72)および式(73)のように展開される。なお、式(37)および式(38)のようにおいた。 On the other hand, when Expression (26) is used, the right sides of Expressions (23) and (24) are expanded as Expressions (72) and (73), respectively. In addition, it set as Formula (37) and Formula (38).
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 本装置の設定では、時間とともに微粒子は+x方向に移動するため、ζ=ζ(t)とおく。Pextの観測信号波形から抽出できる情報を探るため、まず、式(72)と(73)の比をとると式(39)となり、観測量Pext(B-D)と観測量Pext(A-C)の比は、ビームウエスト断面上の微粒子の無次元座標(ζ,η)のみに依存し、複素散乱振幅S22など微粒子の特性にはよらないことが分かる。また、微粒子の流れに沿うx方向の座標ζ(t)は、観測量Pext(A-C)の波形から制約できる。そのため観測量Pext(B-D)/Pext(A-C)は、微粒子のy方向の座標ηの指標として利用できるのである。この指標に基づき、ビーム中心付近を横断する(|η|≪1)微粒子のみを抽出することができる。この場合には、観測量Pextは、式(74)、式(75)、式(42)となる。 In the setting of the present apparatus, since fine particles move in the + x direction with time, ζ = ζ (t). In order to search for information that can be extracted from the observed signal waveform of P ext , first, by taking the ratio of Equations (72) and (73), Equation (39) is obtained, and the observed amount P ext (BD) and the observed amount P ext ( the ratio of a-C), the beam waist dimensionless coordinates of the fine particles of the cross-section (zeta, eta) only dependent, it can be seen that does not depend on the characteristics of the microparticles, such as the complex scattering amplitude S 22. Further, the coordinate ζ (t) in the x direction along the flow of the fine particles can be restricted by the waveform of the observation amount P ext ( AC ). Therefore, the observed amount P ext (BD) / P ext ( AC ) can be used as an index of the coordinate η of the fine particle in the y direction. Based on this index, it is possible to extract only the fine particles that cross the vicinity of the beam center (| η | ≪1). In this case, the observation amount P ext is represented by Expression (74), Expression (75), and Expression (42).
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 式(75)のerfi(z)は虚数誤差関数(imaginary error function)である。式(74)は特にビーム中心ζ=0においては式(70)と同じになる。式(75)におけるの関数(式43))により、|η|≪1におけるPext(A-C)(ζ)の波形が規定される。式(43)の右辺erfiの項は奇関数かつ単調増加であり、|ζ|≫1領域におけるその絶対値の増大はexp(-2ζ)に打ち消される。そのため、f(ζ)は正負それぞれのζ領域において(原点からみて対称な)極小点と極大点を1個ずつもち、かつf(0)=0となる。数値的に求めたf(ζ)の極大点と極小点は式(44)である。 Erfi (z) in equation (75) is an imaginary error function. Equation (74) is the same as equation (70) especially when the beam center ζ = 0. The function (equation 43) in equation (75) defines the waveform of P ext (AC) (ζ) at | η | ≪1. The term on the right side erfi in equation (43) is an odd function and monotonically increasing, and the increase in its absolute value in the | ζ | ≫1 region is canceled by exp (−2ζ 2 ). Therefore, f (ζ) has one minimum point and one maximum point (symmetrical with respect to the origin) in each of the positive and negative ζ regions, and f (0) = 0. The maximal point and the minimal point of f (求 め) numerically obtained are expressed by equation (44).
 式(39)の数値計算によれば、Pext(A-C)が極値をとる位置ζ=ζ+αにおいて|Pext(B-D)/Pext(A-C)|<0.2ならば|η|<0.2が満たされ、このとき、近似等式(74),式(75)の誤差は、それぞれの厳密な等式(27),式(72)と比べて2%未満であることが分かった。このことから、本明細書では、Pext(A-C)観測波形の極大位置において|Pext(B-D)/Pext(A-C)|<0.2を満たす粒子検出イベントのみを抽出したうえで、等式(74),式(75)を仮定し、Pext(A-C)とPext(Tot)の波形振幅から微粒子の複素散乱振幅S22を導出することにする。この方法により、微粒子の複素散乱振幅S22の実部と虚部を導出する式は式(76)と式(77)となる。ただし式(76)、式(77)において、式(47)、式(48)のように観測波形の振幅を定義した。 According to the numerical calculation of Expression (39), | P ext (BD) / P ext ( AC ) | <0.2 at a position ζ = ζ + α where P ext ( AC ) takes an extreme value. Then, | η | <0.2 is satisfied. At this time, the error of the approximate equations (74) and (75) is 2% smaller than the strict equations (27) and (72). Was found to be less than. Thus, in the present specification, in the maximum position of P ext (A-C) measured waveform | P ext (B-D) / P ext (A-C) | < only particle detection event satisfying 0.2 after having extracted the equation (74), assuming the equation (75), is to derive the P ext (a-C) and P ext complex scattering amplitude S 22 from the waveform amplitude of the fine particles of (Tot). This method, equation to derive the real and imaginary part of the complex scattering amplitude S 22 of the microparticles becomes Equation (76) Equation (77). However, in Expressions (76) and (77), the amplitude of the observed waveform is defined as Expressions (47) and (48).
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 以上、微粒子の複素散乱振幅S22の実部Re(S22)と虚部Im(S22)の計算について説明した。 The calculation of the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 of the fine particles has been described above.
<測定信号電圧と消散パワーの関係>
 次に、プリアンプ回路から出力される3つの電圧信号Vsig(Tot-Ref)、Vsig(A-C)、Vsig(B-D)から消散パワーPext(Tot)、消散パワーPext(A-C)、消散パワーPext(B-D)を導出する方法を説明する。
<Relationship between measured signal voltage and dissipated power>
Next, from three voltage signals V sig (Tot-Ref), V sig (AC), and V sig (BD) output from the preamplifier circuit, the dissipated power P ext (Tot) and the dissipated power P ext ( AC) and a method of deriving the dissipated power P ext (BD) will be described.
 まず、電圧信号Vsig(Tot-Ref)は、式(78)のように表わされる。R[AW-1]はフォトダイオードの受光感度、K[VA-1]は電流電圧変換回路の増幅率diff計装アンプの差動増幅率を表す。上付き添字QPD、rPDはそれぞれ分割フォトダイオード、参照光用フォトダイオードを表す。αは、入射光と参照光のビーム強度分割比である。式(79)となるように分割比αを調節し、式(78)中の入射光パワーPincを含む2項を相殺する。この相殺によりレーザー光強度のノイズの影響をおおむね除去できる。もし相殺が完全でない場合でも、計測ソフトウェアにおける粒子の信号波形抽出のときにDC成分を除去すればよい。 First, the voltage signal V sig (Tot-Ref) is represented by Expression (78). R [AW -1 ] represents the light receiving sensitivity of the photodiode, K [VA -1 ] represents the amplification factor of the current-voltage conversion circuit, and G diff represents the differential amplification factor of the instrumentation amplifier. The superscripts QPD and rPD represent a quadrant photodiode and a reference light photodiode, respectively . α is the beam intensity division ratio between the incident light and the reference light. The division ratio α is adjusted so as to satisfy Expression (79), and two terms including the incident light power P inc in Expression (78) are canceled. By this cancellation, the influence of the noise of the laser beam intensity can be largely eliminated. Even if the cancellation is not perfect, the DC component may be removed when extracting the signal waveform of the particles by the measurement software.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 入射光パワーPincを含む2項が相殺された条件で式(78)を変形すると式(80)となる。ここで、式(80)の左辺におけるPext(Tot)とPsca(Tot)との相対的大きさを式(65)と式(77)から見積もってみると、ηがほぼ値0として式(81)となる。これを粒径の関数として考えると、サブミクロン粒径範囲において、Psca(Tot)ext(Tot)に比べていつも無視できるほど小さいとはいえないことが解る When the equation (78) is modified under the condition that two terms including the incident light power P inc are canceled out, the equation (80) is obtained. Here, when the relative magnitudes of P ext (Tot) and P sca (Tot) on the left side of Expression (80) are estimated from Expressions (65) and (77), it is assumed that η is almost zero and Expression (81). Considering this as a function of particle size, it can be seen that in the submicron particle size range, P sca (Tot) is not always negligibly small compared to P ext (Tot) .
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 このため、データ解析においてはsca(Tot)の寄与も考慮する必要がある。その準備として、式(77)Im(S22の代わりに、Im(S22)と散乱光の寄与の和として[Im(S22)]SCを式(82)を定義する。なお、式(83)とした。式(82)と式(80)からわかるように、[Im(S22)]SCは、信号Vsig(Tot-Ref)から求まる測定量である。特にPsca(Tot)amp≪Pext(Tot)ampのときは[Im(S22)]SCはIm(S22)にほぼ等しくなる。 Therefore, it is necessary to consider the contribution of P sca (Tot) in the data analysis . As a preparation, instead of Im (S 22 ) in Expression (77) , [Im (S 22 )] SC is defined as Expression (82) as the sum of Im (S 22 ) and contribution of scattered light . The equation (83) was used. As can be seen from Expressions (82) and (80), [Im (S 22 )] SC is a measured amount obtained from the signal V sig (Tot-Ref). In particular [Im (S 22)] SC when the P sca (Tot) amp «P ext (Tot) amp is substantially equal to Im (S22).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 一方、信号Vsig(A-C)は、式(84)のように表わされる。4分割フォトダイオードの中心位置をビーム中心に合わせておけば、式(84)における入射光パワーPincと散乱場の受光パワーPscaの寄与はそれぞれ、光電面AとCで互いに相殺される。この相殺条件において、式(84)を変形すると式(85)となる。式(85)と式(76)からわかるように、Re(S22)は、信号Vsig(A-C)から求まる測定量である。本装置のデータ解析法では、2変量の測定データ{Re(S22),[Im(S22)]SC}をもとに粒子の複素屈折率や体積を推定する。 On the other hand, the signal V sig ( AC ) is expressed as in equation (84). If the center position of the four-division photodiode is aligned with the beam center, the contributions of the incident light power P inc and the received light power P sca of the scattered field in equation (84) are canceled out by the photocathodes A and C, respectively. Under this canceling condition, Expression (84) is transformed into Expression (85). As can be seen from Expressions (85) and (76), Re (S22) is a measured amount obtained from the signal V sig ( AC ). In the data analysis method of the present apparatus, the complex refractive index and volume of particles are estimated based on bivariate measurement data {Re (S 22 ), [Im (S 22 )] SC }.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
<微粒子の複素散乱振幅S22を算出するためのモデル>
 複数の微粒子{Re(S22),[Im(S22)]SC}の測定データから微粒子のモデルパラメータ(複素屈折率、体積、形状)の推定を行うためには、モデルパラメータの入力値から複素散乱振幅S22を算出するためのフォワードモデルが必要である。以下に、フォワードモデルの定式化、計算法、計算結果について述べる。
<Model for calculating the complex scattering amplitude S 22 of the fine particles>
In order to estimate the model parameters (complex refractive index, volume, shape) of the fine particles from the measurement data of the plurality of fine particles {Re (S 22 ), [Im (S 22 )] SC }, the input values of the model parameters are used. forward model for calculating the complex scattering amplitude S 22 is required. The formulation, calculation method and calculation result of the forward model are described below.
 非磁性体のかつ等方的な物性の物質からなる微粒子(あるいは気泡)の電磁場の散乱問題は、周波数領域において、マクスウェル方程式から(近似なしで)導出される以下の積分形式(式(85))で表せる。 The problem of scattering of the electromagnetic field of fine particles (or bubbles) made of a non-magnetic and isotropic material is represented by the following integral form (without approximation) derived from Maxwell's equation (without approximation) in the frequency domain. ).
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 式(78)において積分領域のとき、この式は粒子内部の電場についての積分方程式とみなせる。その積分方程式の解である、粒子の内部電場が(後で述べる数値的方法で)求まったとすると、粒子による散乱場は、式(85)の右辺第二項として式(86)と書ける。 と き In the integration region in equation (78), this equation can be regarded as an integral equation for the electric field inside the particle. Assuming that the internal electric field of the particle, which is the solution of the integral equation, is obtained (by a numerical method described later), the scattered field by the particle can be written as the second term on the right side of the equation (85) as equation (86).
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 粒子が原点近傍にあり、観測点rが粒子サイズや波長に比べて原点から十分遠く離れている条件では(far-field)、グリーン関数に式(87)の近似式が使える。 Under the condition that the particle is near the origin and the observation point r is far enough away from the origin compared to the particle size and wavelength (far-field), the approximation of Equation (87) can be used for the Green's function.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 SPES法の測定系の状況を当てはめ、式(88)方向へ伝搬し式(89)方向に電場が直線偏光した入射場による、前方方向への散乱場を考える。また、粒子体積内で複素屈折率は一定値であると仮定する。式(86)および式(87)から、式(88)方向へ伝搬する散乱場の、入射場と共通する式(89)方向の偏光成分(式(90)の左辺)は式(90)と表わせる。ここで、式(90)の中に体積積分として現れる複素数の無次元量を式(91)として定義し、これを消散構造因子と呼ぶことにする。 Applying the situation of the measurement system of the SPES method, consider a forward scattered field due to an incident field that propagates in the direction of equation (88) and the electric field is linearly polarized in the direction of equation (89). It is also assumed that the complex refractive index is constant within the particle volume. From Expressions (86) and (87), the polarization component of the scattering field propagating in the direction of Expression (88) in the direction of Expression (89) common to the incident field (the left side of Expression (90)) is expressed by Expression (90). Can be expressed. Here, a dimensionless quantity of a complex number appearing as a volume integral in the equation (90) is defined as an equation (91), and this is called a dissipative structure factor.
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 消散構造因子は、単位振幅の平面波(式(92))が入射したとき、粒子内に生じる内部電場と入射場との内積の体積平均値である。特に、サイズが波長と同程度かそれよりも小さく、かつm/mmedが値1に近いような光学的に薄い(optically soft)粒子では、内部電場E(r∈ν)は入射場Einc(r∈ν)に近似できる(Born近似)。式(93)の内部電場に入射場を代入すると導かれるように、Born近似ではF=1となる。Born近似がよくあてはまるわけではない一般の粒子でも、サイズが波長と同程度かそれよりも小さい場合には、|F|~1、arg(F)~0[rad]であることが多い。強い吸収性の粒子では、内部電場が小さいため|F|が値1よりも小さくなる傾向がある。また、波長に比べてずっと小さな球形粒子では式(93)となることがMie理論の長波極限から導かれる。 The dissipation structure factor is a volume average value of an inner product of an internal electric field and an incident field generated in a particle when a plane wave of a unit amplitude (Equation (92)) is incident. In particular, for optically soft particles whose size is about the same as or smaller than the wavelength, and whose m / m med is close to the value 1, the internal electric field E (r∈ν) will have an incident field E inc (R∈ν) (Born approximation). As can be derived by substituting the incident field into the internal electric field in equation (93), F = 1 in the Born approximation. Even for general particles to which the Born approximation does not apply well, when the size is about the same as or smaller than the wavelength, it is often | F | ~ 1 and arg (F) ~ 0 [rad]. In strongly absorbing particles, | F | tends to be smaller than the value 1 due to the small internal electric field. Further, it is derived from the long-wave limit of the Mie theory that the spherical particle having a size much smaller than the wavelength has the formula (93).
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 一般性を失わずに入射場(式(94))の振幅を値1とおいて、式(90)を式(61)と比較し、式(91)によるFの定義を用いると、前方方向(θ=0)の複素散乱振幅S22は式(95)と表わせることがわかる。複素散乱振幅S22の実部と虚部の比は、複素屈折率m、消散構造因子Fと式(96)の関係をもつ。特にm=0の非吸収性物質からなる粒子では、式(97)に示すようにFの実部と虚部の比に等しい。 If the amplitude of the incident field (Equation (94)) is set to a value of 1 without loss of generality, Expression (90) is compared with Expression (61), and using the definition of F by Expression (91), the forward direction ( theta = 0 complex scattering amplitude S 22) of it can be seen that expressed the equation (95). The ratio of the real part and the imaginary part of the complex scattering amplitude S 22 has a complex refractive index m, the relationship between the dissipating structure factor F and equation (96). In particular, for particles made of a non-absorbable substance with mi = 0, it is equal to the ratio of the real part to the imaginary part of F as shown in equation (97).
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 複素散乱振幅S22の計算のフォワードモデル(式(95))では、何らかの方法で、消散構造因子Fを入射場の波数、媒質の屈折率、粒子のパラメータの関数として算出する必要がある。本実施形態では、消散構造因子Fの算出のために、球形粒子についてはMie理論の解析解、非球形粒子については離散双極子法による数値解法を採用した。非球形粒子について、ビームウエスト横断中の粒子配向は未知であるため、多数の配向にわたる平均値を採用することにした。配向平均値を効率的に計算するため、離散双極子法に現れる大規模線型方程式の反復解法にBlock-Krylov部分空間法を導入した。各反復における行列ッベクトル積の計算を高速化するためFFT加速のアルゴリズムを実装した(Block-DDA)。また、環境中で実際によくみられる粒子形状である、微小球のフラクタル凝集体を考慮できるようにするため、フラクタル次元が既知の凝集体の幾何学座標を自動生成するソフトウェアも開発した(aggregate_gen)。 In the forward model calculations of the complex scattering amplitude S 22 (the formula (95)), in some way, the wave number of the incident field dissipation structure factor F, the refractive index of the medium, it is necessary to calculate as a function of the parameters of the particles. In the present embodiment, in order to calculate the dissipation structure factor F, an analytical solution of the Mie theory is used for spherical particles, and a numerical solution by a discrete dipole method is used for non-spherical particles. For non-spherical particles, the particle orientation during traversal of the beam waist is unknown, so an average over a number of orientations was chosen. In order to efficiently calculate the orientation average value, the Block-Krylov subspace method was introduced to the iterative solution of a large-scale linear equation appearing in the discrete dipole method. An algorithm for FFT acceleration was implemented to speed up the calculation of the matrix-vector product in each iteration (Block-DDA). In addition, in order to be able to consider fractal aggregates of microspheres, which are particle shapes that are actually common in the environment, we have also developed software that automatically generates geometric coordinates of aggregates with known fractal dimensions (aggregate_gen ).
 様々な複素屈折率と形状の粒子について、式(95)で定義される複素散乱振幅S22の計算結果を図13および図14に示す。図13および図14からわかるように、複素散乱振幅S22の値は複素平面上において粒子種に固有の曲線上の値をとる。まず図13および図14の原点付近の小粒径極限に注目する。原点付近ではF値は式(93)で近似されることから、複素散乱振幅S22の曲線は複素屈折率の値だけに依存する方向に原点から延びる。原点から離れてある程度粒径が大きくなると複素屈折率だけでなく粒子形状にも依存して曲線が曲がり始める。後に述べるように、複素平面上での粒径に依存して複素散乱振幅S22の曲線が曲がるのは消散構造因子Fの偏角arg(F)の粒径依存性によるものである。まず球形粒子(sphere)だけに注目すると、その曲線は複素屈折率の実部と虚部の両方に強く依存していることがわかり、球形であることが既知である試料粒子については、複素散乱振幅S22の測定値から複素屈折率の実部・虚部を推定できることが期待される。比較的球形に近い立方体粒子(cube)の場合、複素散乱振幅S22の曲線は球形粒子にかなり近いものの、屈折率が小さい球形粒子の曲線の方にわずかにずれる傾向をもつ(図14)。一方、きわめて非球形性の高い、微小球(直径0.04・/U>m)のフラクタル凝集体粒子(aggregate)では、複素散乱振幅S22の曲線は原点から延びる直線に近い形をとる。 The particles of various complex refractive index and shape shows the calculation results of the complex scattering amplitude S 22 defined by formula (95) in FIG. 13 and FIG. 14. As can be seen from FIGS. 13 and 14, the value of the complex scattering amplitude S 22 has a value on the specific curve particle species in the complex plane. Attention is first focused on the small particle size limit near the origin in FIGS. F values in the vicinity of the origin from being approximated by Equation (93), the curve of the complex scattering amplitude S 22 extends from the origin in a direction which depends only on the value of the complex refractive index. When the particle diameter increases to some extent away from the origin, the curve starts to bend not only depending on the complex refractive index but also on the particle shape. As described later, the depending on the particle size of in the complex plane curve of the complex scattering amplitude S 22 bends are by particle size dependence of the argument arg (F) of the dissipative structure factor F. First, focusing only on spherical particles, it can be seen that the curve strongly depends on both the real and imaginary parts of the complex refractive index.For sample particles that are known to be spherical, complex scattering it is expected that can estimate the real and imaginary part of the complex refractive index from the measured values of the amplitude S 22. For relatively spherical near cubic grains (cube), the curve of the complex scattering amplitude S 22 although fairly close to spherical particles, having a slight shift trend towards the curve of the refractive index is small spherical particles (FIG. 14). On the other hand, very high non-sphericity, the fractal aggregate particles of microspheres (diameter 0.04 · / U> m) ( aggregate), the curve of the complex scattering amplitude S 22 is in the form close to a straight line extending from the origin.
 このような複素散乱振幅S22の曲線形状の顕著な粒子種依存性については、式(91)で定義されるF値の粒子種依存性に基づいて考察できる。図15および図16は、図13および図14と同じ粒子種についてのF値の絶対値と偏角の粒径依存性をプロットした説明図である。まず、屈折率が媒質(ここでは水)に近い球形粒子 (sphere,m=1.4+0i)では、粒子体積の内部電場が入射場に近いので、消散構造因子Fは実数1に近い値をとり、粒径にあまり依存しない。そのため複素平面上の複素散乱振幅S22の曲線は、傾きが式(93)(95)から決まり原点を通る直線に近い。粒子形状が同じ場合、媒質との屈折率の違いが大きいほど、入射場と内部電場の振幅・位相のずれが粒径とともに拡大する。その内部電場のずれに伴い、消散構造因子Fの偏角arg(F)は図15および図16のような粒径依存性を示す。微小球のフラクタル凝集体粒子の場合、粒子体積に対する粒子表面積が著しく大きく、入射場が粒子体積内に浸透しやすいため、粒径の増大に伴う内部電場のずれの拡大は球形粒子に比べてかなり小さい。そのため、粒径が波長と同程度かそれよりも小さい状況では、F値は式(93)で表される小粒径極限値から顕著にはずれず、複素散乱振幅S22の曲線は原点から延びる直線に近い形状となっている。 Such the significant particle species dependent curve shape of the complex scattering amplitude S 22 can be discussed on the basis of the particle species dependent F value defined by equation (91). FIGS. 15 and 16 are explanatory diagrams in which the absolute value of the F value and the particle size dependence of the argument are plotted for the same particle type as in FIGS. 13 and 14. First, in a spherical particle (sphere, m = 1.4 + 0i) whose refractive index is close to the medium (here, water), since the internal electric field of the particle volume is close to the incident field, the dissipative structure factor F takes a value close to the real number 1. , Does not depend much on the particle size. Therefore the curve of the complex scattering amplitude S 22 on the complex plane, close to a straight line, the slope of passes through the origin determined from equation (93) (95). When the particle shape is the same, the difference between the amplitude and phase of the incident field and the internal electric field increases with the particle size as the difference in the refractive index from the medium increases. With the shift of the internal electric field, the argument arg (F) of the dissipation structure factor F shows a particle size dependence as shown in FIGS. In the case of fractal aggregate particles of microspheres, the particle surface area is remarkably large with respect to the particle volume, and the incident field easily penetrates into the particle volume. small. Therefore, the smaller situations than the particle size or wavelength comparable, F value without departing significantly from the small径極limit value of the formula (93), the curve of the complex scattering amplitude S 22 extends from the origin It has a shape close to a straight line.
<複素散乱振幅S22のデータに基づく粒子パラメータの推定法>
 次に、複数の微粒子{Re(S22),[Im(S22)]SC}の測定データと、複素散乱振幅S222計算のフォワードモデルに基づいて、粒子のパラメータを推定する逆問題の解法について説明する。この解法は、形状パラメータと複素屈折率が同一で体積のみが互いに異なるn個の粒子に対応するn個のS22データ点(複素散乱振幅S22の実部Re(S22)と虚部Im(S22))を入力値として用い、その粒子群の複素屈折率とn個の体積を推定するものである。この解法を使う場合、入力値として用いるn個のデータ点群について、粒子形状と複素屈折率が同一であるという仮定を課すことになる。その仮定の妥当性の指標として、例えば、抽出したS22データ点群の複素平面上の密度分布と、特定の形状パラメータと複素屈折率をもつ粒子のS22理論曲線(図13および図14)との類似性を用いることができる。実際には、手作業あるいは何らかの自動アルゴリズムを用いてそのようなデータ点群の抽出を実施する。第2実施形態の範囲内では、自動アルゴリズムの探求はせず、手作業で抽出を実施することにした。抽出したn個のS22データ点を式(98)のように表記する。また、アルゴリズムで推定するモデルパラメータを式(99)のように表す。ここでmrとmiはそれぞれ複素屈折率の実部と虚部、vj(j = 1, ・,n)は小さいほうから数えてj番目の粒子体積を表す。
<Estimation of particle parameters based on the data of the complex scattering amplitude S 22>
Next, the inverse problem of estimating the parameters of the particles based on the measurement data of the plurality of fine particles {Re (S 22 ), [Im (S 22 )] SC } and the two models of the complex scattering amplitude S 22 is calculated. The solution of will be described. This solution consists of n S 22 data points (the real part Re (S 22 ) and the imaginary part Im of the complex scattering amplitude S 22 corresponding to n particles having the same shape parameter and complex refractive index but different volumes only. (S 22 )) is used as an input value to estimate the complex refractive index and n volumes of the particle group. Using this solution imposes an assumption that the particle shape and the complex index of refraction are the same for n data points used as input values. As an index of validity of the assumption, for example, extraction and density distribution in the complex plane of the S 22 data points were, S 22 theoretical curve of particles having a specific shape parameter and the complex refractive index (FIGS. 13 and 14) Can be used. In practice, such data point cloud extraction is performed manually or using some automatic algorithm. Within the scope of the second embodiment, the search for the automatic algorithm was not performed, and the extraction was performed manually. The extracted n pieces of S 22 data points specified as equation (98). The model parameters estimated by the algorithm are represented as in equation (99). Here, mr and mi represent the real and imaginary parts of the complex refractive index, respectively, and v j (j = 1,..., N) represents the j-th particle volume counting from the smaller one.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
 第2実施形態の範囲では、計算量における困難さを避けるため、粒子形状(shape)は何種類かの候補の中から事前に選んで仮定しておき、モデルパラメータには含めないことにした。データの各要素の生起確率は互いに独立な正規分布であると仮定する。このとき、モデルパラメータの条件下でのデータの確率分布(尤度関数)は、式(100)と表わせる。{Re(S22)j,[Im(S22)j]SC}は、モデルパラメータが(m,m,ν)の粒子についてフォワードモデルで算出された{Re(S22),[Im(S22)]SC}のモデル計算値を表わす。 In the range of the second embodiment, in order to avoid difficulties in the amount of calculation, the particle shape is preliminarily selected from several types of candidates and is not included in the model parameters . It is assumed that the occurrence probabilities of each element of the data have a normal distribution independent of each other. At this time, the probability distribution (likelihood function) of the data under the condition of the model parameter can be expressed by Expression (100). {Re (S 22) j, [Im (S 22) j] SC} are the model parameters (m r, m i, ν j) calculated by the forward model for particles of {Re (S 22), [ Im (S 22 )] SC }.
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 測定データの統計誤差は、相対誤差とバックグラウンドノイズの寄与からなる。相対誤差は、粒子の横断位置がビームウエスト中心からずれることに起因し、バックグラウンドノイズは、電子回路のノイズやレーザー光源のノイズに起因する。相対誤差とバックグラウンドノイズそれぞれの寄与の大きさは、波形シミュレーションと実験から見積もることができる。 統計 Statistical error of measurement data consists of contribution of relative error and background noise. The relative error is caused by the deviation of the crossing position of the particle from the center of the beam waist, and the background noise is caused by the noise of the electronic circuit and the noise of the laser light source. The magnitude of each contribution of the relative error and the background noise can be estimated from waveform simulations and experiments.
 ベイズの定理よれば、モデルパラメータの事後確率pは、尤度関数Lと事前確率p0によって式(101)と表わせる。 According to Bayes' theorem, the posterior probability p of the model parameter can be expressed as Expression (101) by the likelihood function L and the prior probability p0 .
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
 モデルパラメータの存在範囲を制約する事前情報がない場合には、事前確率として一様分布を採用する。{Re(S22)j,[Im(S22)j]SC}の事後確率を効率的に数値計算するために、マルコフ連鎖モンテカルロ法(MCMC法)のMetropolis-Hasting (MH) アルゴリズム [参考:Aster et al. 2013等] を用いた。MCMCの計算ステップ数は1,200,000とし、最初の200,000ステップはburn-in-timeとして除外した。また、アルゴリズムに依存する人工的な相関を排除するため、100ステップおきの標本点(計10,000点)を解析に用いることにした。MCMC法の各計算ステップで複素散乱振幅S22の値のフォワード計算を実行するにあたり、球形粒子の場合はMie理論の半解析的計算を直接実行し、非球形粒子の場合は事前に計算しておいたF(k,ν,m,shape)の数値テーブルを多次元的に線形内挿して算出したF値で式(95)を評価した。n=4という計算条件の場合、Intel Core i7-7660 CPU @ 2.5GHzのシングルコア計算で1200,000ステップに要する時間は、球形・非球形いずれの場合でも数秒であった。 If there is no prior information that restricts the existence range of the model parameters, a uniform distribution is adopted as the prior probability. In order to efficiently calculate the posterior probability of {Re (S 22 ) j, [Im (S 22 ) j] SC }, the Metropolis-Hasting (MH) algorithm of the Markov chain Monte Carlo method (MCMC method) [Reference: Aster et al. 2013 etc.] were used. The number of MCMC calculation steps was 1,200,000, and the first 200,000 steps were excluded as burn-in-time. In addition, in order to eliminate artificial correlation depending on the algorithm, sampling points every 100 steps (total 10,000 points) were used for analysis. In each calculation step of MCMC methods Upon executing a forward calculation of the values of the complex scattering amplitude S 22, in the case of spherical particles directly running the semi-analytical calculation of Mie theory in the case of non-spherical particles with pre-calculated Equation (95) was evaluated using an F value calculated by linearly interpolating the numerical value table of F (k, ν, m, shape) in a multidimensional manner. Under the calculation condition of n = 4, the time required for 1200,000 steps in the single core calculation of the Intel Core i7-7660 CPU @ 2.5 GHz was several seconds in both spherical and non-spherical cases.
<粒子パラメータの推定法の検証>
 粒子パラメータ推定法の性能を検証するため、まずはシミュレーションで生成したノイズのない理想データに適用した結果を示す。図17~図20に、それぞれm=1.5+0i,1.5+0.1iの球形粒子についてのパラメータ推定値の同時確率分布の一部を示す。図17および図19は複素屈折率の実部と虚部を示し、図18および図20は複素屈折率の実部と小さい方から1番目のデータ点の体積等価粒径dを示す。これらの粒子を含め、その他の複素屈折率の球形粒子のパラメータ推定結果(確率密度分布の5%,50%,95%点の値)の一覧表を図21示す。
<Verification of estimation method of particle parameters>
In order to verify the performance of the particle parameter estimation method, we first show the results of applying it to ideal data without noise generated by simulation. FIGS. 17 to 20 show a part of the joint probability distribution of parameter estimation values for spherical particles of m = 1.5 + 0i and 1.5 + 0.1i, respectively. 17 and 19 shows the real and imaginary part of the complex index of refraction, 18 and 20 show the volume equivalent particle size d v of the first data point from the smaller real part of the complex refractive index. FIG. 21 shows a list of parameter estimation results (values at 5%, 50%, and 95% points of the probability density distribution) of other spherical particles having a complex refractive index including these particles.
 球形粒子については、複素屈折率の実部・虚部および体積について、ほぼ正解にちかい推定ができていることが分かる。ただし、例えばm=1.5+0.1iの場合の粒子体積(dv,1st)と屈折率実部(mr)に顕著に見られるように、パラメータ同士の相互相関(縮退)があることに注意されたい。パラメータ推定の不確実幅、すなわち事後分布の幅は、異なるパラメータ同士の縮退が強いほど広くなる。パラメータ同士の縮退の強さは、入力データ点群(式(98))が包含している粒子体積の領域に依存する。もし仮に、S22データ点群が含有する粒子体積領域で、消散構造因子Fが一定値であった場合、式(95)からわかるように、データが含む情報の中で粒子体積と複素屈折率が完全に縮退しており、S22データから粒子体積と複素屈折率の真の値を独立に復元することは不可能となる。例えば、1点だけのS22データを用いた場合、粒子体積と複素屈折率は完全に縮退することになり、複素屈折率の実部と虚部の関数関係は制約できるもののその値を決めることはできない。一方、もし仮にS22データ点群が含有する粒子体積領域内で、粒子体積に依存して消散構造因子Fが変化している場合は、データが含む情報において粒子体積と複素屈折率の縮退が解消される見込みがあり、もし十分解消される場合にはそれぞれを独立に復元できるようになる。このため、複素屈折率の実部・虚部および粒子体積を精密に推定したい場合には、少なくとも、入力に用いるS22データ点群を消散構造因子Fがある程度変化する粒子体積領域(図15および図16参照)から抽出する必要がある。 As for the spherical particles, it can be seen that the real and imaginary parts and the volume of the complex refractive index can be estimated to be almost correct. However, for example, m = 1.5 + particle volume in the case of 0.1i (d v, 1st) as can be remarkably observed in the real part of the refractive index (m r), in that there is a correlation parameter between (degenerate) Please be careful. The uncertainty width of the parameter estimation, that is, the width of the posterior distribution becomes wider as the degeneracy between different parameters increases. The degree of degeneracy between the parameters depends on the region of the particle volume included in the input data point group (Equation (98)). If If, in grain volume region containing the S 22 data points, if dissipative structure factor F is constant value, as can be seen from equation (95), the particle volume and the complex refractive index in the information data includes has completely degenerated, it is recovered from S 22 data the true value of the grain volume and the complex refractive index independently becomes impossible. For example, when S22 data of only one point is used, the particle volume and the complex refractive index completely degenerate, and the functional relationship between the real part and the imaginary part of the complex refractive index can be restricted, but the values are determined. Can not. On the other hand, if if the particle volume in the region containing the S 22 data points, if the dissipation structure factor F, depending on the particle volume has changed, the degeneracy of the grain volume and the complex refractive index in the information data includes It is likely to be resolved, and if fully resolved, each can be restored independently. Therefore, when it is desired to precisely estimate the real and imaginary part and particle volume of the complex refractive index is at least, particle volume area S 22 dissipate data points structure factor F is changed to some extent used for input (Figure 15 and 16 (see FIG. 16).
 本データ解析アルゴリズムでは粒子形状をあらかじめ仮定する必要があるが、環境中の粒子計測では正確な粒子形状は未知であることが多い。粒子形状の仮定が誤っていた場合にどの程度パラメータの推定結果に系統誤差が生じるか調べるため、非吸収性の立方体粒子についてシミュレーションしたS22データ(ランダム配向平均)に、球形粒子を仮定したパラメータ推定アルゴリズムを適用してみた(図22の表を参照)。その結果、複素屈折率実部は真値よりも若干小さいほうに推定され、粒子体積は真値よりも若干大きいほうに推定される傾向がみられた。複素屈折率の虚部はゼロ付近のおおよそ正しい推定値が得られた。この結果から、立方体のように比較的球に近い形状の非球形粒子については、球形粒子を仮定した推定アルゴリズムによって複素屈折率と粒子体積をある程度正しく推定できることが示唆された。 In this data analysis algorithm, it is necessary to presuppose the particle shape in advance, but in the particle measurement in the environment, the exact particle shape is often unknown. To examine how the parameter estimation results or systematic errors occur when the assumption of particle shape was incorrect, the S 22 data of simulation for non-absorbable cubic grains (random orientation average), parameters assuming spherical particles I applied the estimation algorithm (see the table in FIG. 22). As a result, the real part of the complex refractive index tended to be estimated to be slightly smaller than the true value, and the particle volume tended to be estimated to be slightly larger than the true value. The imaginary part of the complex index of refraction gave an approximate correct estimate near zero. This result suggests that the complex refractive index and particle volume of non-spherical particles such as cubes can be estimated to some extent by the estimation algorithm assuming spherical particles.
 次に、大気環境中の煤粒子を模した、光吸収性の微小球(直径0.04・/U>m)のフラクタル凝集体でかつ体積等価粒径が波長に比べて小さい粒子について、シミュレーションで生成したS22データに、微小球のフラクタル凝集体形状を仮定したパラメータ推定アルゴリズムを適用した結果を図23および図24に示す。微小球のフラクタル凝集体形状の粒子では、体積等価粒径が波長に比べて小さいとき、消散構造因子Fの値は粒子体積にあまり依存せず小粒径極限の値に近い。そのため、S22データが含む情報において粒子体積と複素屈折率のパラメータ同士は強く縮退しており、それぞれを独立に推定することは非常に困難となる。しかし、体積等価粒径が波長よりも小さな領域でF値が粒径やフラクタル次元にあまり依存しない(図15および図16)ことを積極的に利用すれば、S22データの抽出粒径範囲やフラクタル次元の仮定値にほとんど影響されず、「複素屈折率の実部と虚部の関係式」を制約できること可能性がある。図23および図24 からわかるように、モデル煤粒子ではパラメータの存在範囲が、フラクタル次元の仮定値やS22データを抽出した粒径範囲にほとんど依存せず、ある特定の1次元空間上に制約されている。特に、複素屈折率の実部と虚部は、真値を通る直線の上に制約されている。このことは、実際の煤粒子についても、S22データにフラクタル凝集体形状を仮定したパラメータ推定アルゴリズムを適用することで、複素屈折率の実部と虚部の存在領域を一次元空間上に制約できることを示唆している。 Next, we simulated fractal aggregates of light-absorbing microspheres (diameter 0.04 // U> m) that mimic soot particles in the atmospheric environment, and whose volume equivalent particle size is smaller than the wavelength. in the generated S 22 data, shows the result of applying the parameter estimation algorithm with an assumption of fractal aggregates shape of the microspheres 23 and 24. For particles in the form of fractal aggregates of microspheres, when the volume equivalent particle size is smaller than the wavelength, the value of the dissipation structure factor F does not depend much on the particle volume and is close to the value of the small particle size limit. Therefore, the parameter to each other of the grain volume and the complex refractive index in the information contained in the S 22 data are degenerated strongly, to estimate each independently is extremely difficult. However, if positively utilizing it less dependent on the F value is the particle size and fractal dimension in a small area than the volume equivalent particle diameter of the wavelength (FIGS. 15 and 16), Ya extracted particle size range of S 22 data There is a possibility that the "relational expression between the real part and the imaginary part of the complex refractive index" can be restricted without being influenced by the assumed value of the fractal dimension. As it can be seen from FIGS. 23 and 24, the existence range of the parameter in the model soot particles, hardly depends on the assumed value and size range were extracted S 22 data fractal dimension, certain constraints on the one-dimensional space Have been. In particular, the real and imaginary parts of the complex refractive index are constrained on a straight line passing through the true value. This is the actual soot particles also, by applying a parameter estimation algorithm with an assumption of fractal aggregate shape S 22 data, constraint of the presence area of the real part of the complex refractive index and the imaginary part on the one-dimensional space Suggests that you can.
<実験結果:降水に含まれる粒子>
 次に、初期的な応用事例として、東京でその日に取得した降水試料(2018年8月8日, 東京大学本郷キャンパスで採集)と、沖縄で取得され冷蔵保管してあった降水試料(2016年3月19日-20日, 沖縄県辺戸岬で採集)の中に含まれる粒子の分析を行った結果を図25および図26に示す。図25は東京の降水試料の実験結果であり、図26は沖縄の降水試料の実験結果である。図25および図26では、降水試料の測定データに、煤粒子の標準試料の一つであるFullerene soot (Alfa Aesar, stock# 40971)の測定値範囲を重ねて示した。Fullerene sootは複素屈折率の虚部が大きいため高い[ImS22SC/ReS22比を示している。降水試料中には、[ImS22SC/ReS22比がFullerene sootに近い煤とみられる粒子と、[ImS22SC/ReS22比が低い非吸収性と思われる粒子が混在している。ここでは、S22データの複素平面上で煤とみられるデータ群をCategory 1とおき、非吸収性とみられるデータ点の中で、[ImS22SC/ReS22比が比較的大きいデータ群をCategory 2、[ImS22SC/ReS22比が比較的小さいデータ群をCategory 3と呼ぶことにする。ここでは、Category分類は目視で主観的に行い、各Categoryの中で代表的なデータ点を数点適当に選び(図中のマーカー)、それらをパラメータ推定アルゴリズムの入力データ(式(91))として用いた。Category 1は[ImS22SC/ReS22>1を満たすデータ点として定義し、代表的なデータ点としては、まず[ImS22SC< 0.34を満たすデータを直線フィットし、その回帰直線上でReS22値が0.04,0.08,0.12,0.16となる4点を選出した。Category 1のデータ解析において[ImS22SC値に上限を設けた理由は、解析の対象を、パラメータ推定結果が選出データ点の粒子サイズや形状の影響をほとんど受けない体積等価粒径が波長よりも小さな粒子に限定するためである(図23および図24参考)。
<Experimental results: Particles contained in precipitation>
Next, as early application examples, precipitation samples collected on the day in Tokyo (collected on August 8, 2018, Hongo Campus of the University of Tokyo) and precipitation samples collected in Okinawa and stored refrigerated (2016 FIG. 25 and FIG. 26 show the results of analysis of the particles contained in the sample (collected at Cape Hedo, Okinawa Prefecture, March 19-20). FIG. 25 shows the experimental results of a rain sample in Tokyo, and FIG. 26 shows the experimental results of a rain sample in Okinawa. 25 and 26, the measurement data range of Fullerene soot (Alfa Aesar, stock # 40971), which is one of the standard samples of soot particles, is superimposed on the measurement data of the precipitation sample. Fullerene soot has a high [ImS 22 ] SC / ReS 22 ratio because the imaginary part of the complex refractive index is large. In the precipitation sample, particles that appear to be soot having an [ImS 22 ] SC / ReS 22 ratio close to Fullerene soot and particles that appear to be non-absorbent having a low [ImS 22 ] SC / ReS 22 ratio are mixed. Here, the data group found soot on the complex plane of the S 22 data the Category 1 Distant, among the data points appear to non-absorbent, the Category to [ImS 22] SC / ReS 22 ratio is relatively large data group 2. A data group whose [ImS 22 ] SC / ReS 22 ratio is relatively small is referred to as Category 3. Here, Category classification is performed visually and subjectively, several representative data points are appropriately selected from each Category (markers in the figure), and they are input to the parameter estimation algorithm (Equation (91)). Used as Category 1 is defined as a data point that satisfies [ImS 22 ] SC / ReS 22 > 1, and as a representative data point, first, data that satisfies [ImS 22 ] SC <0.34 is linearly fitted, and the regression line is obtained. Four points where the ReS 22 value was 0.04, 0.08, 0.12, and 0.16 were selected above. The reason why the [ImS 22 ] SC value was given an upper limit in Category 1 data analysis was that the target of analysis was that the volume equivalent particle size, whose parameter estimation result was hardly affected by the particle size and shape of the selected data point, was smaller than the wavelength. Is also limited to small particles (see FIGS. 23 and 24).
 まず、煤とみられるCategory 1のデータについて、微小球(直径0.04μm)のフラクタル凝集体の粒子形状を仮定したパラメータ推定結果を図27および図28に示す。複素屈折率の実部と虚部の推定値が、フラクタル次元の仮定値(D =2.5,2.7)にほとんど依存しない一次元空間(直線)上に制約されていることが分かる。東京と沖縄の試料の制約直線はかなり近いものであるが、沖縄のほうが選出データ点の[ImS22SC/ReS22比が大きいため、導出されたm/m比は若干大きくなっている。 First, for the data of Category 1, which is considered to be soot, the parameter estimation results assuming the particle shape of the fractal aggregate of microspheres (0.04 μm in diameter) are shown in FIGS. 27 and 28. It can be seen that the estimated values of the real part and the imaginary part of the complex refractive index are constrained on a one-dimensional space (straight line) that hardly depends on the assumed value of the fractal dimension (D f = 2.5, 2.7). . Although Tokyo constraints straight line of Okinawa sample is fairly close, [ImS 22] of Okinawa better elected data points for SC / ReS 22 ratio is greater, m i / m r ratio, which is derived is slightly larger I have.
 図25および図26の非吸収性の粒子とみられるCategory 2のデータについて球形粒子を仮定したパラメータ推定の結果を図29および図30に示す。Category 2のデータは、m=1.45~1.55、m~0であり、ケイ酸塩などを主成分とする鉱物ダスト粒子であると推察される。図26の非吸収性の粒子とみられるCategory 3のデータについて球形粒子を仮定したパラメータ推定の結果を図31に示す。Category 3のデータは、m=1.37~1.38、m~0であり、含水有機物あるいは水を多く含んだ微生物粒子であると推察される。沖縄の降水試料にCategory 3が多い理由は、2年間ほど冷蔵保管してあったため、試料内で微生物が繁殖したためだと推察される。 FIG. 29 and FIG. 30 show the results of parameter estimation assuming spherical particles for the data of Category 2, which is considered to be non-absorbable particles in FIG. 25 and FIG. Data of the Category 2 is, m r = 1.45 ~ 1.55, a m i ~ 0, it is presumed to be a mineral dust particles mainly containing such silicate. FIG. 31 shows the results of parameter estimation assuming spherical particles for the data of Category 3 which is considered to be non-absorbable particles in FIG. Data of the Category 3 is, m r = 1.37 ~ 1.38, a m i ~ 0, it is inferred that the microorganism particles containing much moisture organics or water. It is presumed that the reason why there are many Category 3 precipitation samples in Okinawa is that microorganisms have propagated in the samples since they were kept refrigerated for about two years.
 このように、第2実施形態の微粒子検出装置120では、データ解析アルゴリズムにより、環境中の未知粒子についても、その粒子種を同定するのに有用な情報が得られることが分かる。ここでは示さないが、複素屈折率が決まれば粒子体積も決定され、単位時間当たりの検出個数は数濃度に換算できるため、図25および図26に示したデータから、各粒子種の粒径別数濃度も導出することができる。 As described above, in the fine particle detection device 120 according to the second embodiment, it is understood that, even with unknown particles in the environment, useful information for identifying the particle type can be obtained by the data analysis algorithm. Although not shown here, if the complex refractive index is determined, the particle volume is also determined, and the number of detections per unit time can be converted into a number concentration. Therefore, from the data shown in FIGS. Several concentrations can also be derived.
 以上説明した第2実施形態の微粒子検出装置120では、フローセル10の流れの上流側(x軸のマイナス側)にフォトダイオードA、下流側(x軸のプラス側)にフォトダイオードC、y軸のマイナス側にフォトダイオードB、y軸のプラス側にフォトダイオードDをそれぞれ配置する。また、4つのフォトダイオードA~Dと参照光用フォトダイオードEとにより検出された光強度P(A)~P(D),P(E)を入力し、消散パワーPext(Tot)を演算する回路と、消散パワーPext(A-C)を演算する回路と、消散パワーPext(B-D)を演算する回路とを備えるプリアンプ電子回路を設ける。プリアンプ電子回路からの消散パワーPext(Tot)、消散パワーPext(A-C)、消散パワーPext(B-D)に基づいて複素散乱振幅S22の実部Re(S22)と虚部Im(S22)を計算する。こうして計算された複数の微粒子の複素散乱振幅S22の実部Re(S22)と虚部Im(S22)を記憶する。そして、複数の微粒子の複素散乱振幅S22を複素平面にプロットし、同じ複素屈折率であると推定される複数の複素散乱振幅S22を選択し、選択した複数の複素散乱振幅S22に対してデータ解析アルゴリズムにより微粒子の複素屈折率や粒子体積を計算する。これにより、環境中の未知粒子についても、その粒子種を同定するのに有用な情報を得ることができる。 In the particle detector 120 according to the second embodiment described above, the photodiode A is located on the upstream side (minus side of the x-axis) of the flow of the flow cell 10, the photodiode C is located on the downstream side (plus side of the x-axis), and the y-axis is on the downstream side. A photodiode B is arranged on the minus side, and a photodiode D is arranged on the plus side of the y-axis. Further, the light intensities P (A) to P (D) and P (E) detected by the four photodiodes A to D and the reference light photodiode E are input, and the dissipated power P ext (Tot) is calculated. a circuit for a circuit for calculating the dissipated power P ext (a-C), a pre-amplifier electronic circuit and a circuit for calculating the dissipated power P ext (B-D) is provided. Preamplifier electronics dissipation from the power P ext (Tot), dissipated power P ext (A-C), the real part Re (S 22) and imaginary of the complex scattering amplitude S 22 based on the dissipated power P ext (B-D) The part Im (S 22 ) is calculated. The real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 of the plurality of fine particles calculated in this way are stored. Then, plot the complex scattering amplitude S 22 of a plurality of particles in the complex plane, and select the plurality of complex scattering amplitude S 22 which is presumed to be the same complex index of refraction, the plurality of complex scattering amplitude S 22 selected Calculate the complex refractive index and particle volume of the fine particles using a data analysis algorithm. As a result, even for unknown particles in the environment, useful information for identifying the particle type can be obtained.
 また、判定値J(J=|Pext(B-D)/Pext(A-C)|)が0.2未満の観測対象について複素散乱振幅S22の実部Re(S22)と虚部Im(S22)を記憶するから、微粒子が対象微粒子であるか否かの判別の精度を高くすることができる。 Further, for an observation target having a judgment value J (J = | P ext (BD) / P ext ( AC ) |) of less than 0.2, the real part Re (S 22 ) of the complex scattering amplitude S 22 and the imaginary Since the part Im (S 22 ) is stored, the accuracy of determining whether or not the microparticle is the target microparticle can be increased.
 第2実施形態の微粒子検出装置120でも、観測光用フォトダイオード40の4つのフォトダイオードA~Dを、フローセル10の流れ方向に平行な軸をx軸とし、フローセル10の流れ方向に垂直な軸をy軸としたときに、x軸およびy軸に対して45度の直交する2直線により分割される4分割平面に配置した。しかし、4つのフォトダイオードA~Dを、y軸からの仰角が15度以上75度以下の所定角の第1直線とこの第1直線にx軸対称な第2直線とにより区分される4つの4分割平面に配置するものとしてもよい。 Also in the particle detector 120 of the second embodiment, the four photodiodes A to D of the observation light photodiode 40 are arranged such that the axis parallel to the flow direction of the flow cell 10 is the x-axis and the axis perpendicular to the flow direction of the flow cell 10. Is the y axis, they are arranged on a four-divided plane divided by two straight lines perpendicular to the x axis and the y axis at 45 degrees. However, the four photodiodes A to D are divided into a first straight line having a predetermined angle of 15 to 75 degrees from the y-axis and a second straight line symmetrical to the first straight line with respect to the x-axis. It may be arranged on a four-divided plane.
 第2実施形態の微粒子検出装置120では、判定値J(J=|Pext(B-D)/Pext(A-C)|)が0.2未満の観測対象について複素散乱振幅S22の実部Re(S22)と虚部Im(S22)を記憶するものとしたが、判定値Jが0.2未満の所定値(例えば、0.15や0.1など)未満の観測対象について複素散乱振幅S22の実部Re(S22)と虚部Im(S22)を記憶するものとしてもよい。 In the particle detection device 120 according to the second embodiment, for the observation target whose judgment value J (J = | P ext (BD) / P ext ( AC ) |) is less than 0.2, the complex scattering amplitude S 22 Although the real part Re (S 22 ) and the imaginary part Im (S 22 ) are stored, the observation target whose judgment value J is less than 0.2 (eg, 0.15 or 0.1) is less than 0.2. May store the real part Re (S 22 ) and the imaginary part Im (S 22 ) of the complex scattering amplitude S 22 .
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As described above, the embodiments for carrying out the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments at all, and various forms may be provided without departing from the gist of the present invention. Of course, it can be implemented.
 本発明は、微粒子検出装置の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of fine particle detection devices.
 10 フローセル、20 微粒子検出装置、22 レーザー照射装置、30 光学系、31 光アイソレーター、32 1/2波長板、33 偏光ビームスプリッタ、34 ビームエキスパンダ、35 集光レンズ、36 広帯域誘電体ミラー、40 観測光用フォトダイオード、50 ステージ、52 x方向用アクチュエータ、54 y方向用アクチュエータ、60 制御装置、A~D フォトダイオード、E 参照光用フォトダイオード。 10 flow cell, 20 particle detector, 22 laser irradiator, 30 optical system, 31 optical isolator, 32 half-wave plate, 33 polarization beam splitter, 34 beam expander, 35 condenser lens, 36 broadband dielectric mirror, 40 Observation light photodiode, 50 ° stage, 52 ° x-direction actuator, 54 ° y-direction actuator, 60 ° control device, AD photodiode, E reference light photodiode.

Claims (11)

  1.  フローセルに流れる微粒子を検出する微粒子検出装置であって、
     レーザービームを照射するレーザー照射器と、
     レーザービームを集光スポット近傍でガウシアンビームに近似できる程度に調製する光学系と、
     前記集光スポットより後方に配置されて光強度を検出する光強度検出器と、
     前記光強度検出器により検出された光強度に基づいて微粒子の判別を行なう制御装置と、
     を備え、
     前記光強度検出器は、前記集光スポットの中心を原点とし、原点を通って前記フローセルにおける微粒子の流れ方向に平行な軸をx軸とし、原点を通ってx軸に垂直な軸をy軸としたときに、y軸からの仰角が15度以上75度以下の所定角の第1直線と前記第1直線にx軸対称な第2直線とにより区分される4つの検出器により構成されている、
     微粒子検出装置。
    A fine particle detection device for detecting fine particles flowing in the flow cell,
    A laser irradiator that irradiates a laser beam,
    An optical system that adjusts the laser beam to a degree that can be approximated to a Gaussian beam in the vicinity of the focused spot;
    A light intensity detector that is disposed behind the condensing spot and detects light intensity;
    A control device for determining the fine particles based on the light intensity detected by the light intensity detector,
    With
    The light intensity detector has an origin at the center of the condensed spot, an x-axis passing through the origin and an axis parallel to the flow direction of the fine particles in the flow cell, and an y-axis passing through the origin and perpendicular to the x-axis. In this case, there are four detectors which are divided by a first straight line having a predetermined angle whose elevation angle from the y-axis is not less than 15 degrees and not more than 75 degrees and a second straight line symmetrical to the first straight line with respect to the x-axis. Yes,
    Particle detector.
  2.  請求項1記載の微粒子検出装置であって、
     前記第1直線と前記第2直線は直交する直線である、
     微粒子検出装置。
    The particle detecting device according to claim 1,
    The first straight line and the second straight line are orthogonal straight lines;
    Particle detector.
  3.  請求項1または2記載の微粒子検出装置であって、
     前記光強度検出器は、フローセルにおける微粒子がx軸において負方向から正方向に流れるときx軸の負側を領域に属する第1検出器と、y軸の負側を領域に属する第2検出器と、x軸の正側を領域に属する第3検出器と、y軸の正側を領域に属する第4検出器の4つの検出器により構成されており、
     前記制御装置は、前記第1検出器により検出された第1光強度と前記第2検出器により検出された第2光強度と前記第3検出器により検出された第3光強度と前記第4検出器により検出された第4光強度との和に基づいて複素散乱振幅S11の虚部を計算し、前記第1検出器により検出された第1光強度と前記第3検出器により検出された第3光強度との差分に基づいて複素散乱振幅S11の実部を計算し、計算した複素散乱振幅S11の実部と虚部とに基づいて微粒子の判別を行なう、
     微粒子検出装置。
    The particle detection device according to claim 1 or 2,
    The light intensity detector includes a first detector that belongs to a region on the negative side of the x-axis when the particles in the flow cell flow from a negative direction to a positive direction on the x-axis, and a second detector that belongs to the region on the negative side of the y-axis. And a third detector that belongs to the region on the positive side of the x-axis and a fourth detector that belongs to the region on the positive side of the y-axis.
    The control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth light intensity. the imaginary part of the complex scattering amplitude S 11 calculated based on the sum of the fourth light intensity detected by the detector, is detected by the first light intensity and the third detector detected by the first detector and third, based on the difference between the light intensity to calculate the real part of the complex scattering amplitude S 11, discriminates particles on the basis of the real and imaginary parts of the calculated complex scattering amplitude S 11,
    Particle detector.
  4.  請求項3記載の微粒子検出装置であって、
     レーザービームから分離した参照用レーザービームの光強度を検出する参照用検出器を備え、
     前記制御装置は、前記第1光強度と前記第2光強度と前記第3光強度と前記第4光強度との和から前記参照用検出器により検出された参照光強度を減じたものに基づいて複素散乱振幅S11の虚部を計算する、
     微粒子検出装置。
    The particle detection device according to claim 3, wherein
    With a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam,
    The control device is based on a value obtained by subtracting a reference light intensity detected by the reference detector from a sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity. Te to calculate the imaginary part of the complex scattering amplitude S 11,
    Particle detector.
  5.  請求項3または4記載の微粒子検出装置であって、
     前記制御装置は、既知の複素誘電率の微粒子に対して予め得られた複素散乱振幅S11の実部と虚部とからなる関係を用いてフローセルに流れる微粒子を判別する、
     微粒子検出装置。
    The fine particle detection device according to claim 3 or 4,
    The control device determines the fine particles flowing through the flow cell using a composed of a real part and an imaginary part of the complex scattering amplitude S 11 that previously obtained for known complex dielectric constant of the particulate relationship,
    Particle detector.
  6.  請求項5記載の微粒子検出装置であって、
     前記制御装置は、フローセルに流れる微粒子が既知の微粒子のいずれかであると判定したときには、既知の微粒子の複素誘電率を用いて前記計算した複素散乱振幅S11の実部により微粒子の体積を導出する、
     微粒子検出装置。
    The particle detection device according to claim 5, wherein
    Wherein the controller, when the particles flowing in the flow cell is determined to be any of the known particulate, derives the volume of particles by the real part of the complex scattering amplitude S 11 described above calculated using the complex dielectric constant of a known fine particles Do
    Particle detector.
  7.  請求項3ないし6のうちのいずれか1つの請求項に記載の微粒子検出装置であって、
     前記制御装置は、前記第2光強度と前記第4光強度との差分の前記第1光強度と前記第3光強度との差分に対する比が所定値未満のときに微粒子の判別を行なう、
     微粒子検出装置。
    The fine particle detection device according to any one of claims 3 to 6, wherein
    The controller determines the particles when the ratio of the difference between the second light intensity and the fourth light intensity to the difference between the first light intensity and the third light intensity is less than a predetermined value.
    Particle detector.
  8.  請求項1または2記載の微粒子検出装置であって、
     前記光強度検出器は、フローセルにおける微粒子がx軸において負方向から正方向に流れるときx軸の負側を領域に属する第1検出器と、y軸の負側を領域に属する第2検出器と、x軸の正側を領域に属する第3検出器と、y軸の正側を領域に属する第4検出器の4つの検出器により構成されており、
     前記制御装置は、前記第1検出器により検出された第1光強度と前記第2検出器により検出された第2光強度と前記第3検出器により検出された第3光強度と前記第4検出器により検出された第4光強度との和に基づいて複素散乱振幅S22の虚部を計算し、前記第1検出器により検出された第1光強度と前記第3検出器により検出された第3光強度との差分に基づいて複素散乱振幅S22の実部を計算し、計算した複素散乱振幅S22の実部と虚部とに基づいて微粒子の判別を行なう、
     微粒子検出装置。
    The particle detection device according to claim 1 or 2,
    The light intensity detector includes a first detector that belongs to a region on the negative side of the x-axis when the particles in the flow cell flow from a negative direction to a positive direction on the x-axis, and a second detector that belongs to the region on the negative side of the y-axis. And a third detector that belongs to the region on the positive side of the x-axis and a fourth detector that belongs to the region on the positive side of the y-axis.
    The control device includes a first light intensity detected by the first detector, a second light intensity detected by the second detector, a third light intensity detected by the third detector, and the fourth light intensity. the imaginary part of the complex scattering amplitude S 22 calculated based on the sum of the fourth light intensity detected by the detector, is detected by the first light intensity and the third detector detected by the first detector and third, based on the difference between the light intensity to calculate the real part of the complex scattering amplitude S 22, discriminates particles on the basis of the real and imaginary parts of the calculated complex scattering amplitude S 22,
    Particle detector.
  9.  請求項8記載の微粒子検出装置であって、
     レーザービームから分離した参照用レーザービームの光強度を検出する参照用検出器を備え、
     前記制御装置は、前記第1光強度と前記第2光強度と前記第3光強度と前記第4光強度との和から前記参照用検出器により検出された参照光強度を減じたものに基づいて複素散乱振幅S22の虚部を計算する、
     微粒子検出装置。
    The particle detecting device according to claim 8, wherein
    With a reference detector for detecting the light intensity of the reference laser beam separated from the laser beam,
    The control device is based on a value obtained by subtracting a reference light intensity detected by the reference detector from a sum of the first light intensity, the second light intensity, the third light intensity, and the fourth light intensity. Te to calculate the imaginary part of the complex scattering amplitude S 22,
    Particle detector.
  10.  請求項8または9記載の微粒子検出装置であって、
     前記制御装置は、既知の複素誘電率の微粒子に対して予め得られた複素散乱振幅S22の実部と虚部とからなる関係を用いてフローセルに流れる微粒子を判別する、
     微粒子検出装置。
    The fine particle detection device according to claim 8, wherein:
    The control device determines the fine particles flowing through the flow cell using a composed of a real part and an imaginary part of the complex scattering amplitude S 22 that previously obtained for known complex dielectric constant of the particulate relationship,
    Particle detector.
  11.  請求項8ないし10のうちのいずれか1つの請求項に記載の微粒子検出装置であって、
     フローセルにおける複数の微粒子の複素散乱振幅S22の実部と虚部を記憶し、
     前記複数の微粒子の複素散乱振幅S22を複素平面にプロットし、
     プロットした複数の微粒子の複素散乱振幅S22のうち、粒子体積は異なるが複素屈折率が同じであると推定される微粒子の複素散乱振幅S22を選択し、
     前記選択した微粒子の複素散乱振幅S22に対して複素屈折率と粒子体積範囲とを演算する、
     微粒子検出装置。
    The fine particle detection device according to any one of claims 8 to 10, wherein
    Storing the real and imaginary parts of the complex scattering amplitude S 22 of a plurality of particles in the flow cell,
    Plotting the complex scattering amplitude S 22 of the plurality of fine particles on a complex plane;
    Among a plurality of microparticles plot of the complex scattering amplitude S 22, the particle volume selects the complex scattering amplitude S 22 of different but particles complex refractive index is estimated to be the same,
    Calculating the complex refractive index and particle volume range for the complex scattering amplitude S 22 of the selected particles,
    Particle detector.
PCT/JP2019/037583 2018-09-28 2019-09-25 Fine particle detecting device WO2020067149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549283A JP7333637B2 (en) 2018-09-28 2019-09-25 Particle detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184083 2018-09-28
JP2018184083 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067149A1 true WO2020067149A1 (en) 2020-04-02

Family

ID=69949905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037583 WO2020067149A1 (en) 2018-09-28 2019-09-25 Fine particle detecting device

Country Status (2)

Country Link
JP (1) JP7333637B2 (en)
WO (1) WO2020067149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166699A (en) * 2021-11-12 2022-03-11 清华大学深圳国际研究生院 Optical measurement device and method for volume of suspended particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104150A (en) * 1996-09-26 1998-04-24 Rion Co Ltd Detector for particle in liquid
JP2001074644A (en) * 1999-09-03 2001-03-23 Agency Of Ind Science & Technol Device and method for measuring particle in liquid
US20090316138A1 (en) * 2008-04-25 2009-12-24 Herzog William D Method and instrumentation for determining a physical property of a particle
WO2014061368A1 (en) * 2012-10-15 2014-04-24 ソニー株式会社 Microparticle measuring device
JP2015500467A (en) * 2011-12-01 2015-01-05 ピー.エム.エル. − パーティクルズ モニタリング テクノロジーズリミテッド Detection scheme for particle size and concentration measurement
JP2015524571A (en) * 2012-08-13 2015-08-24 ベックマン コールター, インコーポレイテッド Leukemia classification using CPD data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104150A (en) * 1996-09-26 1998-04-24 Rion Co Ltd Detector for particle in liquid
JP2001074644A (en) * 1999-09-03 2001-03-23 Agency Of Ind Science & Technol Device and method for measuring particle in liquid
US20090316138A1 (en) * 2008-04-25 2009-12-24 Herzog William D Method and instrumentation for determining a physical property of a particle
JP2015500467A (en) * 2011-12-01 2015-01-05 ピー.エム.エル. − パーティクルズ モニタリング テクノロジーズリミテッド Detection scheme for particle size and concentration measurement
JP2015524571A (en) * 2012-08-13 2015-08-24 ベックマン コールター, インコーポレイテッド Leukemia classification using CPD data
WO2014061368A1 (en) * 2012-10-15 2014-04-24 ソニー株式会社 Microparticle measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTEKI, NOBUHIRO: "The single-particle extinction and scattering method for online characterization of submicron particles: Principles and applications to aerosol research", PREPRINTS OF JAPAN GEOSCIENCE UNION MEETING, JAPAN GEOSCIENCE UNION, 29 May 2019 (2019-05-29), Retrieved from the Internet <URL:https://confit.atlas.jp/guide/event/jpgu2019/subject/AAS04-10/date?cryptoID=> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166699A (en) * 2021-11-12 2022-03-11 清华大学深圳国际研究生院 Optical measurement device and method for volume of suspended particles

Also Published As

Publication number Publication date
JP7333637B2 (en) 2023-08-25
JPWO2020067149A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
Kilic et al. Lidar light scattering augmentation (lisa): Physics-based simulation of adverse weather conditions for 3d object detection
Xu et al. Ultrasonic echo waveshape features extraction based on QPSO-matching pursuit for online wear debris discrimination
Li et al. Comparison of particle size distributions measured using different techniques
Oliver et al. k-ε Predictions of the initial mixing of desalination discharges
CN105044722B (en) The full Bayesian Discriminating Features extracting method of synthetic aperture radar target
CN111060899A (en) Satellite-ground integrated laser radar echo waveform simulation method and system
Davydov et al. A contactless method for testing inner walls of pipelines
CN114295585B (en) Multi-view-field ocean laser radar data regularization inversion method based on analytical model
Partridge et al. Inverse modelling of cloud-aerosol interactions–Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach
Letizia et al. LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics–Part 1: Theoretical framework
WO2020067149A1 (en) Fine particle detecting device
He et al. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution
Rosenkranz et al. Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique
Karabaş et al. A variational adjoint approach on wide-angle parabolic equation for refractivity inversion
Pereira et al. A method for three-dimensional particle sizing in two-phase flows
JP5131400B1 (en) Search method of unsteady dust source position of falling dust
CN113049615B (en) Scattering measurement analysis method, scatterometry measurement analysis device, and information storage medium
Belov et al. Monopulse lidar Earth surface sounding method
Li et al. Laser range profile of the sphere
Mustard et al. Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
Arumov et al. Use of statistically inhomogeneous screens in calibration of lidar from the parameters of images of particles for the bottom layer of the atmosphere
Calvo et al. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods
JP5073861B1 (en) Search method of unsteady dust source position of falling dust
Paulien Modeling of polarization-resolved lidar signals for the characterization of soot fractal aggregates accounting for multiple scattering
Ren et al. Polarized laser backscattering of atmospheric cloud distribution based on simulated annealing algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864027

Country of ref document: EP

Kind code of ref document: A1