JP3151815B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment

Info

Publication number
JP3151815B2
JP3151815B2 JP1754390A JP1754390A JP3151815B2 JP 3151815 B2 JP3151815 B2 JP 3151815B2 JP 1754390 A JP1754390 A JP 1754390A JP 1754390 A JP1754390 A JP 1754390A JP 3151815 B2 JP3151815 B2 JP 3151815B2
Authority
JP
Japan
Prior art keywords
activated sludge
respiration rate
methanol
aeration tank
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1754390A
Other languages
Japanese (ja)
Other versions
JPH03221199A (en
Inventor
孝夫 関根
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1754390A priority Critical patent/JP3151815B2/en
Publication of JPH03221199A publication Critical patent/JPH03221199A/en
Application granted granted Critical
Publication of JP3151815B2 publication Critical patent/JP3151815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は汚水処理装置に係り、特にメタノールを汚水
中に注入して処理する汚水処理装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sewage treatment apparatus, and more particularly to a sewage treatment apparatus for injecting methanol into sewage for treatment.

B.発明の概要 本発明は、嫌気・好気法による曝気槽の嫌気部にメタ
ノールを注入して汚水の処理を行う汚水処理装置におい
て、 曝気槽の好気部に配置された汚泥の呼吸速度計,活性
汚泥浮遊物計および水温計の各測定信号を基に算出され
た基準温度における呼吸速度を算出し、この算出値を基
に曝気層の好気部に注入すべきメタノール量を制御する
ことにより、 高精度の汚水処理装置を得る。
B. Summary of the Invention The present invention relates to a sewage treatment apparatus for injecting methanol into an anaerobic part of an aeration tank by an anaerobic / aerobic method to treat sewage. Calculates the respiration rate at the reference temperature calculated based on each measurement signal of the activated sludge suspended matter meter and the water temperature meter, and controls the amount of methanol to be injected into the aerobic part of the aeration layer based on the calculated value. Thereby, a high-precision sewage treatment device is obtained.

C.従来の技術 通常の活性汚泥法における曝気槽は入口から出口まで
好気性条件下で処理されているのに対して、嫌気・好気
法(A/O法)は、第6図に示すように、曝気槽の入口側
を嫌気条件にし、曝気槽出口より循環されるNOX−N(N
O3−N+NO2−N)を脱窒処理して、窒素ガス(N2)に
分解する嫌気プロセスが付加されている。
C. Conventional technology The aeration tank in the ordinary activated sludge method is treated under aerobic conditions from the inlet to the outlet, while the anaerobic / aerobic method (A / O method) is shown in Fig. 6. Thus, the anaerobic condition is applied to the inlet side of the aeration tank, and the NO X -N (N
An anaerobic process for denitrifying O 3 —N + NO 2 —N) and decomposing it into nitrogen gas (N 2 ) is added.

すなわち、第6図は従来のA/O法による汚水処理装置
を示すもので、1は曝気槽で嫌気部2と好気部3からな
る。は最終沈澱池、5は曝気槽1の好気部3にエアーを
供給するブロワ、6は嫌気部2にメタノールを供給する
メタノール注入ポンプである。
That is, FIG. 6 shows a conventional sewage treatment apparatus based on the A / O method, wherein reference numeral 1 denotes an aeration tank comprising an anaerobic section 2 and an aerobic section 3. Is a final sedimentation basin, 5 is a blower for supplying air to the aerobic part 3 of the aeration tank 1, and 6 is a methanol injection pump for supplying methanol to the anaerobic part 2.

第6図の汚水処理装置においては、一般に、脱窒時
(NOX−N→N2)には、有機炭素源(BOD,TOC成分)が必
要であり、これは通常流入水中の有機炭素源(BOD)が
使用される。しかし、流入水中の有機炭素源と窒素源の
比(C/N比)が小さい場合、有機炭素源(BOD)が不足
し、この結果、脱窒効率が低下する。この有機炭素源
(BOD)の不足を補うためにメタノールが注入される。
In the sewage treatment apparatus shown in FIG. 6, an organic carbon source (BOD, TOC component) is generally required at the time of denitrification (NO X −N → N 2 ). (BOD) is used. However, when the ratio between the organic carbon source and the nitrogen source (C / N ratio) in the influent is small, the organic carbon source (BOD) becomes insufficient, and as a result, the denitrification efficiency decreases. Methanol is injected to make up for this shortage of organic carbon sources (BOD).

メタノール必要量は次式で示される。すなわち、 Mg=2.47N3+1.53N2+0.87 …(1) ここで、Mgは総合メタノール必要量、N3は硝酸濃度、
N2は亜硝酸濃度、Cは溶存酸素(DO)濃度である。
The required amount of methanol is shown by the following equation. That is, Mg = 2.47N 3 + 1.53N 2 +0.87 (1) where Mg is the total methanol requirement, N 3 is the nitric acid concentration,
N 2 is the nitrite concentration and C is the dissolved oxygen (DO) concentration.

D.発明が解決しようとする課題 必要メタノール量の算出式は、理論式より導いたもの
であるが、これを実際のプロセスに適用するためには、
まず第1にNOX−N(NO3−N+NO2−N)濃度、溶存酸
素(DO)濃度を計測し、必要メタノール量を算出する。
次に、この必要メタノール量と流入BOD濃度の計測によ
る流入水より供給されるBOD量とを比較し、この不足量
(流入水中のBOD−メタノールより換算した必要BOD量)
のメタノールを注入することになる。この方式では計測
しなければならない水質項目(NOX−N,DO,流入BOD)が
多く、システムが非常に複雑となる。従って、現状では
定量注入がほとんどである。
D. Problems to be Solved by the Invention The formula for calculating the required amount of methanol is derived from a theoretical formula, but in order to apply this to an actual process,
First of all the NO X -N (NO 3 -N + NO 2 -N) concentration, dissolved oxygen (DO) concentration was measured to calculate the required amount of methanol.
Next, the required methanol amount is compared with the BOD amount supplied from the inflow water by measuring the inflow BOD concentration, and the shortage amount (the required BOD amount converted from the BOD in the inflow water-methanol) is calculated.
Of methanol will be injected. In this method, there are many water quality items (NO X -N, DO, inflow BOD) that need to be measured, and the system becomes very complicated. Therefore, at present, quantitative injection is mostly used.

本発明は上述の問題点に鑑みてなされたもので、その
目的は温度に関連したメタノール不足量を算出してメタ
ノール注入量を制御することにより、高効率にして高性
能な汚水処理装置を提供することである。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a high-efficiency and high-performance sewage treatment apparatus by calculating a temperature-related methanol deficiency and controlling a methanol injection amount. It is to be.

E.課題を解決するための手段と作用 本発明は、上記目的を達成するために、嫌気・好気法
による汚水処理装置において、曝気槽の好気部に、硝化
反応が抑制された条件下での活性汚泥の呼吸速度を測定
する呼吸速度計,被処理水中の活性汚泥浮遊物濃度を測
定する活性汚泥浮遊物計および被処理水の温度を測定す
る水温計を設置し、基準温度における活性汚泥の呼吸速
度値を算出し、この基準温度における呼吸速度値を基に
前記曝気槽の嫌気部に注入するメタノール量を制御す
る。
E. Means and Action for Solving the Problems The present invention, in order to achieve the above object, in a sewage treatment apparatus by an anaerobic / aerobic method, in an aerobic part of an aeration tank, under conditions where a nitrification reaction is suppressed. A respirometer that measures the respiration rate of activated sludge in the water, an activated sludge suspended substance meter that measures the concentration of activated sludge suspended matter in the water to be treated, and a water thermometer that measures the temperature of the treated water are installed. The respiration rate of the sludge is calculated, and the amount of methanol injected into the anaerobic part of the aeration tank is controlled based on the respiration rate at the reference temperature.

また嫌気・好気法による汚水処理装置において、曝気
槽の好気部に、硝化反応が抑制された条件下での活性汚
泥の呼吸速度を測定する呼吸速度計,被処理水中の活性
汚泥浮遊物濃度を測定する活性汚泥浮遊物計および被処
理水の温度を測定する水温計を設置し、基準温度におけ
る活性汚泥の呼吸速度値を算出し、この基準温度におけ
る活性汚泥の呼吸速度値と前記水温計の設置場所におけ
る適正な呼吸速度値との偏差より有機炭素源の不足量を
前記曝気層の嫌気部へ注入するメタノールの目標メタノ
ール注入量に変換し、その目標メタノール注入量になる
ようにメタノール注入ポンプを制御する。
In the sewage treatment equipment by the anaerobic / aerobic method, in the aerobic part of the aeration tank, a respiration rate meter that measures the respiration rate of the activated sludge under the condition where the nitrification reaction is suppressed, and the activated sludge suspended matter in the treated water An activated sludge suspended matter meter for measuring the concentration and a water thermometer for measuring the temperature of the water to be treated are installed, and the respiration rate value of the activated sludge at the reference temperature is calculated. The shortage of the organic carbon source is converted into a target methanol injection amount of methanol to be injected into the anaerobic part of the aeration layer from a deviation from an appropriate respiration rate value at the installation location of the meter, and methanol is adjusted to the target methanol injection amount. Control the infusion pump.

F.実施例 以下に本発明の実施例を第1図〜第5図を参照しなが
ら説明する。
F. Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明の実施例による汚水処理装置を示すも
ので、第6図のものと同一又は相当部分には同一符号が
付されている。第1図において、7は硝化抑制剤を添加
して硝化反応が抑制された条件下での活性汚泥の呼吸速
度(ATU−rr)計、8は水温計、9は活性汚泥浮遊物(M
LSS)計、10はこれらのATU−rr計7、水温計8およびML
SS計9の各測定信号を入力として所定の演算を実行し、
メタノール注入ポンプ6を制御する演算制御部である。
FIG. 1 shows a sewage treatment apparatus according to an embodiment of the present invention, and the same or corresponding parts as those in FIG. 6 are denoted by the same reference numerals. In FIG. 1, 7 respiration rate of activated sludge under conditions that nitrification is inhibited by the addition of nitrification inhibitor (ATU-r r) gauge, 8 water temperature gauge, 9 activated sludge suspended solids (M
LSS) meter, 10 of these ATU-r r a total of 7, water temperature gauge 8 and ML
Performs a predetermined calculation with each measurement signal of SS meter 9 as input,
An arithmetic control unit that controls the methanol injection pump 6.

第1図の汚水処理装置において、流入水の生物化学的
酸素(BOD)濃度は、曝気槽1の嫌気部2における脱窒
や好気処理により利用されるため、曝気槽1内のBOD分
布は第2図に示すように曝気槽1の入口から出口にかけ
て減少する。従って第2図のBOD濃度減少曲線l1または
ある特定な地点(例えばA点)における残留BOD濃度を
計測することにより、有機炭素(BOD)源が不足してい
るか否かを判断することができる。
In the sewage treatment apparatus shown in FIG. 1, the concentration of biochemical oxygen (BOD) in the influent water is used by denitrification and aerobic treatment in the anaerobic section 2 of the aeration tank 1, so that the BOD distribution in the aeration tank 1 As shown in FIG. 2, the amount decreases from the inlet to the outlet of the aeration tank 1. By thus measuring the residual BOD concentration in the BOD concentration decrease curve l 1 or particular point of the second view (e.g., point A), it can be determined whether the organic carbon (BOD) source is insufficient .

一般に、BOD濃度の分析には5日間が必要であるが、
活性汚泥の呼吸速度rr(respiration rate)との関係か
ら求めることができる。呼吸速度rrは、次式で示すよう
に、BOD成分に基づく酸素消費速度(aLΔL),硝化に
基づく酸素消費速度(aNΔN)および内生呼吸に基づく
酸素消費速度(b・MLSS)の総和として求められる。
Generally, analysis of BOD concentration requires 5 days,
It can be determined from the relationship with the activated sludge respiration rate r r (respiration rate). Respiration rate r r, as shown in the following equation, as the sum of the oxygen consumption rate based on BOD component (aLΔL), oxygen consumption rate based on nitrification (aNΔN) and endogenous oxygen consumption rate based on the respiratory (b · MLSS) Desired.

rr=aL・ΔL+aN・ΔN+b・MLSS …(2) ここで、aLは単位BOD除去当たり必要な酸素量、ΔL
はBOD除去速度、aNは単位NH4−N除去当たり必要な酸素
量、ΔNは硝化速度、bは内生呼吸速度定数、MLSSはML
SS濃度である。
r r = aL · ΔL + aN · ΔN + b · MLSS (2) where aL is the amount of oxygen required per unit BOD removal, ΔL
Is the BOD removal rate, aN is the amount of oxygen required per unit of NH 4 -N removal, ΔN is the nitrification rate, b is the endogenous respiration rate constant, and MLSS is ML
SS concentration.

式(2)から明らかなように、rrにはBOD除去の他に
硝化に基づく酸素消費量も含まれるため、正確にBOD成
分との関係を求めることができない。そこで、硝化抑制
剤、例えばアリルチオ尿素ATUを添加することにより活
性汚泥の呼吸速度を測定する呼吸速度(ATU−rr)がBOD
成分指標として使われている。
As is apparent from equation (2), since the r r also include oxygen consumption based on the nitrification in addition to the BOD removal, it is impossible to determine the relationship between the exact BOD components. Therefore, nitrification inhibitor, for example, breathing rate measuring the respiration rate of the activated sludge by adding allyl thiourea ATU (ATU-r r) is BOD
Used as a component index.

ATU−rr=aL・ΔL+b・MLSS …(3) 更に、(3)式の両辺をMLSSで割ることより、 ATU−kr=(aL・ΔL/MLSS)+b …(4) また、BOD除去速度(ΔL)は、次式に示すようにBOD
(L)に対して1次式で表される。ΔL=kmaxL・MLSS
…(5) 式(5)を式(4)に代入すると、 ATU−kr=K・L+b …(6) ここで、K=aL・kmaxが得られる。式(6)より明ら
かなように、第3図の直線l2に示す如くATU−rrとBOD
(L)とは比例関係となり、ATU−krを計測することに
よりBOD(L)を求めることができる。
ATU-r r = aL · ΔL + b · MLSS ... (3) In addition, (3) from dividing by MLSS both sides of the equation, ATU-k r = (aL · ΔL / MLSS) + b ... (4) In addition, BOD removal The speed (ΔL) is calculated as BOD
(L) is represented by a linear expression. ΔL = k max L ・ MLSS
.. (5) By substituting equation (5) into equation (4), ATU−kr = K · L + b (6) Here, K = aL · k max is obtained. As is apparent from equation (6), ATU-r r and BOD as indicated by the straight line l 2 of FIG. 3
(L) is proportional, and BOD (L) can be obtained by measuring ATU-kr.

ここで、ATU−rr(ATU−kr)値は約30分に1回の周期
でバッチ連続測定可能であり、これを第1図の装置では
ATU−rr計7を用いた。
Here, ATU-r r (ATU- kr) value is batchable continuous measurement at a period of approximately once every 30 minutes, which in the apparatus of Figure 1 is
Using the ATU-r r a total of 7.

式(6)で示されるATU−kr値は温度により変化し、
一般に第4図の曲線l3で示すように水温10℃の変化でAT
U−kr値は2倍程度変化する。温度特性は次式で示され
る。
The ATU-kr value represented by the equation (6) changes with temperature,
AT In general, changes in the water temperature 10 ° C. As indicated by the curve l 3 of FIG. 4
The U-kr value changes about twice. The temperature characteristic is shown by the following equation.

kmax(T)=kmax(15)・exp{θ(T−15)} …(7) ここで、kmax(T)は水温T(℃)における最大反応
速度定数、kmax(15)は水温15℃における最大反応速度
定数、θは温度係数(通常0.1〜0.05程度)である。
曝気槽水温は年間を通して12℃〜24℃程度の範囲で変動
するため、基準温度(ここでは15℃)に変換する必要が
ある。第3図では15℃における値に変換しているため、
BODとの関係を1本の直線により表すことができる。
k max (T) = k max (15) · exp {θ L (T−15)} (7) where k max (T) is the maximum reaction rate constant at the water temperature T (° C.), and k max (15) ) Is the maximum reaction rate constant at a water temperature of 15 ° C., and θ L is the temperature coefficient (usually about 0.1 to 0.05).
Since the temperature of the aeration tank water fluctuates in the range of about 12 ° C to 24 ° C throughout the year, it is necessary to convert it to the reference temperature (here, 15 ° C). In Fig. 3, the value is converted to the value at 15 ° C.
The relationship with BOD can be represented by one straight line.

第1図の装置の演算制御部は、曝気槽1の出口付近に
設置されたATU−rr計7、MLSS計9の出力よりATU−k
r(=ATU−rr/MLSS)を算出し、同じく曝気槽1に設置
された水温計8の出力により、ATU−kr値を基準温度
(例えば15℃)に変換する。これを、ATU−kr(15)で
示す。
The arithmetic and control unit of the apparatus shown in FIG. 1 uses the ATU-k output from the ATU- r total meter 7 and the MLSS total 9 installed near the exit of the aeration tank 1 to calculate the ATU-k.
calculating a r (= ATU-r r / MLSS), also by the installed output of the water temperature gauge 8 to the aeration tank 1, to convert the ATU-kr value to the reference temperature (e.g. 15 ° C.). This is indicated by ATU-kr (15).

一般に、処理が良好な場合、曝気槽出口付近のATU−k
r値は5〜10(mgO2/gSS/h)程度の値となる。しかし、C
/N比が小さい場合には、残留BODがほとんど零になるの
で適正値以下に低下する。ここで、ATU−kr(15)の適
正値を▲▼とすると、適正値から
のズレ(en)は en=▲▼−ATU−kr(15) となる。ただし、▲▼>AT−kr
(15)の場合のみ考慮する。
Generally, when the treatment is good, the ATU-k near the outlet of the aeration tank
The r value is about 5 to 10 (mgO 2 / gSS / h). But C
When the / N ratio is small, the residual BOD becomes almost zero, and thus falls below an appropriate value. Here, assuming that the appropriate value of ATU-kr (15) is ▼, the deviation (en) from the appropriate value is en = ▲ -ATU-kr (15). However, ▲ ▼> AT-kr
Consider only in case (15).

従って、例えば第5図の直線l4に示すようにこの偏差
(en)に比例したメタノール注入量(QM)を決定するこ
とができる。第5図の場合、メタノール注入量は、 QM=K(en−ε) …(9) となる。ただし、en>εとなる。
Therefore, it is possible to determine, for example, methanol injection amount proportional to the deviation (en) as shown in the straight line l 4 of FIG. 5 the (Q M). In the case of FIG. 5, the methanol injection amount is as follows: Q M = K (en−ε) (9) Note that en> ε.

G.発明の効果 本発明は上述の如くであって、次のような利点があ
る。
G. Effects of the Invention The present invention is as described above, and has the following advantages.

(1)硝化合抑制剤を添加することにより測定する呼吸
速度計(ATU−rr)を利用した計測システムを用いるこ
とにより、生物化学的酸素要求量(BOD)成分の不足量
を連続監視でき、不足分に応じたメタノール注入制御
(フィードバック制御)が可能となる。
(1) by using a measurement system using the respiration rate meter (ATU-r r) be measured by adding a nitrification if inhibitors, can continuously monitor the lack of biochemical oxygen demand (BOD) component In addition, methanol injection control (feedback control) according to the shortage becomes possible.

(2)本発明の汚水処理装置を適用することにより、脱
窒過程の生物化学的酸素要求量(BOD)濃度が適切に保
持され、安定で高効率が窒素除去を実現できる。
(2) By applying the sewage treatment apparatus of the present invention, the concentration of biochemical oxygen demand (BOD) in the denitrification process can be appropriately maintained, and stable and highly efficient nitrogen removal can be realized.

(3)定量注入時のように過剰注入がなくなり、注入メ
タノール量を必要最小限に抑えることができる。
(3) Excessive injection as in the case of fixed-quantity injection is eliminated, and the amount of injected methanol can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例による汚水処理装置のブロック
図、第2図は第1図の装置のBOD濃度分布図、第3図は
活性汚泥の呼吸速度特性図、第4図は水温に対する活性
汚泥の呼吸特性図、第5図は比処理水の水温と適正水温
の偏差に対するメタノール注入量の特性図、第6図は従
来の汚水処理装置のブロック図である。 1……曝気槽、2……曝気槽の嫌気部、3……曝気槽の
好気部、4……最終沈澱池、5……ブロワ、6……メタ
ノール注入ポンプ、7……呼吸速度計、8……水温計、
9……活性汚泥浮遊物計、10……演算制御部。
1 is a block diagram of a sewage treatment apparatus according to an embodiment of the present invention, FIG. 2 is a BOD concentration distribution diagram of the apparatus of FIG. 1, FIG. 3 is a respiration rate characteristic diagram of activated sludge, and FIG. FIG. 5 is a characteristic diagram showing the respiration characteristics of activated sludge, FIG. 5 is a characteristic diagram of the amount of methanol injected with respect to the difference between the temperature of the specific treated water and the appropriate water temperature, and FIG. 1 ... aeration tank, 2 ... anaerobic part of aeration tank, 3 ... aerobic part of aeration tank, 4 ... final sedimentation basin, 5 ... blower, 6 ... methanol injection pump, 7 ... respiration rate meter , 8 ... water thermometer,
9: activated sludge suspended matter meter, 10: arithmetic control unit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/12,3/34 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C02F 3 / 12,3 / 34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】嫌気・好気法による汚水処理装置におい
て、曝気槽の好気部に、硝化反応が抑制された条件下で
の活性汚泥の呼吸速度を測定する呼吸速度計,被処理水
中の活性汚泥浮遊物濃度を測定する活性汚泥浮遊物計お
よび被処理水の温度を測定する水温計を設置し、基準温
度における活性汚泥の呼吸速度値を算出し、この基準温
度における呼吸速度値を基に前記曝気槽の嫌気部に注入
するメタノール量を制御することを特徴とする汚水処理
装置。
In a sewage treatment apparatus using an anaerobic / aerobic method, a respiration rate meter for measuring a respiration rate of activated sludge under a condition in which a nitrification reaction is suppressed is provided in an aerobic part of an aeration tank, Install an activated sludge suspended matter meter that measures the concentration of activated sludge suspended matter and a water thermometer that measures the temperature of the water to be treated.Calculate the respiration rate value of the activated sludge at the reference temperature, and calculate the respiration rate value at this reference temperature. Wherein the amount of methanol injected into the anaerobic part of the aeration tank is controlled.
【請求項2】嫌気・好気法による汚水処理装置におい
て、曝気槽の好気部に、硝化反応が抑制された条件下で
の活性汚泥の呼吸速度を測定する呼吸速度計,被処理水
中の活性汚泥浮遊物濃度を測定する活性汚泥浮遊物計お
よび被処理水の温度を測定する水温計を設置し、基準温
度における活性汚泥の呼吸速度値を算出し、この基準温
度における活性汚泥の呼吸速度値と前記水温計の設置場
所における適正な呼吸速度値との偏差より有機炭素源の
不足量を前記曝気槽の嫌気部へ注入するメタノールの目
標メタノール注入量に変換し、その目標メタノール注入
量になるようにメタノール注入ポンプを制御することを
特徴とする汚水処理装置。
2. A sewage treatment apparatus according to an anaerobic / aerobic method, wherein a respiration rate meter for measuring a respiration rate of activated sludge under a condition in which a nitrification reaction is suppressed is provided in an aerobic part of an aeration tank, Install an activated sludge suspended matter meter to measure the activated sludge suspended matter concentration and a water thermometer to measure the temperature of the water to be treated, calculate the activated sludge respiration rate value at the reference temperature, and calculate the activated sludge respiration rate at this reference temperature. From the deviation between the value and the appropriate respiration rate value at the installation location of the water thermometer, the shortage of the organic carbon source is converted into the target methanol injection amount of methanol to be injected into the anaerobic part of the aeration tank, and the target methanol injection amount is converted to the target methanol injection amount. A sewage treatment apparatus characterized in that a methanol injection pump is controlled so as to be controlled.
JP1754390A 1990-01-26 1990-01-26 Sewage treatment equipment Expired - Fee Related JP3151815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1754390A JP3151815B2 (en) 1990-01-26 1990-01-26 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1754390A JP3151815B2 (en) 1990-01-26 1990-01-26 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JPH03221199A JPH03221199A (en) 1991-09-30
JP3151815B2 true JP3151815B2 (en) 2001-04-03

Family

ID=11946833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1754390A Expired - Fee Related JP3151815B2 (en) 1990-01-26 1990-01-26 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP3151815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431840B2 (en) * 2005-08-24 2008-10-07 Parkson Corporation Denitrification process
KR100924584B1 (en) * 2008-09-16 2009-10-30 정재형 Device for handling waste water

Also Published As

Publication number Publication date
JPH03221199A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
CA2620824C (en) Denitrification process and system
DK2655269T3 (en) METHOD AND APPARATUS FOR WATER TREATMENT BY NITRITATION AND DENITRATION, INCLUDING AT LEAST ONE AIR STEP AND AT LEAST A CONTROL OF AVAILABILITY OF OXYGEN UNDER THE AIR STEP
KR100649417B1 (en) Apparatus for controlling aeration air volume used in the sewage treatment plant
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP5833791B1 (en) Aeration control method for activated sludge
JP3691650B2 (en) Water treatment method and control device
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP6532397B2 (en) Operation support device and operation support method of sewage treatment plant
Murat et al. Sequencing batch reactor treatment of tannery wastewater for carbon and nitrogen removal
JP3151815B2 (en) Sewage treatment equipment
JP2003136086A (en) Water quality control unit for sewage disposal plant
JP3023921B2 (en) Activated sludge treatment equipment
JP2502856Y2 (en) Water quality control device
JPH08224594A (en) Biological nitrification and denitrification device
JP2870906B2 (en) Nitrification activity measurement method
JPS5845913B2 (en) Microbial reaction rate control method in activated sludge method
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP3338046B2 (en) Process control equipment for activated sludge treatment
JP3072650B2 (en) Activated sludge treatment control device
Reinius et al. Evaluation of the efficiency of a new aeration system at Henriksdal Sewage Treatment Plant
JPH09174090A (en) Substrate rate determining estimation method in nitrification reaction
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPH0475079B2 (en)
JP3814936B2 (en) Method for evaluating nitrification inhibition of activated sludge
JPS5814997A (en) Control method for biological denitrification process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees