JP3145599B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3145599B2
JP3145599B2 JP03812095A JP3812095A JP3145599B2 JP 3145599 B2 JP3145599 B2 JP 3145599B2 JP 03812095 A JP03812095 A JP 03812095A JP 3812095 A JP3812095 A JP 3812095A JP 3145599 B2 JP3145599 B2 JP 3145599B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
solid electrolyte
insulating portion
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03812095A
Other languages
Japanese (ja)
Other versions
JPH08236128A (en
Inventor
隆 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03812095A priority Critical patent/JP3145599B2/en
Publication of JPH08236128A publication Critical patent/JPH08236128A/en
Application granted granted Critical
Publication of JP3145599B2 publication Critical patent/JP3145599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、基体に導電性セラミックスを使用した燃料電池セ
ルを複数個組み合わせた発電モジュールで発電を行う
際、電池各部の劣化をモニターしながら運転可能な燃料
電池セルの構成に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and operates while monitoring the deterioration of each part of the battery when generating power by using a power generation module in which a plurality of fuel cells using conductive ceramics as a base are combined. It relates to a possible configuration of the fuel cell unit.

【0002】[0002]

【従来の技術】一般に、セラミックスを主要な構成部材
とする固体電解質型燃料電池は、熱膨張とガスのシール
性等を考慮した円筒型が知られており、例えば、図3に
示すようにCaO安定化ジルコニアから成る開気孔率が
40%程度の支持管11表面に、LaMnO3 系材料か
ら成る多孔質の空気極12が形成され、その表面に、Y
2 3 安定化ジルコニア膜から成る固体電解質13が被
覆され、更にその上面にニッケル(Ni)とY2 3
有ジルコニア多孔膜から成る燃料極14が、スラリーデ
ィップ法等の湿式プロセス、あるいは気相合成法(CV
D)や溶射法等の乾式プロセスにより被覆され、前記空
気極の支持管11にはLaCrO3 系のインターコネク
タ15が接続されて燃料電池セル16が構成されてい
る。
2. Description of the Related Art In general, a solid electrolyte fuel cell mainly composed of ceramics is known to be a cylindrical type in consideration of thermal expansion and gas sealing properties. For example, as shown in FIG. A porous air electrode 12 made of a LaMnO 3 -based material is formed on the surface of a support tube 11 made of stabilized zirconia and having an open porosity of about 40%.
A solid electrolyte 13 composed of a 2 O 3 stabilized zirconia film is coated, and a fuel electrode 14 composed of a porous zirconia film containing nickel (Ni) and Y 2 O 3 is further provided on the upper surface thereof with a wet process such as a slurry dipping method or a vapor process. Phase synthesis method (CV
D) or by a dry process such as thermal spraying, and a LaCrO 3 -based interconnector 15 is connected to the support tube 11 of the air electrode to constitute a fuel cell 16.

【0003】そして、発電モジュールは、前記燃料電池
セル16を支持基板(不図示)に多数装着し、各燃料電
池セル16に設けたインターコネクタ15と、隣接する
燃料電池セル16の燃料極14を電気的に接続して形成
されている。
In the power generation module, a large number of the fuel cells 16 are mounted on a supporting substrate (not shown), and an interconnector 15 provided in each fuel cell 16 and a fuel electrode 14 of an adjacent fuel cell 16 are connected. It is formed by electrical connection.

【0004】そこでは、電気的なロスを低減し、発電効
率を向上するために、単セルの抵抗を可能な限り低減す
ることが要求されており、前記燃料電池セルでは、各構
成部材が多数積層されて構成されているため、最近では
前述のような円筒型の燃料電池セルは、機械的強度や熱
的安定性を考慮するとともに、その抵抗を低減するため
に、空気極あるいは燃料極が支持管として用いられるよ
うになっている(特開平6−231777号公報参
照)。
In order to reduce the electric loss and improve the power generation efficiency, it is required to reduce the resistance of a single cell as much as possible. Because of the stacked configuration, recently, cylindrical fuel cells as described above have mechanical and thermal stability taken into consideration, and in order to reduce their resistance, an air electrode or fuel electrode is used. It is designed to be used as a support tube (see JP-A-6-231777).

【0005】[0005]

【発明が解決しようとする課題】前述のように、多数の
燃料電池セルを組み合わせた発電モジュールは、長期間
に及ぶ運転中には、一部の燃料電池セルの劣化のために
発電効率が低下することがあり、無理に運転を続けると
燃料電池セル自体の破壊に至り、爆発する恐れがあるこ
とから、高い発電効率と安全性を維持するためには、劣
化した燃料電池セルを交換する必要が生じる。
As described above, a power generation module in which a large number of fuel cells are combined reduces power generation efficiency during operation for a long period of time due to deterioration of some of the fuel cells. If the fuel cell is forcibly continued, the fuel cell itself may be destroyed and explode.Therefore, it is necessary to replace the deteriorated fuel cell in order to maintain high power generation efficiency and safety. Occurs.

【0006】しかしながら、前記発電モジュールを構成
する各燃料電池セルは、それぞれその劣化の度合いが異
なることから、個々の劣化の度合いを判別するためには
燃料電池セル毎にその抵抗変化を計測しなければならな
い。
However, since the degree of deterioration of each fuel cell constituting the power generation module is different, the resistance change of each fuel cell must be measured in order to determine the degree of deterioration of each fuel cell. Must.

【0007】即ち、前記円筒型の燃料電池セルでは、単
セルの抵抗を低減するために、空気極や燃料極のいずれ
かを支持管として用いていることから、各電極部の電圧
変化を測定するための基準電極を、単に固体電解質上に
設けても、固体電解質の厚さが10〜100μmと薄
く、その上、燃料電池の作動温度では、その抵抗値が小
さいため微少ではあるが電流が回り込む現象を生じ、該
電流の電圧降下が測定に無視できない影響を及ぼす。
That is, in the cylindrical fuel cell, since either the air electrode or the fuel electrode is used as a support tube in order to reduce the resistance of a single cell, the voltage change of each electrode is measured. Even if the reference electrode is simply provided on the solid electrolyte, the thickness of the solid electrolyte is as thin as 10 to 100 μm, and at the operating temperature of the fuel cell, the resistance value is small because the resistance value is small, but the current is small. A wraparound phenomenon occurs, and the voltage drop of the current has a considerable effect on the measurement.

【0008】そのため、実際に測定できるのは燃料極表
面と空気極表面の間の電圧だけであり、これだけでは燃
料電池セル全体の劣化は判別できるものの、燃料電池セ
ルのどの部分が劣化しているのかを探ることはできず、
その結果、該当燃料電池セルを全て廃棄して更新せざる
を得ず、とりわけ乾式プロセスで被着形成した電極を有
する燃料電池セルでは、たとえ劣化部分が判明しても再
生が困難であることから再利用できず、ランニングコス
トの高騰を招くという課題があった。
Therefore, only the voltage between the surface of the fuel electrode and the surface of the air electrode can be actually measured, and it is possible to determine the deterioration of the whole fuel cell by this alone, but which part of the fuel cell is deteriorated. I can't find out
As a result, all of the applicable fuel cells must be discarded and renewed.In particular, in the case of fuel cells having electrodes formed by a dry process, it is difficult to regenerate even if a deteriorated portion is found. There was a problem that it could not be reused, leading to a rise in running costs.

【0009】[0009]

【発明の目的】本発明は上記課題に鑑みなされたもの
で、その目的は燃料電池セルを構成する電池各部の劣化
を運転しながら正確にモニターすることができ、低コス
トで高い発電効率と安全性を確保できる固体電解質型燃
料電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to enable accurate monitoring of the deterioration of each part of a fuel cell constituting a fuel cell while operating the fuel cell. It is an object of the present invention to provide a solid oxide fuel cell capable of ensuring performance.

【0010】[0010]

【課題を解決するための手段】本発明の固体電解質型燃
料電池は、空気極もしくは燃料極のいずれかを成す支持
体に被着形成した固体電解質を介して、他方の電極を湿
式プロセスで形成し、前記支持体にインターコネクタを
接続して燃料電池セルを構成して成る固体電解質型燃料
電池であって、燃料電池セルのガス入口側近傍の支持体
表面に絶縁抵抗値が56kΩ・cm2 以上の絶縁部を設
け、該絶縁部の形成面に相当する範囲内に空気極又は燃
料極と短絡しないように固体電解質を介して抵抗変化測
定用の基準電極を設けたことを特徴とするものである。
According to the present invention, there is provided a solid oxide fuel cell according to the present invention, wherein the other electrode is formed by a wet process via a solid electrolyte formed on a support forming either an air electrode or a fuel electrode. A solid electrolyte fuel cell comprising an interconnector connected to the support to form a fuel cell, wherein the surface of the support near the gas inlet side of the fuel cell has an insulation resistance of 56 kΩ · cm 2. The above-mentioned insulating portion is provided, and a reference electrode for resistance change measurement is provided via a solid electrolyte so as not to be short-circuited with an air electrode or a fuel electrode in a range corresponding to a surface on which the insulating portion is formed. It is.

【0011】とりわけ、前記絶縁部は、アルミナ(Al
2 3 )とマグネシア(MgO)から成るMgAl2
4 で表されるスピネル型構造を有する酸化物系セラミッ
クスで形成することが望ましいものである。
In particular, the insulating portion is made of alumina (Al
MgAl 2 O to 2 O 3) and made of magnesia (MgO)
It is desirable to form it from an oxide ceramic having a spinel structure represented by 4 .

【0012】本発明において、前記燃料電池セルの電極
の電圧変化は、全測定電圧数百mV中のわずか数mV以
下と極めて小さいため、前記絶縁部の絶縁抵抗値が56
kΩ・cm2 未満では、0.1%以上の電圧の誤差を有
することからその値は0.5mV以上の誤差となり、正
確な電圧変化を測定することが困難となり、劣化の度合
いを正確に判定することができない。
In the present invention, the change in the voltage of the electrode of the fuel cell is extremely small, ie, only a few mV or less out of several hundred mV of the total measured voltage.
If it is less than kΩ · cm 2, there is a voltage error of 0.1% or more, so that the value becomes an error of 0.5 mV or more, making it difficult to measure an accurate voltage change, and accurately determining the degree of deterioration. Can not do it.

【0013】従って、前記燃料電池セルの電極の電圧変
化を正確に測定するためには、前記電圧に含まれる誤差
を、少なくとも0.1%未満、即ち0.5mV未満にし
なければならず、前記絶縁部の絶縁抵抗値は56kΩ・
cm2 以上に限定される。
Therefore, in order to accurately measure the voltage change of the electrode of the fuel cell, the error contained in the voltage must be at least less than 0.1%, that is, less than 0.5 mV. The insulation resistance value of the insulation part is 56kΩ
cm 2 or more.

【0014】また、前記基準電極が、固体電解質を介し
て対向する絶縁部の形成範囲より大きい場合には、基準
電極下の絶縁抵抗値は、該基準電極が覆っている範囲内
の絶縁部の絶縁抵抗値と、支持体の電極の抵抗値との並
列合成した値となるため、絶縁部全体の絶縁抵抗値が5
6kΩ・cm2 以上であっても、基準電極下の絶縁抵抗
値は56kΩ・cm2 未満となり、その上、電極支持体
と基準電極下の絶縁抵抗との抵抗差が大きいため、絶縁
部の抵抗が有効に機能しなくなる。
[0014] When the reference electrode is larger than the formation range of the insulating portion facing the solid electrolyte, the insulation resistance value below the reference electrode is smaller than that of the insulating portion within the range covered by the reference electrode. Since the insulation resistance value and the resistance value of the electrode of the support are combined in parallel, the insulation resistance value of the entire insulation portion is 5
Even if it is 6 kΩ · cm 2 or more, the insulation resistance under the reference electrode is less than 56 kΩ · cm 2 , and the resistance difference between the electrode support and the insulation resistance under the reference electrode is large. Will not work effectively.

【0015】よって、前記基準電極は、絶縁部に対向す
る面が、絶縁部の対向面の範囲からずれると該絶縁部の
占有面積の大小により異なるが、次第に電流の回り込み
現象が大となり、該電流の電圧降下が測定に影響を及ぼ
すようになるため、少なくとも前記絶縁部の対向面の範
囲内に相当する位置に設けることが必要である。
Therefore, when the surface facing the insulating portion of the reference electrode deviates from the range of the facing surface of the insulating portion, the current sneak phenomenon gradually increases, although the area occupied by the insulating portion varies depending on the size of the insulating portion. Since the voltage drop of the current affects the measurement, it is necessary to provide at least a position corresponding to the area within the opposing surface of the insulating portion.

【0016】また、前記絶縁部を形成する材料として
は、アルミナ(Al2 3 )、マグネシア(MgO)、
シリカ(SiO2 )、ジルコニア(ZrO2 )、カルシ
ア(CaO)、チタニア(TiO2 )等から成る化合物
で、その絶縁抵抗が56kΩ・cm2 以上の酸化物系セ
ラミックスが挙げられ、とりわけ固体電解質との熱膨張
率の整合性の点からは、アルミナ(Al2 3 )が35
〜50重量%、マグネシア(MgO)が50〜65重量
%から成るMgAl2 4 で表されるスピネル型構造を
有する酸化物系セラミック焼結体が最も好ましい。
Materials for forming the insulating portion include alumina (Al 2 O 3 ), magnesia (MgO),
A compound composed of silica (SiO 2 ), zirconia (ZrO 2 ), calcia (CaO), titania (TiO 2 ), etc., and an oxide ceramic having an insulation resistance of 56 kΩ · cm 2 or more. From the viewpoint of the consistency of the coefficient of thermal expansion of alumina (Al 2 O 3 ),
50 wt%, magnesia (MgO) is oxide ceramic sintered body having a spinel structure represented by MgAl 2 O 4 consisting of 50 to 65 wt% being most preferred.

【0017】[0017]

【作用】本発明の固体電解質型燃料電池は、燃料電池セ
ルのガス入口側近傍の電極支持体表面に、高抵抗の絶縁
部を設け、固体電解質を介して前記絶縁部の範囲内に対
向する基準電極を設けたことから、固体電解質が極めて
薄く、燃料電池の作動温度が高くとも、電流の回り込み
が阻止され、各電極の電圧の変化だけを正確に測定でき
ることになる。
In the solid oxide fuel cell of the present invention, a high-resistance insulating portion is provided on the surface of the electrode support near the gas inlet side of the fuel cell, and the insulating portion faces the insulating portion via the solid electrolyte. Since the reference electrode is provided, even when the solid electrolyte is extremely thin and the operating temperature of the fuel cell is high, current sneak is prevented, and only a change in voltage of each electrode can be accurately measured.

【0018】[0018]

【実施例】以下、本発明の固体電解質型燃料電池の一実
施例を、図に基づき詳細に説明する。図1は、本発明の
固体電解質型燃料電池に係る円筒型燃料電池セルを一部
破断した斜視図であり、図において1は、電極支持体2
を成す空気極支持管と、電極支持体2の表面に形成した
固体電解質3、該表面のガス入口側4に設けた絶縁抵抗
が56kΩ・cm2 以上の絶縁部5を成す絶縁層、及び
インターコネクタ6と、固体電解質3の表面に形成した
他方の電極7を成す燃料極および基準電極8から構成さ
れる燃料電池セルである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the solid oxide fuel cell according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a cylindrical fuel cell according to a solid oxide fuel cell of the present invention. In FIG.
An electrode support tube, a solid electrolyte 3 formed on the surface of the electrode support 2, an insulating layer 5 provided on the gas inlet side 4 of the surface and having an insulation resistance 5 of 56 kΩ · cm 2 or more; The fuel cell includes a connector 6, a fuel electrode serving as the other electrode 7 formed on the surface of the solid electrolyte 3, and a reference electrode 8.

【0019】本実施例における評価用の燃料電池セルの
製造工程を、一例に基づき具体的に説明する。先ず、マ
ンガンの酸化物(Mn2 3 )と希土類元素の一種であ
るランタン(La)の酸化物(La2 3 )を原料と
し、該原料を粉砕混合して調整した後、有機物系のバイ
ンダーを添加して押出成形法にて円筒状に成形し、乾燥
・脱バインダーを経て、大気中、1400〜1700℃
の温度で焼成して、肉厚2mm、長さ50mmのLaM
nO3 系材料から成る円筒状焼結体を得た。
The manufacturing process of the fuel cell for evaluation in this embodiment will be specifically described based on an example. First, an oxide of manganese (Mn 2 O 3 ) and an oxide of lanthanum (La), a kind of rare earth element (La 2 O 3 ), are used as raw materials. A binder is added and the mixture is formed into a cylindrical shape by an extrusion molding method.
Calcined at a temperature of 2 mm and a length of 50 mm LaM
A cylindrical sintered body made of nO 3 material was obtained.

【0020】次に、前記円筒状焼結体の一端側外表面
に、最終的にその組成が表1に示す値となるアルミナ
(Al2 3 )粉末とマグネシア(MgO)粉末の混合
物に、有機物系バインダーを加えて調製した泥漿を用
い、被着部以外をマスキングして幅10mm、厚さ20
0〜300μmの被膜を湿式プロセスの一種である浸漬
法で被着形成して、絶縁層とした。
Next, a mixture of an alumina (Al 2 O 3 ) powder and a magnesia (MgO) powder whose composition finally has the value shown in Table 1 was added to the outer surface of one end of the cylindrical sintered body. Using a slurry prepared by adding an organic binder, the portions other than the adherends were masked to a width of 10 mm and a thickness of 20 mm.
A coating having a thickness of 0 to 300 μm was formed by an immersion method, which is a type of wet process, to form an insulating layer.

【0021】尚、比較例として、LaCrO3 を主成分
とし、更に、MgOをCrとの原子数比で0.1〜0.
4添加して熱膨張係数を前記固体電解質と整合させて調
製した泥漿を用い、幅10mm、厚さ200〜300μ
mの被膜を前記同様にして被着形成した。
As a comparative example, LaCrO 3 is used as a main component, and MgO is added to Cr in an atomic ratio of 0.1 to 0.1.
Using a slurry prepared by adding 4 and adjusting the coefficient of thermal expansion to that of the solid electrolyte, width 10 mm, thickness 200 to 300 μm
m was formed in the same manner as described above.

【0022】その後、前記各被膜を覆うように円筒状焼
結体外表面全体を、8〜12モル%のイットリア(Y2
3 )を含有するジルコニア(ZrO2 )粉末に有機物
系バインダーを加えて調製した泥漿を用いて固体電解質
層を被覆形成し、焼成一体化した。
Thereafter, the entire outer surface of the cylindrical sintered body is covered with 8 to 12 mol% of yttria (Y 2
The solid electrolyte layer was coated and formed by using a slurry prepared by adding an organic binder to zirconia (ZrO 2 ) powder containing O 3 ), followed by firing and integration.

【0023】一方、燃料極、及び前記絶縁層と対向する
基準電極は、前記固体電解質層の表面にマスキングテー
プで不要部を覆い、8〜12モル%のイットリア(Y2
3)を含有するジルコニア(ZrO2 )粉末にニッケ
ル(Ni)粉末と有機系バインダーを添加して調製した
電極ペーストを、前記固体電解質層の表面に浸漬法にて
塗布し、乾燥後、前記マスキングテープを剥離除去して
評価用の燃料電池セルを作製した。
On the other hand, unnecessary portions of the fuel electrode and the reference electrode facing the insulating layer are covered with masking tape on the surface of the solid electrolyte layer, and 8 to 12 mol% of yttria (Y 2
An electrode paste prepared by adding nickel (Ni) powder and an organic binder to zirconia (ZrO 2 ) powder containing O 3 ) is applied to the surface of the solid electrolyte layer by a dipping method, dried, and then dried. The masking tape was peeled off to produce a fuel cell for evaluation.

【0024】尚、前記基準電極は、LaMnO3 系材料
から成る円筒状焼結体外表面に被着した絶縁層と対向し
て該絶縁層の占有面内に相当する位置に形成した。
The reference electrode was formed at a position corresponding to the occupied surface of the insulating layer facing the insulating layer adhered to the outer surface of the cylindrical sintered body made of LaMnO 3 -based material.

【0025】一方、前記絶縁層材料のみから成る成形体
を、評価用の燃料電池セルを作製するのと同一条件にて
焼成し、該焼結体の両面に白金(Pt)電極を取り付
け、それより電流端子と電圧端子を引き出した絶縁抵抗
測定用試料を用いて、燃料電池作動温度にて電流−電圧
特性を測定して、絶縁層の絶縁抵抗を算出した。
On the other hand, a molded body made of only the insulating layer material is fired under the same conditions as those for producing a fuel cell for evaluation, and platinum (Pt) electrodes are attached to both surfaces of the sintered body. Using a sample for measuring insulation resistance from which the current terminal and the voltage terminal were drawn out, current-voltage characteristics were measured at the operating temperature of the fuel cell, and the insulation resistance of the insulation layer was calculated.

【0026】かくして得られた評価用の燃料電池セルを
用いて、図2に示す結線図のように電流源9及び周波数
応答解析機10をそれぞれ接続し、電流源9から燃料極
を成す他方の電極7と空気極を成す電極支持体2との間
に直流電流を流し、更に周波数を0.01Hzから10
MHzまで変化させた交流を重ねて流し、周波数応答解
析機10により基準電極8と燃料極、即ち他方の電極7
との間、及び基準電極8と空気極、即ち電極支持体2と
の間で、各周波数での交流抵抗を測定する。
A current source 9 and a frequency response analyzer 10 are connected to each other as shown in the connection diagram in FIG. A direct current is passed between the electrode 7 and the electrode support 2 forming an air electrode, and the frequency is further increased from 0.01 Hz to 10 Hz.
MHz, and the reference electrode 8 and the fuel electrode, that is, the other electrode 7 are supplied by the frequency response analyzer 10.
, And between the reference electrode 8 and the air electrode, that is, between the electrode support 2, the AC resistance at each frequency is measured.

【0027】この交流抵抗の実インピーダンスと虚イン
ピーダンスの関係より、前記各電極と固体電解質の界面
の抵抗を求め、その時の定常電流値から分極電圧を求め
て経時変化を調べることにより各電極の劣化の度合いを
判定する。
From the relationship between the real impedance and the imaginary impedance of the AC resistance, the resistance at the interface between each of the electrodes and the solid electrolyte is determined, and the polarization voltage is determined from the steady-state current value at that time, and the change with time is examined. Is determined.

【0028】そこで、前記劣化の度合いの精度は、前記
絶縁抵抗を有する分極電圧と理想的な無限大の抵抗値に
おける分極電圧との差から生じる電圧誤差に影響される
ため、その電圧誤差をもって燃料電池セルを評価した。
Therefore, the accuracy of the degree of deterioration is affected by a voltage error caused by a difference between the polarization voltage having the insulation resistance and the polarization voltage at an ideal infinite resistance value. The battery cells were evaluated.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から明らかなように、絶縁抵抗
値が56kΩ・cm2 未満の試料番号6では、電圧誤差
が0.1%となるのに対して、本願発明の絶縁抵抗値が
56kΩ・cm2 以上のものは、電圧誤差は0.09%
以下となることが分かる。
As is evident from the results shown in Table 1, the sample No. 6 having an insulation resistance value of less than 56 kΩ · cm 2 has a voltage error of 0.1%, whereas the insulation resistance value of the present invention is 56 kΩ.・ Voltage error is 0.09% for cm 2 or more
It turns out that it becomes as follows.

【0031】[0031]

【発明の効果】叙上の如く、本発明の固体電解質型燃料
電池は、燃料電池セルのガス入口側近傍の支持体表面
に、絶縁抵抗が56kΩ・cm2 以上の絶縁部を設け、
該絶縁部に対向する基準電極を絶縁部の形成範囲内に固
体電解質を介して設けたことから、燃料電池セルを構成
する各電極の劣化をそれぞれ正確に測定でき、劣化部分
が湿式プロセスで形成した本願にいう他方の電極部分で
ある場合には、該当燃料電池セルを廃棄して更新する必
要がなく、電極部分を容易に再生することが可能であ
り、燃料電池セルを再利用することができ、ランニング
コストの低減が実現できる。
As described above, the solid oxide fuel cell of the present invention is provided with an insulating portion having an insulation resistance of 56 kΩ · cm 2 or more on the surface of the support near the gas inlet side of the fuel cell.
Since the reference electrode facing the insulating portion is provided via the solid electrolyte within the formation range of the insulating portion, the deterioration of each electrode constituting the fuel cell can be accurately measured, and the deteriorated portion is formed by a wet process. In the case of the other electrode portion referred to in the present application, it is not necessary to discard and renew the corresponding fuel cell, the electrode portion can be easily regenerated, and the fuel cell can be reused. As a result, the running cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型燃料電池に係る円筒型燃
料電池セルの一部を破断した斜視図である。
FIG. 1 is a partially broken perspective view of a cylindrical fuel cell according to a solid oxide fuel cell of the present invention.

【図2】図1に示す円筒型燃料電池セルの各電極の電圧
変化を測定するための結線図である。
FIG. 2 is a connection diagram for measuring a voltage change of each electrode of the cylindrical fuel cell shown in FIG.

【図3】従来の円筒型の固体電解質型燃料電池を示す斜
視図である。
FIG. 3 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料電池セル 2 電極支持体 3 固体電解質 4 ガス入口側 5 絶縁部 6 インターコネクタ 7 他方の電極 8 基準電極 DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Electrode support 3 Solid electrolyte 4 Gas inlet side 5 Insulating part 6 Interconnector 7 The other electrode 8 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/04 H01M 8/12 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/02 H01M 8/04 H01M 8/12 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方の電極を成す支持体に被着形成した固
体電解質を介して、他方の電極を湿式プロセスで形成す
るとともに、前記電極支持体にインターコネクタを接続
して燃料電池セルを構成して成る固体電解質型燃料電池
において、燃料電池セルのガス入口側近傍の電極支持体
表面に、絶縁抵抗値が56kΩ・cm2 以上の絶縁部を
設け、固体電解質を介して前記絶縁部の形成範囲内に対
向する基準電極を設けたことを特徴とする固体電解質型
燃料電池。
A fuel cell is formed by forming a second electrode by a wet process through a solid electrolyte adhered to a support forming one electrode and connecting an interconnector to the electrode support. In the solid electrolyte fuel cell, an insulating portion having an insulation resistance of 56 kΩ · cm 2 or more is provided on the surface of the electrode support near the gas inlet side of the fuel cell, and the insulating portion is formed via the solid electrolyte. A solid oxide fuel cell, comprising a reference electrode facing the area.
【請求項2】前記絶縁部が、アルミナ(Al2 3 )と
マグネシア(MgO)から成るスピネル型構造を有する
酸化物系セラミックスであることを特徴とする請求項1
記載の固体電解質型燃料電池。
2. The semiconductor device according to claim 1, wherein said insulating portion is made of an oxide ceramic having a spinel structure composed of alumina (Al 2 O 3 ) and magnesia (MgO).
The solid oxide fuel cell according to the above.
JP03812095A 1995-02-27 1995-02-27 Solid oxide fuel cell Expired - Fee Related JP3145599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03812095A JP3145599B2 (en) 1995-02-27 1995-02-27 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03812095A JP3145599B2 (en) 1995-02-27 1995-02-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH08236128A JPH08236128A (en) 1996-09-13
JP3145599B2 true JP3145599B2 (en) 2001-03-12

Family

ID=12516612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03812095A Expired - Fee Related JP3145599B2 (en) 1995-02-27 1995-02-27 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3145599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072049B2 (en) * 2002-12-25 2008-04-02 京セラ株式会社 Fuel cell and fuel cell
JP3609397B2 (en) * 2003-04-22 2005-01-12 株式会社日本総合研究所 Power supply system, housing complex, and program
US6998187B2 (en) * 2003-08-07 2006-02-14 Nanodynamics, Inc. Solid oxide fuel cells with novel internal geometry
JP4776606B2 (en) * 2007-10-25 2011-09-21 京セラ株式会社 Fuel cell
JP7296217B2 (en) * 2019-02-27 2023-06-22 一般財団法人ファインセラミックスセンター Method for evaluating electrical characteristics of structure containing ionic conductor and evaluation device therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
旭硝子財団研究報告,Vol.57(1990),p.281〜291
電子化学および工業物理化学,Vol.58 No.6(1990),p.520〜527

Also Published As

Publication number Publication date
JPH08236128A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP4050593B2 (en) Gas sensor element and gas sensor using the same
CA1249924A (en) Air electrode material for high temperature electrochemical cells
EP0294085B1 (en) Electrochemical elements
JP4035555B2 (en) Gas sensor element and gas sensor using the same
JPS6118857A (en) Manufacture of electrochemical cell
JP2766029B2 (en) Ceramic green sheet material, electrochemical device, and method of manufacturing the same
WO2002055987A2 (en) Gas sensor
US6936148B2 (en) Gas sensor element having at least two cells
US5279906A (en) Interconnection material for solid oxide fuel cell
JPS61134655A (en) Oxygen sensor element
JP3145599B2 (en) Solid oxide fuel cell
US4481813A (en) Dew sensor
EP0343533B1 (en) Gas sensing element
US6120924A (en) Perovskite-type oxide materials containing nickel and iron for air electrode and solid oxide fuel cell using the same
JPH08162120A (en) Solid electrolyte type electrochemical cell
JPH0477866B2 (en)
JP2000338078A (en) Heater one-piece type oxygen sensor and manufacture thereof
JPH0562688A (en) Solid electrolyte type fuel cell
EP0323015B1 (en) A method of making planar oxygen pumping devices
JPH04355059A (en) Solid electrolyte fuel cell
JP4007892B2 (en) Gas sensor element and gas sensor using the same
JPH03142353A (en) Oxygen sensor
JPH0510918A (en) Oxygen-concentration detecting element and manufacture thereof
JPH0147739B2 (en)
GB2051379A (en) Air-fuel ratio detecting apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees