JP3138312B2 - Heat- and acid-resistant inorganic fibers and method for producing the same - Google Patents

Heat- and acid-resistant inorganic fibers and method for producing the same

Info

Publication number
JP3138312B2
JP3138312B2 JP04047839A JP4783992A JP3138312B2 JP 3138312 B2 JP3138312 B2 JP 3138312B2 JP 04047839 A JP04047839 A JP 04047839A JP 4783992 A JP4783992 A JP 4783992A JP 3138312 B2 JP3138312 B2 JP 3138312B2
Authority
JP
Japan
Prior art keywords
titania
heat
inorganic fiber
acid
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04047839A
Other languages
Japanese (ja)
Other versions
JPH05221695A (en
Inventor
祐治 福田
公一 横山
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP04047839A priority Critical patent/JP3138312B2/en
Publication of JPH05221695A publication Critical patent/JPH05221695A/en
Application granted granted Critical
Publication of JP3138312B2 publication Critical patent/JP3138312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱・耐酸性に優れた
無機繊維およびその製造方法に係り、特に酸性ガスを含
有する排煙の脱硝触媒用基材として好適な耐熱・耐酸性
無機繊維およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic fiber excellent in heat resistance and acid resistance and a method for producing the same, and particularly to a heat resistant acid resistant inorganic fiber suitable as a substrate for a denitration catalyst for flue gas containing acidic gas. And its manufacturing method.

【0002】[0002]

【従来の技術】無機繊維からなる織布は、耐熱性製品、
プラスチックおよびセラミックの複合材料の他、各種触
媒基材などに広く利用されている。これらの織り布に使
用される繊維にはJIS R 3414などで規定する
Eガラス、Tガラスやシリカグラスなどのガラス繊維の
他に、ムライト製セラミック、炭化けい素などのファイ
ンセラミック繊維などの各種のものが使用されている
(特開昭50−104789号公報、特開昭59−73
053号公報等)。
2. Description of the Related Art Woven fabrics made of inorganic fibers are used for heat-resistant products,
It is widely used for various catalyst base materials in addition to plastic and ceramic composite materials. Fibers used in these woven fabrics include glass fibers such as E glass, T glass and silica glass specified by JIS R 3414 and the like, as well as various ceramics such as ceramics made of mullite and fine ceramics such as silicon carbide. (Japanese Patent Application Laid-Open Nos. 50-104789 and 59-73)
No. 053).

【0003】[0003]

【発明が解決しようとする課題】これらのうち、Eガラ
スやムライト質などのアルカリやアルミニウム酸化物を
含むものは安価であるものの、排ガス中のSOx等の酸
化性ガスと反応し、強度低下を引き起こすという問題点
があり、腐食条件下では使用できない。一方、炭化けい
素繊維、シリカ繊維や塩酸でシリカ成分以外の成分を除
去したガラス繊維などは耐酸性に優れているものの、前
記ガラス製織り布に較べて製造コストが10〜100倍
程度かかるために、排煙脱硝触媒用基材のようにプラン
ト当たりの使用量が10,000m2 を超える織り布を
必要とする用途に適した安価で耐酸性に優れた無機繊維
がないのが実状であり、そのような無機繊維の発明が望
まれている。
Among them, those containing alkali or aluminum oxide such as E glass and mullite are inexpensive, but react with oxidizing gas such as SOx in exhaust gas to reduce the strength. It cannot be used under corrosive conditions. On the other hand, silicon carbide fiber, silica fiber or glass fiber obtained by removing components other than the silica component with hydrochloric acid are excellent in acid resistance, but the production cost is about 10 to 100 times as compared with the glass woven cloth. In fact, there is no inexpensive and acid-resistant inorganic fiber suitable for applications requiring a woven fabric exceeding 10,000 m 2 per plant, such as a flue gas denitration catalyst substrate. The invention of such an inorganic fiber is desired.

【0004】他方、本発明者らは、上記問題を解決する
ために研究を進め、安定化酸化物で覆った無機繊維織り
布の網目内に触媒を塗り込む方法(特開平3−6524
6号公報)を開発し、大寸法、高強度触媒の製造方法と
して特許出願している。しかしながら、無機繊維として
汎用ガラスクロス(Eガラス等)を使用した場合には、
初期強度は高いものの、SOxを含むガス中の高温下で
使用された場合、経時的に強度低下するという問題があ
った。
[0004] On the other hand, the present inventors have conducted research to solve the above-mentioned problem, and have studied a method of applying a catalyst into a mesh of an inorganic fiber woven fabric covered with a stabilizing oxide (JP-A-3-6524).
No. 6) and applied for a patent as a method for producing a large-sized, high-strength catalyst. However, when a general-purpose glass cloth (such as E glass) is used as the inorganic fiber,
Although the initial strength is high, there is a problem that the strength decreases with time when used at a high temperature in a gas containing SOx.

【0005】本発明の目的は、硫黄酸化物等の腐食性ガ
スを含むガス中で使用したり、高温中で使用しても強度
低下を引き起こさない、または強度低下をきわめて小さ
くした耐熱・耐酸性に優れた無機繊維およびその製造方
法を提供するにある。
An object of the present invention is to provide a heat- and acid-resistant material which does not cause a decrease in strength even when used in a gas containing a corrosive gas such as a sulfur oxide or is used at a high temperature, or has a very small decrease in strength. And to provide a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的は、Eガラスな
どの汎用ガラス繊維の表面に平均粒径0.01μm以下
のチタニア粒子からなる皮膜を0.05μm以上、0.
5μm以下の厚さで形成させ、必要に応じてその上に、
平均粒子径が0.1〜1.0μmの酸化物粒子と平均粒
径0.01μm以下のチタニア粒子またはシリカ粒子の
混合粒子からなる第2層の皮膜を形成させ、さらに50
0℃以上、800℃以下の高温で焼成させることによっ
て達成される。
The object of the present invention is to provide a coating made of titania particles having an average particle diameter of 0.01 μm or less on the surface of general-purpose glass fiber such as E glass.
It is formed with a thickness of 5 μm or less, and if necessary,
Forming a second layer film comprising mixed particles of oxide particles having an average particle diameter of 0.1 to 1.0 μm and titania particles or silica particles having an average particle diameter of 0.01 μm or less;
This is achieved by firing at a high temperature of 0 ° C. or more and 800 ° C. or less.

【0007】すなわち本願の第1の発明は、アルカリお
よび/またはアルミニウム酸化物を含む無機繊維表面に
平均粒径0.01μm以下のチタニア粒子からなる0.
05μm以上、0.5μm以下の皮膜が形成され、50
0℃以上、800℃以下で焼成されていることを特徴と
する耐熱・耐酸性無機繊維に関する。第2の発明は、耐
熱・耐酸性無機繊維の製造方法において、アルカリおよ
び/またはアルミニウム酸化物を含む無機繊維に、コロ
イダルチタニア溶液を含浸または塗布したのち、乾燥
し、500℃以上、800℃以下で焼成することを特徴
とする耐熱・耐酸性無機繊維の製造方法に関する。
That is, in the first invention of the present application, the inorganic fiber containing alkali and / or aluminum oxide has titania particles having an average particle size of 0.01 μm or less on the surface thereof.
A film of not less than 05 μm and not more than 0.5 μm is formed,
The present invention relates to a heat-resistant and acid-resistant inorganic fiber which is fired at 0 ° C or more and 800 ° C or less. According to a second invention, in a method for producing a heat- and acid-resistant inorganic fiber, an inorganic fiber containing an alkali and / or an aluminum oxide is impregnated or applied with a colloidal titania solution, and then dried, and dried at 500 ° C or more and 800 ° C or less. And a method for producing heat- and acid-resistant inorganic fibers, characterized by firing.

【0008】第3の発明は、耐熱・耐酸性無機繊維の製
造方法において、アルカリおよび/またはアルミニウム
酸化物を含む無機繊維に、コロイダルチタニア溶液を含
浸または塗布したのち、乾燥後500℃以上、800℃
以下で焼成し、これにコロイダルチタニアまたはコロイ
ダルシリカと粒子径が0.1〜1.0μmの酸化物粒子
との混合液を含浸または塗布し、乾燥後、焼成すること
を特徴とする耐熱・耐酸性無機繊維の製造方法に関す
る。
A third invention is a method for producing a heat- and acid-resistant inorganic fiber, comprising impregnating or applying a colloidal titania solution to an inorganic fiber containing an alkali and / or aluminum oxide, and then drying it at 500 ° C. ° C
Calcined below, impregnated or coated with a mixed solution of colloidal titania or colloidal silica and oxide particles having a particle diameter of 0.1 to 1.0 μm, dried, and then calcined. The present invention relates to a method for producing a conductive inorganic fiber.

【0009】[0009]

【作用】本発明者らの研究によれば、無機繊維の強度低
下の主原因は、ガラス繊維に含まれるCaOおよびAl
2 3 が雰囲気中のSOxと反応し、CaSO4 、Al
2 (SO4 )を繊維表面に生成させ、これによって、
(1)隣接する繊維同士が接合し合い曲げや熱による変
形に追随しなくなり、繊維が簡単に切断すること、
(2)無機繊維が侵食され、単繊維そのものの強度が低
下することを見出している。
According to the study of the present inventors, the main cause of the decrease in the strength of the inorganic fiber is CaO and Al contained in the glass fiber.
2 O 3 reacts with SOx in the atmosphere to produce CaSO 4 , Al
2 (SO 4 ) is produced on the fiber surface,
(1) Adjacent fibers are bonded to each other and do not follow deformation due to bending or heat, and the fibers are easily cut;
(2) It has been found that the inorganic fibers are eroded and the strength of the single fibers themselves is reduced.

【0010】本反応は温度が高温になるほど顕著で、未
処理の繊維では400℃程度でもSOxと接触すると長
時間の加熱により初期強度の1/2程度まで低下してい
る。すなわち、SOxとガラス繊維中のCaやAlとの
反応を防止することができれば、強度低下の防止が可能
となる。そのためには、ガラス繊維表面にSOxと反応
しなくて、またガラス表面にSOxが侵入できない緻密
な層を設ける必要がある。また、ガラス繊維の直径は通
常10μm程度で、数百〜千数百本よったものをさらに
数本より合わせたヤーンを平織り、綾織りなどの各種形
状に織ったものが用いられるが、触媒基材として使用す
る場合には、特に触媒を成形する際に生じる曲げ変形に
対して充分な強度を有していることが必要となる。そこ
で、本発明者らは好適なガラス繊維のコーティング法を
探索した結果、繊維を平均粒径が0.01μm以下のチ
タニア粒子と水溶液からなるコロイダルチタニアに含浸
またはスプレで繊維表面に塗布、乾燥することによって
膜厚が0.05〜0.5μmのチタニア層を繊維表面に
設けたのち、500〜800℃の高温で焼成することに
よって、400℃以上の高温下でもSOxとの反応に対
して良好な耐久性を示すことを見出した。平均粒径が
0.01μm以上のチタニア粒子では上記のように薄い
膜厚の均一なチタニア層を形成することが困難である。
This reaction becomes more remarkable as the temperature becomes higher. Untreated fibers, even at about 400 ° C., fall to about 1 / of the initial strength due to prolonged heating when contacted with SOx. That is, if a reaction between SOx and Ca or Al in the glass fiber can be prevented, a reduction in strength can be prevented. For that purpose, it is necessary to provide a dense layer on the glass fiber surface that does not react with SOx and does not allow SOx to enter the glass surface. Further, the diameter of the glass fiber is usually about 10 μm, and yarns obtained by combining several hundreds to several hundreds of yarns and further combining several yarns are woven in various shapes such as plain weave and twill weave. When used as a material, it is necessary that the catalyst has sufficient strength against bending deformation particularly generated during molding of the catalyst. Then, the present inventors searched for a suitable glass fiber coating method, and as a result, impregnated the fiber with colloidal titania composed of an aqueous solution of titania particles having an average particle diameter of 0.01 μm or less and an aqueous solution, or sprayed the fiber on the fiber surface and dried. By providing a titania layer having a thickness of 0.05 to 0.5 μm on the fiber surface by this, by firing at a high temperature of 500 to 800 ° C., it is favorable to the reaction with SOx even at a high temperature of 400 ° C. or more. It has been found that it exhibits excellent durability. With titania particles having an average particle size of 0.01 μm or more, it is difficult to form a thin titania layer having a uniform thickness as described above.

【0011】本発明の処理を行ったガラス繊維の表面は
耐熱性に優れ、かつSOxとの反応に対しても良好なチ
タニアの層で表面が均一に覆われており、SOxを含む
ガス中で使用してもCaO、Al2 3 を含むガラス繊
維は直接SOxガスと接触することなく、CaOまたは
Al2 3 とSOxの反応に起因する強度の低下を防止
することが可能である。 1)全体構成 本発明の実施に用いられる無機繊維としては、Eガラス
などの無機アルカリガラスの数〜10μmの単繊維を数
百〜千数百本よったものをさらに数本より合わせたヤー
ンを平織り、綾織りなどの各種形状に織ったものが使用
される。
The surface of the glass fiber which has been treated according to the present invention is uniformly covered with a layer of titania having excellent heat resistance and good reaction with SOx. Even when used, the glass fibers containing CaO and Al 2 O 3 can prevent a decrease in strength due to the reaction between CaO or Al 2 O 3 and SOx without directly contacting the SOx gas. 1) Overall Configuration As the inorganic fiber used in the practice of the present invention, a yarn obtained by further combining several hundreds to several hundreds of single fibers of several to 10 μm of inorganic alkali glass such as E glass, and further combining several yarns is used. Those woven in various shapes such as plain weave and twill weave are used.

【0012】この繊維織布(以下、スクリーンと呼ぶ)
にコロイダルチタニアを浸漬またはスプレ法により担持
し、しかる後に100〜200℃で乾燥し0.5μm以
下の薄いチタニア層を設ける。その後、500〜800
℃で数時間加熱する。また必要に応じ、コロイダルチタ
ニアまたはコロイダルシリカと安定化酸化物(例えば、
アルミナ、ジルコニア、チタニア等)の混合スラリを浸
漬またはスプレ法によりチタニア層の表面に形成させ
る。
This fiber woven fabric (hereinafter referred to as a screen)
, Colloidal titania is supported by dipping or spraying, and then dried at 100 to 200 ° C. to provide a thin titania layer of 0.5 μm or less. Then 500-800
Heat for several hours at ° C. Also, if necessary, colloidal titania or colloidal silica and a stabilizing oxide (for example,
A mixed slurry of alumina, zirconia, titania, etc.) is formed on the surface of the titania layer by dipping or spraying.

【0013】ここで、特徴的なのは、第1層として平均
粒径0.01μm以下、好ましくは0.09μm以下の
チタニア粒子からなる層を0.05〜0.5μm(好ま
しくは0.1〜0.4μm)厚さでガラス繊維表面に設
けることと、500〜800℃の熱処理を行うことであ
る。また、必要に応じてチタニア層形成後にコロイダル
チタニアまたはコロイダルシリカと安定化酸化物の混合
物をチタニア層の外側に設けるものであり、その他のス
クリーンの剛性を向上させる方法、例えば、ポリビニー
ルアルコール等の有機結合剤を上記混合物に添加しても
よい。 2)各構成部分の相互作用、関係 図1は上記の操作で得られたスクリーンの断面模式図、
図2は上記操作で得られた無機繊維の外観を示す繊維の
形状写真図、図3はその拡大断面を示す繊維の形状写真
図である。図から明らかなように、無機繊維表面は緻密
なチタニア粒子層で被覆された状態となる。ガラス繊維
表面を覆ったチタニア層は緻密でSOxガスにより繊維
が反応するのを防止する作用を有する。また、その後、
実施する熱処理により無機繊維とチタニア層が反応し、
無機繊維表面にチタニアが侵入しチタニアリッチな反応
層を形成する。こうした効果を得るための熱処理温度と
しては、500℃からガラス繊維の軟化温度である80
0℃の間とするのが好適である。図6に焼成温度と耐酸
性試験前後のスクリーンの引張りテスト結果を示すが、
焼成温度が500℃未満では耐酸性が向上していない。
一方、800℃を超える場合は繊維が軟化し拘束される
ため、初期強度が大幅に低下する。また、500℃以下
で本発明の効果を出すためには長時間の焼成が必要であ
る。また、チタニアの膜厚としては図4に繊維の形状写
真図として示すように、膜厚が厚くなると、皮膜中にク
ラックが入ったり、剥離したりするので、膜厚の上限と
しては0.5μmとする必要がある。一方、膜厚を薄く
し過ぎると、繊維に皮膜が形成されない部位が出てくる
ため、膜厚の下限としては0.05μmとする必要があ
る。表1に膜厚とクラック発生の関係を示す。膜厚の制
御は使用するコロイダルチタニアの固体濃度および含浸
時間を適正な値に設定することによって制御することが
できる。
Here, the characteristic feature is that the layer composed of titania particles having an average particle diameter of 0.01 μm or less, preferably 0.09 μm or less as the first layer is 0.05 to 0.5 μm (preferably 0.1 to 0 μm). 0.4 μm) on the surface of the glass fiber, and heat treatment at 500 to 800 ° C. Further, if necessary, after forming the titania layer, a mixture of colloidal titania or colloidal silica and a stabilizing oxide is provided outside the titania layer, and other methods for improving the rigidity of the screen, for example, polyvinyl alcohol, etc. An organic binder may be added to the mixture. 2) Interaction and relationship of each component FIG. 1 is a schematic cross-sectional view of the screen obtained by the above operation.
FIG. 2 is a fiber shape photograph showing the appearance of the inorganic fiber obtained by the above operation, and FIG. 3 is a fiber shape photograph showing an enlarged cross section thereof. As is clear from the figure, the surface of the inorganic fiber is covered with a dense titania particle layer. The titania layer covering the glass fiber surface is dense and has an effect of preventing the fiber from reacting with SOx gas. And then,
The inorganic fiber and the titania layer react by the heat treatment to be performed,
Titania penetrates the inorganic fiber surface to form a titania-rich reaction layer. The heat treatment temperature for obtaining such an effect is from 500 ° C. to 80 which is the softening temperature of the glass fiber.
Preferably it is between 0 ° C. FIG. 6 shows the firing temperature and the tensile test results of the screen before and after the acid resistance test.
If the firing temperature is lower than 500 ° C., the acid resistance is not improved.
On the other hand, when the temperature exceeds 800 ° C., the fibers are softened and restrained, so that the initial strength is significantly reduced. Further, in order to obtain the effect of the present invention at 500 ° C. or lower, it is necessary to perform firing for a long time. Further, as shown in FIG. 4, as the thickness of the titania film, as the thickness of the fiber increases, cracks or peels occur in the film as the thickness increases, so that the upper limit of the film thickness is 0.5 μm. It is necessary to On the other hand, if the film thickness is too thin, a portion where a film is not formed on the fiber appears, so the lower limit of the film thickness needs to be 0.05 μm. Table 1 shows the relationship between the film thickness and the occurrence of cracks. The film thickness can be controlled by setting the solid concentration and the impregnation time of the used colloidal titania to appropriate values.

【0014】[0014]

【表1】 なお、無機繊維の耐熱・耐酸性の向上は上記処理で充分
達成されるが、触媒の基材として使用する場合には、耐
酸性以外に触媒ペーストを塗布する際に基材が変形しな
いように、ある程度の剛性が必要となる。そのために
は、上記皮膜を無機繊維表面に形成した後に、その外側
のコロイダルチタニア(またはコロイダルシリカ)とア
ルミナ、チタニア、ジルコニアなどの酸化物粒子(粒子
径は0.1〜1.0μm)の混合物からなるコーティン
グ層を設けることによって繊維の剛性を向上させるのに
寄与する。上記酸化物粒子の平均径が上記範囲外では繊
維の剛性が低下したり、コーテイング層の隔離を生じ易
くなる。
[Table 1] In addition, the improvement of heat resistance and acid resistance of the inorganic fiber is sufficiently achieved by the above treatment, but when used as a base material for a catalyst, the base material is not deformed when applying a catalyst paste other than the acid resistance. Some rigidity is required. For this purpose, after the above-mentioned film is formed on the surface of the inorganic fiber, a mixture of the outer colloidal titania (or colloidal silica) and oxide particles (particle diameter: 0.1 to 1.0 μm) of alumina, titania, zirconia, etc. By providing a coating layer consisting of, it contributes to improving the rigidity of the fiber. When the average diameter of the oxide particles is out of the above range, the rigidity of the fiber is reduced, and the coating layer is easily separated.

【0015】[0015]

【実施例】以下、本発明を具体的実施例を用いてより詳
細に説明する。 実施例1 コロイダルチタニア(チタニアの含有量5wt%)溶液
にSiO2 54%、CaO19%、Al2 3 2%、B
2 3 5%、その他2%からなる直径9ミクロンのEガ
ラス繊維1400本をより合わせたヤーンを1インチ当
たり10目で平織りした無機繊維織布を約1分間含浸
し、130℃で30分乾燥した。その後、大気中で55
0℃で2時間の熱処理を実施し試料とした。 実施例2 平均粒径0.5μmのチタニア粒子とコロイダルチタニ
ア(チタニア含有量5wt%)を重量比で1:1に混合
した混合液を実施例1で得られた無機繊維織布に含浸さ
せ、130℃で30分乾燥した。その後550℃で2時
間の熱処理を実施し試料とした。 実施例3 平均粒径0.5μmのチタニア粒子とコロイダルシリカ
(シリカ含有量5wt%)を重量比で1:1に混合した
混合液を実施例1で得られた無機繊維織布に含浸させ、
130℃で30分乾燥した。その後550℃で2時間の
熱処理を実施し試料とした。 比較例1 コロイダルシリカ(シリカの含有量5%)溶液にSiO
2 54%、CaO19%、Al2 3 2%、B2 3
%、その他2%からなる直径9ミクロンのEガラス繊維
1400本をより合わせたヤーンを1インチ当たり10
目で平織りした無機繊維織布を含浸し、130℃で30
分乾燥した。その後550℃で2時間の熱処理を実施し
試料とした。 比較例2 未処理のSiO2 54%、CaO19%、Al2 3
%、B2 3 5%、その他2%からなる直径9ミクロン
のEガラス繊維1400本をより合わせたヤーンを1イ
ンチ当たり10目で平織りした無機繊維織布そのままを
試料とした。
The present invention will be described below in more detail with reference to specific examples. Example 1 54% SiO 2 , 19% CaO, 2 % Al 2 O 3 , B in colloidal titania (content of titania 5 wt%) solution
An inorganic fiber woven fabric obtained by plain weaving a yarn obtained by twisting 1400 E glass fibers having a diameter of 9 microns and consisting of 5% of 2 O 3 and other 2% at a rate of 10 stitches per inch is impregnated for about 1 minute and then at 130 ° C. for 30 minutes. Dried. After that, 55
Heat treatment was performed at 0 ° C. for 2 hours to obtain a sample. Example 2 An inorganic fiber woven fabric obtained in Example 1 was impregnated with a liquid mixture obtained by mixing titania particles having an average particle diameter of 0.5 μm and colloidal titania (titania content: 5 wt%) at a weight ratio of 1: 1. Dried at 130 ° C. for 30 minutes. Thereafter, heat treatment was performed at 550 ° C. for 2 hours to obtain a sample. Example 3 An inorganic fiber woven fabric obtained in Example 1 was impregnated with a liquid mixture obtained by mixing titania particles having an average particle diameter of 0.5 μm and colloidal silica (silica content: 5 wt%) at a weight ratio of 1: 1.
Dried at 130 ° C. for 30 minutes. Thereafter, heat treatment was performed at 550 ° C. for 2 hours to obtain a sample. Comparative Example 1 SiO solution was added to colloidal silica (silica content 5%) solution.
2 54%, CaO19%, Al 2 O 3 2%, B 2 O 3 5
%, And 2%, other yarns of 1,400 E-glass fibers having a diameter of 9 microns are woven in 10 inches per inch.
Impregnated with plain woven inorganic fiber woven fabric,
And dried. Thereafter, heat treatment was performed at 550 ° C. for 2 hours to obtain a sample. Comparative Example 2 Untreated SiO 2 54%, CaO 19%, Al 2 O 3 2
%, B 2 O 3 5%, and other 2%, and a yarn obtained by combining 1,400 E-glass fibers having a diameter of 9 microns and having a diameter of 1400, was plain woven at 10 stitches per inch, and was used as a sample.

【0016】上記実施例および比較例について、そのま
まスクリーンから抜き取ったヤーン1本の引張り強度
(A)と、500℃で硫酸根を含むチタニア粉末中に1
00時間接触させた後のヤーン1本当たりの引張り強度
(B)を測定した。引張り試験条件は以下のとおりであ
る。 治具間距離:20mm 引張り速度:2mm/min 温度 :室温 繰返し数 :5回 図5に測定結果の平均値を示す。本図から明らかなよう
に、実施例1〜3の各試料は、初期強度は比較例と同等
であるが、SOxガス含有ガスと接触させた後の強度は
比較例に較べて著しく高い値を示しており、本発明の方
法が耐熱・耐酸性無機繊維を得るのに優れたものである
ことがわかる。
In the above Examples and Comparative Examples, the tensile strength (A) of one yarn extracted from the screen as it was was measured at 500 ° C. in a titania powder containing a sulfate group.
After contact for 00 hours, the tensile strength (B) per yarn was measured. The tensile test conditions are as follows. Jig distance: 20 mm Pulling speed: 2 mm / min Temperature: room temperature Number of repetitions: 5 FIG. 5 shows the average value of the measurement results. As is clear from this figure, each of the samples of Examples 1 to 3 has the same initial strength as the comparative example, but the strength after being brought into contact with the SOx gas-containing gas has a significantly higher value than the comparative example. This shows that the method of the present invention is excellent in obtaining heat-resistant and acid-resistant inorganic fibers.

【0017】[0017]

【発明の効果】本発明によれば、Eガラス等の安価な汎
用ガラス繊維を酸性ガスを含む腐食環境下で、かつ高温
で使用することができるようになる。その結果、シリカ
ガラス、炭化けい素等の高コストのセラミック繊維を本
発明の耐熱・耐酸性繊維にて置き換えることができ、各
種耐食、耐熱製品のコストを大幅に低減することができ
る。
According to the present invention, inexpensive general-purpose glass fibers such as E glass can be used at a high temperature under a corrosive environment containing an acidic gas. As a result, high-cost ceramic fibers such as silica glass and silicon carbide can be replaced by the heat-resistant and acid-resistant fibers of the present invention, and the cost of various corrosion-resistant and heat-resistant products can be greatly reduced.

【0018】また、耐食、耐熱性に優れた基材を多量に
使用するボイラ排ガス脱硝用触媒等各種触媒基材として
使用することによって、耐久性向上に効果がある。
Further, by using as a catalyst base material such as a catalyst for denitration of boiler exhaust gas using a large amount of a base material excellent in corrosion resistance and heat resistance, the effect of improving durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明における無機繊維の断面模式図
である。
FIG. 1 is a schematic sectional view of an inorganic fiber according to the present invention.

【図2】図2は、本発明における無機繊維の表面を示す
繊維の形状写真図である。
FIG. 2 is a photograph of fiber shape showing the surface of an inorganic fiber in the present invention.

【図3】図3は、本発明における無機繊維の拡大断面を
示す繊維の形状写真図である。
FIG. 3 is a photograph of a fiber shape showing an enlarged cross section of an inorganic fiber in the present invention.

【図4】図4は、チタニアの膜厚が厚い場合の無機繊維
の表面を示す繊維の形状写真図である。
FIG. 4 is a photograph of fiber shape showing the surface of inorganic fiber when the thickness of titania is large.

【図5】図5は、実施例と比較例の無機繊維の強度を比
較した図である。
FIG. 5 is a diagram comparing the strengths of inorganic fibers of an example and a comparative example.

【図6】図6は、本発明における焼成温度と繊維の引張
り強度の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a firing temperature and a tensile strength of a fiber in the present invention.

【符号の説明】[Explanation of symbols]

1…無機繊維、2…チタニア層。 1 ... inorganic fiber, 2 ... titania layer.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 25/42 B01D 53/86 B01J 21/16 B01J 35/06 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03C 25/42 B01D 53/86 B01J 21/16 B01J 35/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルカリおよび/またはアルミニウム酸
化物を含む無機繊維表面に平均粒径0.01μm以下の
チタニア粒子からなる0.05μm以上、0.5μm以
下の皮膜が形成され、500℃以上、800℃以下で焼
成されていることを特徴とする耐熱・耐酸性無機繊維。
1. A film of titania particles having an average particle size of 0.01 μm or less and a thickness of 0.05 μm or more and 0.5 μm or less is formed on the surface of an inorganic fiber containing an alkali and / or aluminum oxide. A heat- and acid-resistant inorganic fiber which is fired at a temperature of not more than ℃.
【請求項2】 耐熱・耐酸性無機繊維の製造方法におい
て、アルカリおよび/またはアルミニウム酸化物を含む
無機繊維に、コロイダルチタニア溶液を含浸または塗布
したのち、乾燥し、500℃以上、800℃以下で焼成
することを特徴とする耐熱・耐酸性無機繊維の製造方
法。
2. A method for producing a heat- and acid-resistant inorganic fiber, comprising impregnating or applying a colloidal titania solution to an inorganic fiber containing an alkali and / or aluminum oxide, drying, and then drying at 500 to 800 ° C. A method for producing a heat- and acid-resistant inorganic fiber, characterized by firing.
【請求項3】 耐熱・耐酸性無機繊維の製造方法におい
て、アルカリおよび/またはアルミニウム酸化物を含む
無機繊維に、コロイダルチタニア溶液を含浸または塗布
したのち、乾燥後500℃以上、800℃以下で焼成
し、これにコロイダルチタニアまたはコロイダルシリカ
と粒子径が0.1〜1.0μmの酸化物粒子との混合液
を含浸または塗布し、乾燥後、焼成することを特徴とす
る耐熱・耐酸性無機繊維の製造方法。
3. A method for producing a heat- and acid-resistant inorganic fiber, comprising impregnating or applying a colloidal titania solution to an inorganic fiber containing an alkali and / or aluminum oxide, followed by drying and firing at 500 ° C. or more and 800 ° C. or less. And heat- and acid-resistant inorganic fibers characterized by being impregnated or coated with a mixed solution of colloidal titania or colloidal silica and oxide particles having a particle size of 0.1 to 1.0 μm, dried and fired. Manufacturing method.
JP04047839A 1992-02-04 1992-02-04 Heat- and acid-resistant inorganic fibers and method for producing the same Expired - Fee Related JP3138312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04047839A JP3138312B2 (en) 1992-02-04 1992-02-04 Heat- and acid-resistant inorganic fibers and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04047839A JP3138312B2 (en) 1992-02-04 1992-02-04 Heat- and acid-resistant inorganic fibers and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05221695A JPH05221695A (en) 1993-08-31
JP3138312B2 true JP3138312B2 (en) 2001-02-26

Family

ID=12786541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04047839A Expired - Fee Related JP3138312B2 (en) 1992-02-04 1992-02-04 Heat- and acid-resistant inorganic fibers and method for producing the same

Country Status (1)

Country Link
JP (1) JP3138312B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897483B2 (en) * 1999-03-31 2007-03-22 トヨタ自動車株式会社 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4949546B2 (en) * 2000-03-27 2012-06-13 岩崎電気株式会社 Blue-emitting and visible-emitting sol-gel glass

Also Published As

Publication number Publication date
JPH05221695A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
US4732879A (en) Method for applying porous, metal oxide coatings to relatively nonporous fibrous substrates
EP1468737A1 (en) Photocatalytic composite material and method for preparation thereof
US4659610A (en) Structures made using an inorganic-binder composition
US6071603A (en) Glass-impregnated fiber-reinforced ceramic and method of manufacturing the same
EP0398752B2 (en) Catalyst for reducing nitrogen oxides
US3232782A (en) High temperature resistant vitreous material and method of producing same
KR100294428B1 (en) Catalyst and process for the production thereof
JP3138312B2 (en) Heat- and acid-resistant inorganic fibers and method for producing the same
US5316797A (en) Preparing refractory fiberreinforced ceramic composites
JPS63274455A (en) Plate-shaped catalyst for removing nitrogen oxide from exhaust gas and its production
EP1142852B1 (en) Composite ceramic material having graded thermochemical protective coating
US5268199A (en) Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing
JPH04281068A (en) Antioxidative inorganic fiber woven fabric, inorganic fiber plate-like catalyst and production thereof
EP0320458A1 (en) Foam ceramic for a filter for the purification of diesel engine exhaust gases
EP0885842B1 (en) Process for preparing silica gel and process for producing dehumidifying element
JPH05285399A (en) Production of catalyst for purification of exhaust gas and inorganic fibrous base material for the same
JP2004057912A (en) Photocatalyst composite material and its production method
JP3091240B2 (en) Heat- and acid-resistant glass fiber, method for producing the same, and method for producing glass fiber plate catalyst
JP3495874B2 (en) Method of manufacturing dehumidifying element
US6624105B2 (en) Oxide ceramic fiber/oxide ceramic composite material and process for production thereof
JP2927454B2 (en) Catalyst for removing nitrogen oxides and method for producing the same
JP3234217B2 (en) Plate catalyst for removing nitrogen oxides, base material thereof, and methods for producing them
JPH05221752A (en) Production of hollow fiber of porous ceramic with end sealed by impregnation
Lannutti et al. Sol‐Gel Derived Coatings on SiC and Silicate Fibers
JP3110033B2 (en) Nitrogen oxide removal catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees