JP4949546B2 - Blue-emitting and visible-emitting sol-gel glass - Google Patents

Blue-emitting and visible-emitting sol-gel glass Download PDF

Info

Publication number
JP4949546B2
JP4949546B2 JP2000090704A JP2000090704A JP4949546B2 JP 4949546 B2 JP4949546 B2 JP 4949546B2 JP 2000090704 A JP2000090704 A JP 2000090704A JP 2000090704 A JP2000090704 A JP 2000090704A JP 4949546 B2 JP4949546 B2 JP 4949546B2
Authority
JP
Japan
Prior art keywords
sol
glass
gel glass
blue light
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090704A
Other languages
Japanese (ja)
Other versions
JP2001270733A (en
Inventor
憲彦 鎌田
繁 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2000090704A priority Critical patent/JP4949546B2/en
Publication of JP2001270733A publication Critical patent/JP2001270733A/en
Application granted granted Critical
Publication of JP4949546B2 publication Critical patent/JP4949546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3447Europium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/54Doped silica-based glasses containing metals containing beryllium, magnesium or alkaline earth metals

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス作製時に高温での原料の溶解を要する溶融法や、ガラス作製後、さらに還元炉での熱処理を要することなしに、2価のユウロピウムイオン(Eu2+)による青色発光またはそれを基盤とする可視域発光を生じるゾルゲルガラスに関するものである。
【0002】
【従来の技術】
希土類元素を添加したセラミックスあるいはガラスは既に実用化され、ランプ用蛍光体、ブラウン管用蛍光体、長残光性蓄光材などがよく知られている。
これらは一般的に不透明な母体材料にテルビウム(Tb)やユウロピウム(Eu)を添加したものでテルビウム(Tb)においては視感特性の最も感度の高い緑領域に強い発光を示し、一方、ユウロピウム(Eu)においては赤色発光領域に蛍光を示すことから用途に応じた蛍光物質として用いられている。
【0003】
さらに、透明体を母体とした即ち透明ガラスを用いたものとしては特公昭57−27047号、特公昭57−27048号、特開平8−133780号、特開平10−167755号などに開示され、これらは母体ガラスとして溶融ガラスが用いられている。その作製方法としては溶融温度が比較的低いホウ珪酸ガラスやフツ燐酸塩ガラスやアルミン酸ガラスなどが母体ガラスとして用いられているのが現状である。
その具体的な作製方法としては、珪素(SiO2 )、5〜50mol%、硼酸(B23 )10〜55mol%を主組成物として所定の重量割合で原料を調合し、調合した原料を1,200〜1,500℃の温度で2〜3時間溶融し、金型に流し出して成形することによって安定したガラスを得ている。
又、フツ燐酸塩ガラスの場合も燐酸アルミ3〜5%、燐酸バリウム3〜5%、フッ化アルミ20〜35%、フッ化カルシウム22〜28%を主成分とした原料として所定の重量割合に調合した原料を900〜1,300℃で溶融し、黒鉛金型に流し出して成形したり、場合によっては下記に記述する還元雰囲気や不活性雰囲気での溶融が必要になるなど工業製品としては量産性に乏しい手法でもあった。
【0004】
又、さらにガラス溶融温度を低下させる手段として、フツ燐酸塩ガラスにマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)等の酸化物を数%添加することによってガラスの溶融性を向上させたり、リチウム(Li)、ナトリウム(Na)、カリウム(K)等の元素を添加することによって溶融温度を低下させるなど工業上安価な製品が得られるよう工夫されている。
さらには、ユウロピウムを添加した溶融ガラスでは、ユウロピウム(Eu)イオンは通常は安定な3価のイオン(Eu3+ )となり、主に赤色発光を起こし、これをさらに還元雰囲気中で熱処理することによって3価から2価のユウロピウムイオン(Eu2+ )に変えることによって青色発光が得られることが知られている。従って青色発光を得ようとする場合、従来から用いられている母材ガラスの溶融温度が1,000℃前後となり工業的に600℃を越えるような還元炉の設置や管理は難しく、その温度、還元雰囲気の維持管理等にかなりのコストがかかることが問題点であった。
【0005】
上述のような工業的に高温の工程を経る手法を回避する一つの手段としてJ.of Luminescence, 78, p63, '98及びJ. Appl. Phys, 81(9), p12, '97に発表されているような塩素系原料を用いたゾルゲル法によるシリケートガラス中にユウロピウム(Eu)イオン単体やサマリウム(Sm)イオンとアルミニウム(Al)イオンを共添加した蛍光ガラスにおいて青色発光、黄赤色発光が得られたとの報告もあった。
【0006】
又、J.of Non-Crystalline Solids, p197, '96にはユウロピウム(Eu)イオンとアルミニウム(Al)イオンの共添加によっても青色発光の報告がなされているがその発光強度は微弱なものであり実用に供するものではなかった。
2価のユウロピウムイオン(Eu2+ )を含有させた青色発光ガラスにおいて青色発光強度を増大させる方法としては塩素添加量との関係や濃度消失を起こさない範囲でのユウロピウム(Eu)の添加量やユウロピウム(Eu)イオンを始めとした複数の希土類イオンの添加などが開示されているが、溶融法より工業的に有利な低温でのガラス作製が可能なゾルゲル法においても、ガラス作製後の還元熱処理なしに2価のユウロピウムイオン(Eu2+)を生成して発光強度の高い青色発光を起こすガラスを得るまでに至っていないのが現状であった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、高温の還元炉処理に伴う高コスト化の問題点を解決し、低温工程でより作製が容易な、また低温工程のために様々なイオン、有機分子等との複合化による高機能化が容易なゾルゲル法による高い発光強度を有する青色発光ゾルゲルガラス及びそれを基盤とする可視発光ゾルゲルガラスを提供することにある。
【0008】
【課題を解決するための手段】
本発明では、ガラス母体を形成する原料に加えて、発光母体であるユウロピウム(Eu)及び還元剤R(Al,Zn,Ca,Mgのうちいずれか1つ)を含む出発溶液を用いてゾルゲル反応を起こさせる。このゾルゲル反応において、還元剤はそれ自体または酸素の電子をユウロピウムイオンに与えるので、3価のユウロピウムイオン(Eu3+ )を2価(Eu2+ )に変える機能がある。(還元能)そして、2価のユウロピウムイオン(Eu2+ )は紫外光励起により青色発光を起こすので、この方法でガラス母体が紫外光照射によって青色に発光する、青色発光ガラスを得ることが可能になった。
【0009】
一方、既に実用化されている溶融ガラスでの従来技術とは、高温を要する溶融法でなく、より低温のゾルゲル法である点と1度ガラスを作製した後に還元処理を行うのではなく、ガラス作製時に青色発光に寄与する2価のユウロピウムイオン(Eu2+)が生成する点で異なっている。本発明はより低温で容易に作製が可能なため、工業的にも優れた手段である。また有機分子を含む他の発光イオン、分子を熱分解、変性せずに共添加できるため、高機能化、複合化が可能となった。
【0010】
【作用】
通常ゾルゲルガラスの出発原料は、テトラエトキシシランSi(OC25)4等のSi原料、加水分解用のH2O、溶媒(C25OH等アルコ−ル類)、触媒としての酸(塩酸、硫酸、硝酸等)またはアンモニア、その他の添加物からなる。添加物としてユウロピウム(Eu)を用いると、Euは3価のイオン(Eu3+)として安定となり、紫外光励起によってEu3+ からの赤色発光を生じるEu3+ 添加ゾルゲルガラスが得られる。これに対して出発原料として少なくともユウロピウム(Eu)及び還元剤R(Al,Zn,Ca,Mgのうちいずれか1つ)を適量含めると、溶液の加水分解、焼成によるガラス形成と共に還元剤Rの還元能により2価のEuイオン(Eu2+)が得られる。
【0011】
【発明の実施の形態】
【実施例1】
テトラエトキシシラン(Si(OC25)4 )、硝酸ユウロピウム(Eu(NO3)3・6H2O)を原料とするゾルゲルガラス作製時に、アルミニウムブトキシド(Al(OC49)3 )または硝酸アルミニウム(Al(NO3)3・9H2O)を、ゾルゲルガラスの完成成分をSiO2:Al23:Eu23 のモル%換算で表した場合、EuがEu23換算で5モル%以下、AlがAl23換算で10モル%以下となるように添加する。原料はエタノ−ル、水、硝酸溶液に溶解し、出発ゾルとする。この状態で通常のゾルゲル工程により、ゲル化反応を起こさせ、800℃程度まで加熱しゾルゲルガラスを作製すると、先のアルミニウムの還元能により、通常3価となるユウロピウムイオンが2価となり、それによって青色発光するゾルゲルガラスが得られる。なおこの出発原料分子は1例であり、本発明の範囲を限定するものではない。
【0012】
図1に発光スペクトルのEu濃度の依存性を示す。横軸は波長(nm)、縦軸はその発光強度(任意単位)を表わす。Eu濃度が0.35モル%の場合、波長400nm付近の発光がピークを示し、Eu濃度が1.41モル%の場合、波長620nm付近の発光がピークを示している。
【0013】
図2に発光スペクトルのAl濃度の依存性を示す。横軸は波長(nm)、縦軸はその発光強度(任意単位)を表わす。Al濃度が0.82モル%の場合、波長420nm付近の発光がピークを示し、Al濃度が19.8モル%の場合、波長620nm付近の発光がピークを示している。
【0014】
【実施例2】
本発明実施例1(特許請求の範囲記載)の方法において、任意形状の容器を型としてゾルゲルガラスの原材料をポッティングして作製することによって、任意形状の青色発光ゾルゲルガラスが得られた。
【0015】
【実施例3】
本発明実施例1(特許請求の範囲記載)の方法において、ガラスその他の基板上にディップコートまたはスピンコートすることによって青色発光薄膜ゾルゲルガラスを得ることができた。
【0016】
【参考例1】
本発明実施例1(特許請求の範囲記載)の方法において、2価のユウロピウムイオン(Eu2+ )と共に他の発光母体を含むゾルゲルガラスを作製し紫外光を照射することにより、紫外光励起に対する2価のユウロピウムイオン(Eu2+)からの青色発光と、他の発光母体からの発光の混色によって青色以外の可視発光を利用するゾルゲルガラスが得られた。
【0017】
【参考例2】
本発明実施例1(特許請求の範囲記載)の方法において、2価のユウロピウムイオン(Eu2+ )と共に他の発光母体を含むゾルゲルガラスを作製し紫外光を照射することによって紫外光励起に対する2価のユウロピウムイオン(Eu2+)からの青色発光で他の発光母体を励起し、またはEu2+の準位を介して他の発光母体を電子的に励起し、他の発光母体からの発光、またはEu2+からの青色発光と他の発光母体からの発光の混色発光を利用したゾルゲルガラスを得ることができた。
【0018】
還元剤として硝酸アルミニウム(Al(NO3)3・9H2O)、アルミニウムブトキシド(Al(OH49)3)等のAlを含む物質を用いることによって、ゾルゲルガラスの完成成分をSiO2:Al23:Eu23のモル%換算で表した場合、EuがEu23換算で5モル%以下、AlがAl23換算で10モル%以下の領域でEu2+による青色発光が、特にEuがEu23換算で2モル%以下、AlがAl23換算で5モル%以下の領域でEu2+による青色発光が顕著に観測される。
【0019】
【発明の効果】
以上のように本発明に係る可視発光ゾルゲルガラスは、作成の際、高温の還元炉処理に伴う高コスト化の問題点を解決し、低温工程でより作製が容易な、また低温工程のために様々なイオン、有機分子等との複合化による高機能化が容易なゾルゲル法による高い発光強度を有する等の利点がある。
【図面の簡単な説明】
【図1】図1は本発明に係る一実施例の発光スペクトルのEu濃度の依存特性を示す図である。
【図2】図1は本発明に係る一実施例の発光スペクトルのAl濃度の依存特性を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a melting method that requires melting of raw materials at a high temperature during glass production, blue light emission from divalent europium ions (Eu 2+ ) or the like without requiring heat treatment in a reduction furnace after glass production. The present invention relates to a sol-gel glass that produces visible light emission based on the above.
[0002]
[Prior art]
Ceramics or glass to which rare earth elements are added have already been put into practical use, and lamp phosphors, cathode ray tube phosphors, long persistence phosphorescent materials, and the like are well known.
These are generally opaque base materials obtained by adding terbium (Tb) or europium (Eu), and terbium (Tb) emits strong light in the most sensitive green region, while europium ( Eu) is used as a fluorescent material according to the application because it exhibits fluorescence in the red light emitting region.
[0003]
Further, those using a transparent body as a base, that is, using transparent glass, are disclosed in JP-B-57-27047, JP-B-57-27048, JP-A-8-133780, JP-A-10-167755, etc. Molten glass is used as the base glass. Currently, borosilicate glass, fluorophosphate glass, aluminate glass, or the like having a relatively low melting temperature is used as the base glass.
As a specific production method, raw materials are prepared in a predetermined weight ratio with silicon (SiO 2 ), 5 to 50 mol%, and boric acid (B 2 O 3 ) 10 to 55 mol% as a main composition. Stable glass is obtained by melting at a temperature of 1,200 to 1,500 ° C. for 2 to 3 hours, pouring into a mold and molding.
In the case of fluorophosphate glass, a raw material mainly composed of aluminum phosphate 3 to 5%, barium phosphate 3 to 5%, aluminum fluoride 20 to 35% and calcium fluoride 22 to 28% is used at a predetermined weight ratio. As an industrial product, the prepared raw material is melted at 900 to 1,300 ° C., poured into a graphite mold and molded, or in some cases, melting in a reducing atmosphere or an inert atmosphere described below is required. It was also a method with poor mass productivity.
[0004]
Further, as a means for lowering the glass melting temperature, several percent of oxides such as magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn) are added to the fluorophosphate glass. It is devised to obtain industrially inexpensive products, such as improving the meltability of glass by reducing the melting temperature by adding elements such as lithium (Li), sodium (Na), potassium (K), etc. ing.
Furthermore, in molten glass to which europium has been added, europium (Eu) ions are usually stable trivalent ions (Eu 3+ ), which mainly emit red light, and are further heat treated in a reducing atmosphere. It is known that blue light emission can be obtained by changing from trivalent to divalent europium ion (Eu 2+ ). Therefore, when trying to obtain blue light emission, it is difficult to install and manage a reduction furnace in which the melting temperature of the base glass used conventionally is around 1,000 ° C. and industrially exceeds 600 ° C., The problem was that it took considerable cost to maintain the reducing atmosphere.
[0005]
As a means of avoiding the above-described method of undergoing an industrially high temperature process, J.A. of Luminescence, 78, p63, '98 and Europium (Eu) ions in silicate-gel silicate glass using chlorinated raw materials as disclosed in J. Appl. Phys, 81 (9), p12, '97 There was also a report that blue light emission and yellow red light emission were obtained in a single glass or a fluorescent glass co-doped with samarium (Sm) ions and aluminum (Al) ions.
[0006]
In addition, J.H. of Non-Crystalline Solids, p197, '96 has also been reported to emit blue light by co-addition of europium (Eu) ions and aluminum (Al) ions, but the light emission intensity is weak and is useful for practical use. It wasn't.
In a blue light emitting glass containing divalent europium ions (Eu 2+ ), as a method of increasing the blue light emission intensity, the relationship with the amount of chlorine added, the amount of europium (Eu) added within the range where no concentration disappears, Although the addition of a plurality of rare earth ions including europium (Eu) ions has been disclosed, reduction heat treatment after glass production is also possible in the sol-gel method capable of producing glass at a low temperature, which is industrially advantageous over the melting method. The present situation is that no divalent europium ion (Eu 2+ ) is produced without producing a glass that emits blue light with high emission intensity.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to solve the problem of high cost associated with high-temperature reduction furnace treatment, easier to manufacture in the low-temperature process, and by combining with various ions, organic molecules, etc. for the low-temperature process. It is an object to provide a blue light emitting sol-gel glass having a high light emission intensity by a sol-gel method which can be easily enhanced in function and a visible light emitting sol-gel glass based thereon.
[0008]
[Means for Solving the Problems]
In the present invention, a sol-gel reaction is performed using a starting solution containing europium (Eu), which is a luminescent matrix, and a reducing agent R (any one of Al, Zn, Ca, Mg) in addition to a raw material for forming a glass matrix. Wake up. In this sol-gel reaction, the reducing agent gives itself or oxygen electrons to europium ions, and thus has a function of changing trivalent europium ions (Eu 3+ ) to divalent (Eu 2+ ). (Reducing ability) And since the divalent europium ion (Eu 2+ ) emits blue light by ultraviolet light excitation, it is possible to obtain a blue light emitting glass in which the glass matrix emits blue light by ultraviolet light irradiation. became.
[0009]
On the other hand, the conventional technology for molten glass that has already been put into practical use is not a melting method that requires a high temperature, but a low-temperature sol-gel method. The difference is that a divalent europium ion (Eu 2+ ) that contributes to blue light emission is produced during the production. Since the present invention can be easily produced at a lower temperature, it is an industrially excellent means. In addition, other luminescent ions and molecules including organic molecules can be co-added without thermal decomposition or modification, thus enabling higher functionality and complexing.
[0010]
[Action]
Usually, the starting material of sol-gel glass is Si raw material such as tetraethoxysilane Si (OC 2 H 5 ) 4 , H 2 O for hydrolysis, solvent (alcohol such as C 2 H 5 OH), acid as catalyst (Hydrochloric acid, sulfuric acid, nitric acid, etc.) or ammonia and other additives. When europium (Eu) is used as an additive, Eu becomes stable as a trivalent ion (Eu 3+ ), and an Eu 3+ added sol-gel glass that generates red light emission from Eu 3+ by ultraviolet light excitation is obtained. In contrast, when an appropriate amount of at least europium (Eu) and a reducing agent R (any one of Al, Zn, Ca, and Mg) are included as starting materials, the solution of the reducing agent R is formed along with the hydrolysis of the solution and the formation of glass by firing. Divalent Eu ions (Eu 2+ ) are obtained by the reducing ability.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
When producing sol-gel glass using tetraethoxysilane (Si (OC 2 H 5 ) 4 ), europium nitrate (Eu (NO 3 ) 3 .6H 2 O) as a raw material, aluminum butoxide (Al (OC 4 H 9 ) 3 ) or aluminum nitrate (Al (NO 3) 3 · 9H 2 O), the finished component of the sol-gel glass SiO 2: Al 2 O 3: when expressed in mol% in terms of Eu 2 O 3, Eu is Eu 2 O 3 in terms of And 5 mol% or less, and Al is added so as to be 10 mol% or less in terms of Al 2 O 3 . The raw material is dissolved in ethanol, water and nitric acid solution to obtain a starting sol. In this state, a gelation reaction is caused by a normal sol-gel process, and when heated to about 800 ° C. to produce a sol-gel glass, europium ions, which are usually trivalent, become divalent due to the reducing ability of the aluminum, thereby A sol-gel glass emitting blue light is obtained. This starting material molecule is an example and does not limit the scope of the present invention.
[0012]
FIG. 1 shows the dependence of the emission spectrum on the Eu concentration. The horizontal axis represents wavelength (nm), and the vertical axis represents the emission intensity (arbitrary unit). When the Eu concentration is 0.35 mol%, the emission near the wavelength of 400 nm shows a peak, and when the Eu concentration is 1.41 mol%, the emission near the wavelength of 620 nm shows a peak.
[0013]
FIG. 2 shows the dependence of the emission spectrum on the Al concentration. The horizontal axis represents wavelength (nm), and the vertical axis represents the emission intensity (arbitrary unit). When the Al concentration is 0.82 mol%, the emission near the wavelength of 420 nm shows a peak, and when the Al concentration is 19.8 mol%, the emission near the wavelength of 620 nm shows a peak.
[0014]
[Example 2]
In the method of Example 1 of the present invention (described in claims), a blue light-emitting sol-gel glass having an arbitrary shape was obtained by potting a sol-gel glass raw material using a container having an arbitrary shape as a mold.
[0015]
[Example 3]
In the method of Example 1 of the present invention (described in claims), a blue light-emitting thin-film sol-gel glass could be obtained by dip coating or spin coating on a glass or other substrate.
[0016]
[Reference Example 1]
In the method of Example 1 of the present invention (described in the claims), a sol-gel glass containing a divalent europium ion (Eu 2+ ) and another luminescent matrix is prepared and irradiated with ultraviolet light, whereby 2 for ultraviolet light excitation. A sol-gel glass using visible light emission other than blue was obtained by mixing the blue light emission from the valent europium ion (Eu 2+ ) and the light emission from the other light-emitting matrix.
[0017]
[Reference Example 2]
In the method of Example 1 of the present invention (described in claims), a sol-gel glass containing a divalent europium ion (Eu 2+ ) and another luminescent matrix is prepared and irradiated with ultraviolet light, thereby divalent to ultraviolet light excitation. The other luminescent matrix is excited by blue emission from the europium ion (Eu 2+ ), or the other luminescent matrix is electronically excited through the Eu 2+ level, Alternatively, it was possible to obtain a sol-gel glass using a mixed color light emission of blue light emission from Eu 2+ and light emission from another light emitting matrix.
[0018]
By using a substance containing Al such as aluminum nitrate (Al (NO 3 ) 3 .9H 2 O), aluminum butoxide (Al (OH 4 H 9 ) 3 ) as a reducing agent, the final component of the sol-gel glass is SiO 2 : When expressed in terms of mol% of Al 2 O 3 : Eu 2 O 3 , it is determined by Eu 2+ in a region where Eu is 5 mol% or less in terms of Eu 2 O 3 and Al is 10 mol% or less in terms of Al 2 O 3. Blue light emission, particularly blue light emission by Eu 2+ is observed remarkably in a region where Eu is 2 mol% or less in terms of Eu 2 O 3 and Al is 5 mol% or less in terms of Al 2 O 3 .
[0019]
【Effect of the invention】
As described above, the visible light-emitting sol-gel glass according to the present invention solves the problem of high cost associated with high-temperature reduction furnace processing at the time of production, and is easier to produce in a low-temperature process, and for a low-temperature process. There are advantages such as having a high emission intensity by a sol-gel method that is easy to achieve high functionality by combining with various ions and organic molecules.
[Brief description of the drawings]
FIG. 1 is a graph showing a dependence characteristic of Eu concentration of an emission spectrum of one embodiment according to the present invention.
FIG. 1 is a graph showing an Al concentration dependency characteristic of an emission spectrum of an example according to the present invention.

Claims (2)

紫外光励起により可視域に発光を生ずるゾルゲルガラスの作製時に少なくともユウロピウム(Eu)及び還元剤R(アルミニウム(Al)、亜鉛(Zn)、カルシウム(Ca)、マグネシウム(Mg)のうちいずれか1つ)を含む出発溶液を用いることにより、ガラス作製後に還元のための熱処理を行うことなく、ゾルゲルガラス作製のための熱処理のみで2価のユウロピウムイオン(Eu2+)による青色発光を起こすゾルゲルガラスにおいて、前記還元剤としてアルミニウム(Al)を用い、ゾルゲルガラスの完成成分をSiO2 :Al23 :Eu23 のモル%換算で表した場合、EuがEu23 換算で5モル%以下、AlがAl23 換算で10モル%以下であり、青色発光を起こすことを特徴とする青色発光ゾルゲルガラス。At least europium (Eu) and reducing agent R (aluminum (Al), zinc (Zn), calcium (Ca), magnesium (Mg)) at the time of producing a sol-gel glass that emits light in the visible region by ultraviolet light excitation. In a sol-gel glass that causes blue light emission by divalent europium ions (Eu 2+ ) only by heat treatment for sol-gel glass production without performing heat treatment for reduction after glass production by using a starting solution containing When aluminum (Al) is used as the reducing agent and the final component of the sol-gel glass is expressed in terms of mol% of SiO 2 : Al 2 O 3 : Eu 2 O 3 , Eu is 5 mol% or less in terms of Eu 2 O 3. A blue light emitting sol-gel glass characterized in that Al is 10 mol% or less in terms of Al 2 O 3 and causes blue light emission. 前記2価のユウロピウムイオン(Eu2+)の発光を増感するために、ゾルゲルガラスの原料成分として塩素(Cl)を加えた、青色発光を起こすことを特徴とする請求項1に記載の青色発光ゾルゲルガラス。2. The blue light emission according to claim 1, wherein blue light emission is caused by adding chlorine (Cl) as a raw material component of the sol-gel glass in order to sensitize light emission of the divalent europium ion (Eu 2+ ). Luminescent sol-gel glass.
JP2000090704A 2000-03-27 2000-03-27 Blue-emitting and visible-emitting sol-gel glass Expired - Fee Related JP4949546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090704A JP4949546B2 (en) 2000-03-27 2000-03-27 Blue-emitting and visible-emitting sol-gel glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090704A JP4949546B2 (en) 2000-03-27 2000-03-27 Blue-emitting and visible-emitting sol-gel glass

Publications (2)

Publication Number Publication Date
JP2001270733A JP2001270733A (en) 2001-10-02
JP4949546B2 true JP4949546B2 (en) 2012-06-13

Family

ID=18606278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090704A Expired - Fee Related JP4949546B2 (en) 2000-03-27 2000-03-27 Blue-emitting and visible-emitting sol-gel glass

Country Status (1)

Country Link
JP (1) JP4949546B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2506200C (en) 2002-11-29 2011-05-17 Japan Science And Technology Agency Luminescent glass
EP2447228A4 (en) * 2009-06-25 2014-09-03 Oceans King Lighting Science Blue light emitting glass and preparation method thereof
WO2011079474A1 (en) * 2009-12-31 2011-07-07 海洋王照明科技股份有限公司 White light luminescent device based on purple light leds
CN102320746B (en) * 2011-06-09 2013-03-27 华中科技大学 Method for manufacturing high-silica glass emitting white light
CN102584015B (en) * 2012-01-11 2015-01-28 华中科技大学 White light-emitting glass and preparation method thereof
CN103253863B (en) * 2013-05-06 2015-05-20 浙江大学 Rare-earth-doped nitrogen oxide luminescent glass ceramic and preparation method for same
WO2018037914A1 (en) * 2016-08-24 2018-03-01 堺化学工業株式会社 Fluorescent substance and resin composition containing same
JP7113703B2 (en) * 2018-08-31 2022-08-05 堺化学工業株式会社 Manufacturing method of fluorescent glass and fluorescent glass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524174B2 (en) * 1986-10-16 1996-08-14 セイコーエプソン株式会社 Method for producing quartz glass having optical functionality
JPS63176315A (en) * 1987-01-13 1988-07-20 Seiko Epson Corp Production of quartz glass containing rare earth element
JPS6433029A (en) * 1987-07-28 1989-02-02 Seiko Epson Corp Quartz glass doped with europium and production thereof
JPS6437425A (en) * 1987-07-31 1989-02-08 Seiko Epson Corp Production of doped quartz glass
JPH02296735A (en) * 1989-05-10 1990-12-07 Sumitomo Electric Ind Ltd Production of glass
JPH0613410B2 (en) * 1989-05-26 1994-02-23 株式会社コロイドリサーチ Method for producing aluminosilicate glass
JPH0613411B2 (en) * 1989-05-26 1994-02-23 株式会社コロイドリサーチ Method for producing aluminosilicate glass
JP3138312B2 (en) * 1992-02-04 2001-02-26 バブコック日立株式会社 Heat- and acid-resistant inorganic fibers and method for producing the same
JP3051638B2 (en) * 1994-06-14 2000-06-12 正行 野上 Method for producing glass containing Sm ions

Also Published As

Publication number Publication date
JP2001270733A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
CN110194593B (en) Method for promoting crystallization of all-inorganic perovskite quantum dots in glass by adding fluoride
Wang et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability
US4798681A (en) Luminescent quartz glass, method of preparing such a glass and luminescent screen provided with such a glass
JP2009286681A (en) Luminescent glass and luminescent crystallized glass
JP2002223008A (en) Light emitting element
KR100548805B1 (en) Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements and Method for producing of the same
Guo et al. Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4 (SiO4) 6F2 phosphors with apatite structure
CN103717702A (en) Method for producing coated alkaline earth metal silicate phosphor particles
CN102674693A (en) Full-color emission glass phosphor and preparation method thereof
JP4949546B2 (en) Blue-emitting and visible-emitting sol-gel glass
Eslami et al. Synthesis and spectral properties of Nd-doped glass-ceramics in SiO2-CaO-MgO system prepared by sol-gel method
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
JPS63103841A (en) Manufacture of quartz glass activated by divalent europium
JP6053870B2 (en) Fluoride phosphor, method for producing the same, and semiconductor light emitting device
JPS6366357B2 (en)
JPH0141673B2 (en)
CN113387567B (en) Red fluorescent glass and preparation method thereof
CN109266335B (en) Yellow long-afterglow luminescent material and preparation method thereof
JP2014205777A (en) METHOD FOR PRODUCING β-SIALON USING A PHOSPHOROUS COMPOUND FLUX
JP6973716B2 (en) Manufacturing method of firing type fluorescent material
JP2012092233A (en) Oxynitride phosphor and method for producing the same
CN112500854A (en) Processing method of silicon dioxide nanoparticles for blue-green fluorescent powder
JPWO2014014070A1 (en) Method for producing luminescent glass thin film
JPH04293990A (en) Manganese-activated zinc silicogermanate phosphor and its manufacture
JP2008127255A (en) Tin oxide-containing glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees