JP3136873U - Hot gas sensible heat recovery mat - Google Patents

Hot gas sensible heat recovery mat Download PDF

Info

Publication number
JP3136873U
JP3136873U JP2007006264U JP2007006264U JP3136873U JP 3136873 U JP3136873 U JP 3136873U JP 2007006264 U JP2007006264 U JP 2007006264U JP 2007006264 U JP2007006264 U JP 2007006264U JP 3136873 U JP3136873 U JP 3136873U
Authority
JP
Japan
Prior art keywords
heat
sensible heat
furnace
heat recovery
gas sensible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007006264U
Other languages
Japanese (ja)
Inventor
謙爾 鈴木
清隆 伊藤
松実 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Seisakusho Co Ltd
Original Assignee
Asahi Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Seisakusho Co Ltd filed Critical Asahi Seisakusho Co Ltd
Priority to JP2007006264U priority Critical patent/JP3136873U/en
Application granted granted Critical
Publication of JP3136873U publication Critical patent/JP3136873U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

【課題】工業用炉に適用するのに特に適し、その適用により工業用炉の省エネルギー化を達成できる高温ガス顕熱回収マットを提供する。
【解決手段】高温ガス顕熱回収用マット10を、Si−C系繊維11を厚み:5〜10mm、容積空隙率:90〜95%、通気抵抗による圧力損失:50〜200Paとなるようにマット状に堆積又は編み上げてなるものとする。高温ガス顕熱回収用マットは工業用炉の熱フィルター又は熱レフレクターとして使用され、20〜40%の大きな省エネルギーを達成できる。
【選択図】図1
The present invention provides a high-temperature gas sensible heat recovery mat that is particularly suitable for application to an industrial furnace and that can achieve energy saving of the industrial furnace by the application.
A mat for recovering high-temperature gas sensible heat is formed so that a Si-C fiber 11 has a thickness of 5 to 10 mm, a volume porosity: 90 to 95%, and a pressure loss due to ventilation resistance: 50 to 200 Pa. It shall be deposited or knitted into a shape. The hot gas sensible heat recovery mat is used as a heat filter or a heat reflector of an industrial furnace and can achieve a large energy saving of 20 to 40%.
[Selection] Figure 1

Description

本考案は、各種加熱炉から排出される高温ガスの顕熱を効率的に炉内において自己回収するために用いる高温ガス顕熱回収マットに関する。   The present invention relates to a high-temperature gas sensible heat recovery mat used to efficiently self-recover sensible heat of high-temperature gas discharged from various heating furnaces in the furnace.

工業加熱炉における最も顕著な熱損失は、高温排ガスにより系外に持ち出される顕熱によるものである。この高温排ガスの顕熱を炉内において直接回収し、炉内に還元できれば、理想的な省エネルギー炉を構築することができる。高温ガスを通過させ、その顕熱を漉し取り、炉内に向けて放射する機能を有する熱フィルターに関する伝熱工学的理論計算が非特許文献1に発表され、その実現により数10%に達する燃料消費量の節約が可能なことが示唆されている。また、特許文献1には、「加熱炉内に於ける被加熱物体と燃焼ガス排出口との間に金網等の適度の通気性を有する熱回収物体を配置し、該熱回収物体に燃焼ガスの持つ熱量を吸収せしめ、高温にされた熱回収物体からの放射熱をも被加熱物の加熱に利用する方法。」が開示されている。   The most prominent heat loss in an industrial heating furnace is due to sensible heat brought out of the system by high-temperature exhaust gas. If the sensible heat of this high-temperature exhaust gas can be directly recovered in the furnace and reduced into the furnace, an ideal energy-saving furnace can be constructed. Non-patent document 1 discloses a heat transfer engineering theoretical calculation related to a heat filter that has a function of passing a high-temperature gas, scavenging the sensible heat, and radiating it into the furnace. It has been suggested that consumption can be saved. Patent Document 1 states that “a heat recovery object having an appropriate air permeability such as a wire mesh is disposed between an object to be heated and a combustion gas discharge port in a heating furnace, and combustion gas is disposed on the heat recovery object. In which the amount of heat possessed by the heat sink is absorbed and the radiant heat from the heat recovery object that has been heated to high temperature is also used to heat the object to be heated. "

また、特許文献2には、炉壁が耐火レンガにより形成され炉内の被加熱物を輻射熱により加熱する加熱炉において、前記炉壁のうち少なくとも内壁側が黒色顔料を混入した耐火レンガにより形成することによって、従来の加熱炉に比べて、燃焼排ガス温度を低下させ、被加熱物の昇温速度を向上することができることが記載されている。   Further, in Patent Document 2, in a heating furnace in which a furnace wall is formed of refractory bricks and a heated object in the furnace is heated by radiant heat, at least the inner wall side of the furnace walls is formed of refractory bricks mixed with a black pigment. Therefore, it is described that the temperature of the combustion exhaust gas can be lowered and the heating rate of the object to be heated can be improved as compared with the conventional heating furnace.

特公昭55-25353号公報Japanese Patent Publication No.55-25353 特開平8-210782号公報JP-A-8-210782 越後亮三:「ガスエンタルピーと輻射エネルギー間の効果的転換方法と工業炉への応用」日本機械学会論文誌(B編)45巻(1982)p.2315−2323Echigo Ryozo: “Effective conversion method between gas enthalpy and radiant energy and its application to industrial furnaces” Transactions of the Japan Society of Mechanical Engineers (B) Volume 45 (1982) p.2315-2323

これらの手段により、加熱炉から排出される高温ガスの顕熱を効率的に炉内において自己回収して炉内に還元し、省エネルギー効果を得ることが期待される。しかしながら、現実の工業用炉において、上記手段を実現するためには、多くの工学的問題を解決しなければならない。例えば、特許文献1に記載のように金網を用いる場合には、工業的に安定して操業できるレベルに達せしめるためには、金網の酸化による劣化・損耗、熱歪みによる変形・破壊、熱伝導による熱回収率の低下などの問題を解決しなければならない。また、金網を多孔セラミックスに置き換えた場合は、加熱・冷却時に生ずる膨張−収縮に起因する破損等の致命的欠陥を解決しなければならない。   By these means, it is expected that the sensible heat of the high-temperature gas discharged from the heating furnace is efficiently self-recovered in the furnace and reduced into the furnace to obtain an energy saving effect. However, in order to realize the above means in an actual industrial furnace, many engineering problems must be solved. For example, when a wire mesh is used as described in Patent Document 1, in order to reach a level at which industrially stable operation is possible, deterioration / wear due to oxidation of the wire mesh, deformation / breakage due to thermal strain, heat conduction It is necessary to solve problems such as a decrease in heat recovery rate. In addition, when the wire mesh is replaced with porous ceramics, fatal defects such as breakage due to expansion and contraction that occur during heating and cooling must be solved.

特許文献2に係る発明を工業用炉に適用する場合にも多くの解決すべき課題がある。例えば、使用する寿命が長く、かつ黒体輻射の高い耐火レンガの寿命が供給されなければならないが、そのような耐火レンガはいまだ供給されていない。また、耐火レンガを通しての熱伝導による炉壁から外部に流れる顕熱が増加し、熱回収率の低下を招くという問題もある。   There are many problems to be solved when the invention according to Patent Document 2 is applied to an industrial furnace. For example, the life of a refractory brick that has a long service life and high blackbody radiation must be supplied, but such a refractory brick has not yet been supplied. There is also a problem that sensible heat flowing from the furnace wall to the outside due to heat conduction through the refractory bricks increases, leading to a decrease in heat recovery rate.

しかしながら、上記の工学的課題はいずれも現在に至るまで解決されていない。そのため、特許文献1及び非特許文献1により提案された加熱炉がその実現により大きな省エネルギー効果をもたらすものであるにも拘らず未だ実用レベルには達していない。本考案は、上記課題を解決することを目的とし、工業用炉に適用するのに特に適し、その適用により工業用炉の省エネルギー化を達成できる高温ガス顕熱回収マットを提供することを目的とする。   However, none of the above engineering problems has been solved up to now. Therefore, although the heating furnace proposed by the patent document 1 and the non-patent document 1 brings about a great energy saving effect by its realization, it has not yet reached a practical level. An object of the present invention is to provide a high-temperature gas sensible heat recovery mat that is particularly suitable for application to an industrial furnace and that can achieve energy saving of the industrial furnace by its application. To do.

本考案者は、上記課題を解決するために、ポリマー・ルートにより作成されたSi−C系繊維に着目し、これを特に工業用炉の高温ガス顕熱回収マットとして適した構造に組み上げたとき、前記効果を効果的に発揮できるという事実を確認し、本考案を完成した。   In order to solve the above-mentioned problems, the present inventor paid attention to Si-C-based fibers produced by the polymer route, and when assembled into a structure suitable as a high-temperature gas sensible heat recovery mat for industrial furnaces. The present invention has been completed by confirming the fact that the above-mentioned effects can be effectively exhibited.

具体的には、本考案に係る高温ガス顕熱回収マットは、Si−C系繊維を、厚み:5〜10mm、容積空隙率:90〜95%、通気抵抗による圧力損失:50〜200Paとなるように堆積又は編み上げてなるものである。   Specifically, the high-temperature gas sensible heat recovery mat according to the present invention has a Si-C fiber having a thickness of 5 to 10 mm, a volume porosity of 90 to 95%, and a pressure loss due to ventilation resistance of 50 to 200 Pa. In this way, they are deposited or knitted.

上記高温ガス顕熱自己回収マットは、熱フィルター又は熱レフレクターとして使用することができる。また、上記高温ガス顕熱回収マットを、少なくともその表裏面のうち1面が耐熱性の金網により覆われてなるものとすることができる。   The high-temperature gas sensible heat self-recovery mat can be used as a heat filter or a heat reflector. Further, the high-temperature gas sensible heat recovery mat may be formed by covering at least one of the front and back surfaces with a heat-resistant wire mesh.

本考案に係る高温ガス顕熱回収マットは、耐熱性が高く、強度の大きいSi−C系繊維を空隙率が大きいマットに編み上げ又は堆積したものであり、その通気抵抗による圧力損失が低く、熱伝達係数が大きいので、工業用炉に適用したとき、酸化による劣化・損耗、熱歪みによる破壊、熱伝導による熱回収率の低下などが発生することなく、工業的に安定して省エネルギー化を達成することができる。   The high-temperature gas sensible heat recovery mat according to the present invention is formed by knitting or depositing Si-C fibers having high heat resistance and high strength on a mat having a high porosity, and has low pressure loss due to its ventilation resistance, Because of its large transfer coefficient, when applied to an industrial furnace, it achieves industrially stable energy saving without causing deterioration / wear and tear due to oxidation, destruction due to thermal strain, and a decrease in heat recovery rate due to heat conduction. can do.

図1は、本考案に係る高温ガス顕熱回収マットの(a)平面図、(b)側面図、(c)一部拡大模式図である。図1に示すように、本考案に係る高温ガス顕熱回収用部材10は、Si−C系繊維11を厚み:5〜10mm、容積空隙率:90〜95%、通気抵抗による圧力損失:50〜200Paとなるように堆積又は編み上げたものである。   FIG. 1 is a (a) plan view, (b) side view, and (c) partially enlarged schematic view of a hot gas sensible heat recovery mat according to the present invention. As shown in FIG. 1, a member 10 for recovering high-temperature gas sensible heat according to the present invention is made of Si-C fiber 11 having a thickness of 5 to 10 mm, a volume porosity of 90 to 95%, and a pressure loss due to ventilation resistance: 50 Deposited or knitted so as to be ˜200 Pa.

本考案に使用するSi−C系繊維11は、直径5〜15μm程度の繊維であり、その微細構造は、図2のナノ尺度構造モデルに示すように、その表面が緻密なSiO薄膜12で覆われており、内部にはSi−C−Oアモルファス・マトリックス13中にβ−SiCナノ結晶14並びにsp−Cナノ・クラスター15が析出し、かつこれらの結晶界面及びβ−SiCナノ結晶とsp−Cナノ・クラスターとの界面に差渡し1nm以下のナノ・ボイド16が存在する多相ナノ・コンポシットである。炉内において高温排ガスが繊維に接触して伝達された熱は、繊維表面を被覆する厚み10nm程度の薄いSiOガラス膜12を通過して、熱伝達率の高いsp−Cナノ・クラスター14に伝達され、β−SiCナノ結晶13に蓄えられる。比熱の小さいβ−SiCナノ結晶13の温度は急速に上昇し、やがて輻射熱として熱を炉内に放出する。 The Si—C fiber 11 used in the present invention is a fiber having a diameter of about 5 to 15 μm, and its fine structure is a SiO 2 thin film 12 having a dense surface as shown in the nanoscale structure model of FIG. In the inside, β-SiC nanocrystals 14 and sp 2 -C nanoclusters 15 are precipitated in the Si—C—O amorphous matrix 13, and these crystal interfaces and β-SiC nanocrystals This is a multiphase nano composite in which nano voids 16 of 1 nm or less exist at the interface with the sp 2 -C nano cluster. Heat transferred from the high-temperature exhaust gas in contact with the fibers in the furnace passes through a thin SiO 2 glass film 12 having a thickness of about 10 nm covering the fiber surface, and sp 2 -C nano clusters 14 having a high heat transfer coefficient. And stored in the β-SiC nanocrystals 13. The temperature of the β-SiC nanocrystal 13 having a small specific heat rises rapidly, and eventually heat is released into the furnace as radiant heat.

このようなSi−C系繊維11は、宇部興興産(株)からチラノ繊維として、また日本カーボン(株)からニカロン繊維として販売されており、いわゆるポリマー・ルートで作製される。また、強度、耐酸化性、伝熱特性等の向上のために数%以下のAl,Ti,Zr等の金属元素を含有させることができる。このSi−C系繊維は、50〜70mm程度の長さの短繊維に切断して不織布として堆積させ、又は数十m以上の長繊維として、図1(c)に示すように3次元に編み上げて高温ガス顕熱回収マットとする。   Such Si-C fiber 11 is sold as Tyranno fiber from Ube Industries, Ltd. and as Nicalon fiber from Nippon Carbon Co., Ltd., and is produced by a so-called polymer route. In addition, in order to improve strength, oxidation resistance, heat transfer characteristics, etc., metal elements such as Al, Ti, Zr and the like of several percent or less can be contained. This Si-C fiber is cut into short fibers having a length of about 50 to 70 mm and deposited as a non-woven fabric, or is knitted in three dimensions as shown in FIG. Use a hot gas sensible heat recovery mat.

この高温ガス顕熱回収マットは、図3に示すように、第一に、加熱炉21の炉室26を取り囲むように炉壁21の内壁に取り付けられて熱レフレクター22として使用される。この場合には、高温ガス顕熱回収マットが熱レフレクターとして加熱炉の高温雰囲気により急速に加熱されて輻射熱を被加熱体24に向けて放射し、その昇温速度を高めるのに役立つ。第二に、加熱炉21の排気口27を覆うように取り付けられて熱フィルター23として使用される。この場合には、加熱炉21から排出される高温排ガスの熱を漉し取り、それにより自らは高温に加熱されて輻射熱を炉室26に放出し、高温排ガスの顕熱を効率的に炉内において自己回収して炉内に還元して、被加熱体24の昇温速度を高めるのに役立つ。これら熱レフレクター、熱フィルター又はこれらの共同作用によって、バーナ25からの燃料供給量が節減されることになる。なお、図3に示す場合には、熱フィルター23を金網28で挟み込んだものとしていて、排ガス流等によりマット繊維が持ち去られることのないようになっている。   As shown in FIG. 3, this hot gas sensible heat recovery mat is used as a heat reflector 22 by being attached to the inner wall of the furnace wall 21 so as to surround the furnace chamber 26 of the heating furnace 21. In this case, the high-temperature gas sensible heat recovery mat is rapidly heated as a heat reflector by the high-temperature atmosphere of the heating furnace to radiate radiant heat toward the object to be heated 24, which helps to increase the rate of temperature increase. Second, the heat filter 23 is attached so as to cover the exhaust port 27 of the heating furnace 21. In this case, the heat of the high-temperature exhaust gas discharged from the heating furnace 21 is removed, so that it is heated to a high temperature and radiant heat is released to the furnace chamber 26, and the sensible heat of the high-temperature exhaust gas is efficiently discharged in the furnace. It is useful for increasing the rate of temperature increase of the heated body 24 by self-collecting and reducing it into the furnace. The fuel supply amount from the burner 25 is reduced by these heat reflectors, heat filters, or their combined action. In the case shown in FIG. 3, the heat filter 23 is sandwiched between the metal meshes 28 so that the mat fiber is not carried away by the exhaust gas flow or the like.

このような熱フィルター効果あるいは熱レフレクター効果を得るためには、高温ガス顕熱回収マットは、厚み:5〜10mm、容積空隙率:90〜95%、通気抵抗による圧力損失:50〜200Paの特性をもつようにすることが必要である。   In order to obtain such a heat filter effect or a heat reflector effect, the high-temperature gas sensible heat recovery mat has a thickness: 5 to 10 mm, a volume porosity: 90 to 95%, and a pressure loss due to ventilation resistance: 50 to 200 Pa. It is necessary to have

厚さが5mm未満では、熱フィルターとして用いたとき、高温排ガスの有する熱量を十分漉し取ることができず、また、熱レフレクターとして用いたとき、炉壁側への熱の移行を十分阻止することができない。一方、厚さが15mm超では、熱フィルターとして用いたとき、圧力損失が大きくなりすぎて、加熱炉の円滑な操業が阻害され、また、熱レフレクターとして用いたとき、操業時、炉壁からはがれやすくなるなどの問題を生ずる。   When the thickness is less than 5 mm, the heat quantity of the high temperature exhaust gas cannot be sufficiently removed when used as a heat filter, and when used as a heat reflector, the heat transfer to the furnace wall side must be sufficiently prevented. I can't. On the other hand, if the thickness exceeds 15 mm, the pressure loss becomes too large when used as a heat filter, hindering smooth operation of the heating furnace, and when used as a heat reflector, it peels off the furnace wall during operation. Problems such as becoming easier.

容積空隙率は容積率で90〜95%とする必要がある。90%未満であると、高温排ガス通気抵抗が大きくなり過ぎ、特に熱フィルターとして使用したとき負圧が大きくなりすぎて、加熱炉の円滑な操業が阻害されることになる。一方、95%超では、必要な強度を有するマット形成が困難になり、熱工学的特性も低下するとともに、加熱炉の省エネルギー効果が失われる。なお、容積空隙率は、たとえば製造された顕熱回収マットに静かに樹脂を注入して固化させた後、断面を光学顕微鏡によって観測して繊維の占める面積率を、たとえばリニア・アナリシスによって求めることによって定めることができる。   The volume porosity needs to be 90 to 95% by volume ratio. If it is less than 90%, the high-temperature exhaust gas ventilation resistance becomes too large, particularly when used as a heat filter, the negative pressure becomes too large, and the smooth operation of the heating furnace is hindered. On the other hand, if it exceeds 95%, it becomes difficult to form a mat having a required strength, the thermal engineering characteristics are deteriorated, and the energy saving effect of the heating furnace is lost. The volume porosity is obtained by, for example, linearly analyzing the area ratio of the fiber by observing the cross section with an optical microscope after the resin is gently injected into the produced sensible heat recovery mat and solidified. Can be determined by.

通気抵抗による圧力損失は50〜200Pa(5〜20mmAq)とする必要がある。50Pa未満であると、先に述べた容積空隙率と相俟って高温排ガスと高温ガス顕熱回収マットとの間の熱交換が不十分となり、一方、200Pa%超では、熱フィルターとして用いたとき、炉内圧力が大きくなりすぎて、加熱炉の円滑な操業が阻害されることになる。また、熱レフレクターとして使用したとき、その表面からの高温排ガスの浸透が不十分となって、炉壁からの輻射熱の放出が不十分となる。   Pressure loss due to ventilation resistance needs to be 50 to 200 Pa (5 to 20 mmAq). When it is less than 50 Pa, combined with the volume porosity described above, heat exchange between the high temperature exhaust gas and the high temperature gas sensible heat recovery mat becomes insufficient, while when it exceeds 200 Pa%, it was used as a heat filter. At this time, the pressure in the furnace becomes too large, and the smooth operation of the heating furnace is hindered. Further, when used as a heat reflector, the penetration of high-temperature exhaust gas from the surface becomes insufficient, and the release of radiant heat from the furnace wall becomes insufficient.

なお、本考案の高温ガス顕熱回収マットは、Si−C系繊維を上記のように堆積又は編み上げた状態で使用することができるが、少なくとも表裏面のうち1面が耐熱性の金網により覆われてなるものとしておくのが好ましい。これにより、高温ガス顕熱回収用部材熱フィルターとして用いる場合に、その煙道側に当たる面に前記金網配置部が位置するようにすることができ、煙道側からの高速流体の排気により、Si−C系繊維が持ち去られるのを防止することができる(図3参照)。かかる効果を確実にするためには、熱フィルターとして用いる高温ガス顕熱回収用部材は、長繊維を三次元に編みこんだものとするのがよい。   The high temperature gas sensible heat recovery mat of the present invention can be used in a state where Si-C fibers are deposited or knitted as described above, but at least one of the front and back surfaces is covered with a heat-resistant wire mesh. It is preferable to leave it as it is. Thereby, when used as a member heat filter for high-temperature gas sensible heat recovery, the wire mesh placement portion can be positioned on the surface that contacts the flue side, and by exhausting high-speed fluid from the flue side, Si -C-type fibers can be prevented from being taken away (see FIG. 3). In order to ensure such an effect, it is preferable that the high-temperature gas sensible heat recovery member used as the heat filter is made of three-dimensionally woven long fibers.

上記高温ガス顕熱回収マットの炉室内への取り付けの手段は特に制限されないが、加熱炉の炉壁に対し接着剤により貼りつける、あるいは、耐火セラミックス製の釘で固定するなどの手段を採用できる。また、その取り付けに当たっては、燃焼条件や炉の形式、サイズ等に合わせて上記Si−C系繊維の材質(熱的性質、直径)やマットの厚み、容積空隙率、通気抵抗等を適宜選択し、自己回収エネルギー量(比)が適当な範囲になるようにし、操業結果から計算される熱伝達係数が10〜10w/m・K以上となるように調整するのがよい。結果的には、例えば、厚み:8mmの熱フィルターを用いたとき、炉室側の温度1200℃に対し、煙道側の温度を660℃と大きく低下させるようにすることにより後に実施例で示すような大きな省エネルギー効果を得ることができる。 The means for attaching the high temperature gas sensible heat recovery mat to the furnace chamber is not particularly limited, but means such as attaching to the furnace wall of the heating furnace with an adhesive or fixing with a refractory ceramic nail can be adopted. . In addition, the Si-C fiber material (thermal properties, diameter), mat thickness, volume porosity, ventilation resistance, etc. are appropriately selected according to the combustion conditions, furnace type, size, etc. The self-recovered energy amount (ratio) should be adjusted to an appropriate range, and the heat transfer coefficient calculated from the operation result should be adjusted to 10 3 to 10 4 w / m 2 · K or more. As a result, for example, when a heat filter having a thickness of 8 mm is used, the temperature on the flue side is greatly reduced to 660 ° C. with respect to the temperature on the furnace chamber side of 1200 ° C., which will be described later in an example. Such a large energy saving effect can be obtained.

図3に示す構造を有し、表1に示す諸元をもつバッチ式の加熱炉を構築して自動車用鋳造部品の熱処理炉とした。この熱処理炉の炉室内排気口に熱フィルターとして本考案に係る高温ガス顕熱回収用部材を、また、炉室内の床面を除く4壁面及び天井に熱レフレクターとして本考案に係る高温ガス顕熱回収用部材を取り付けて本考案を適用したときの省エネルギー効果及び操業時間短縮効果を検証した。表2に使用した高温ガス顕熱回収用部材の主要仕様を示す。   A batch-type heating furnace having the structure shown in FIG. 3 and having the specifications shown in Table 1 was constructed as a heat treatment furnace for automobile casting parts. The high-temperature gas sensible heat recovery member according to the present invention is used as a heat filter at the furnace chamber exhaust port of the heat treatment furnace, and the high-temperature gas sensible heat according to the present invention is used as a heat reflector on the four wall surfaces and ceiling excluding the floor surface in the furnace chamber. The energy saving effect and the operation time shortening effect when the present invention was applied with the recovery member attached were verified. Table 2 shows the main specifications of the hot gas sensible heat recovery member used.

Figure 0003136873
Figure 0003136873

Figure 0003136873
Figure 0003136873

検証は、熱処理温度:900℃、熱処理時間:90分、バッチ当たりの熱処理量:1.0〜1.5tとし、1日当たり8バッチの操業を週5日繰り返し、連続する3週間の各週における燃料(プロパン)ガスの消費量を測定することによって行った。結果は、表3にまとめて示す。熱フィルターならびに熱レフレクターのいずれも装着されなかった第1週のプロパンガス消費量は、標準状態換算で、14.0m/tであったが、熱フィルター及び熱レフレクターをともに装着した第2週及び第3週のプロパンガス消費量は、それぞれ10.7及び8.4m/tまで削減された。第1週を基準に取ると、燃料節減率は23.4%(第2週)、39.6%(第3週)に及ぶ。 In the verification, heat treatment temperature: 900 ° C., heat treatment time: 90 minutes, heat treatment amount per batch: 1.0 to 1.5 t, 8 batch operations per day were repeated 5 days a week, and fuel in each of 3 consecutive weeks This was done by measuring the consumption of (propane) gas. The results are summarized in Table 3. Propane gas consumption in the first week when neither the heat filter nor the heat reflector was installed was 14.0 m 3 / t in terms of standard conditions, but the second week when both the heat filter and the heat reflector were installed. And the third week propane gas consumption was reduced to 10.7 and 8.4 m 3 / t, respectively. Taking the 1st week as a reference, the fuel saving rate reaches 23.4% (2nd week) and 39.6% (3rd week).

Figure 0003136873
Figure 0003136873

本考案の高温ガス顕熱回収マットは、柔軟、強靭でかつ、耐熱性の高いSi−C系繊維を用いているので、その寿命が長く、これまで実用化できなかった高温ガスの顕熱の炉内自己回収とそれによる省エネルギー効果を長期・安定して得ることができる。さらにその省エネルギー効果は、前記のとおり顕著である。これにより、地球温暖化の元凶であるCO2ガスの排出量を抑制するという緊急課題に貢献することができるなど、本考案の利用可能性は非常に大きい。   The high-temperature gas sensible heat recovery mat of the present invention uses Si-C fiber that is flexible, tough, and has high heat resistance. In-furnace self-recovery and energy saving effect can be obtained stably for a long time. Further, the energy saving effect is remarkable as described above. As a result, the applicability of the present invention is very great, such as being able to contribute to the urgent task of suppressing the emission of CO2 gas, the cause of global warming.

本考案に係る高温ガス顕熱回収マットの(a)平面図、(b)側面図、(c)一部拡大模式図である。It is (a) top view, (b) side view, and (c) partially enlarged schematic view of a hot gas sensible heat recovery mat according to the present invention. 本考案の高温ガス顕熱回収マットの製作に用いるSi−C系繊維のナノ尺度構造モデルを示す。The nanoscale structural model of the Si-C type fiber used for manufacture of the hot gas sensible heat recovery mat | matte of this invention is shown. 本考案を適用する典型的な加熱炉の模式的断面図である。It is typical sectional drawing of the typical heating furnace to which this invention is applied.

符号の説明Explanation of symbols

10:高温ガス顕熱回収マット
11:Si−C系繊維
12:SiO薄膜
13:Si−C−Oアモルファス・マトリックス
14:β−SiCナノ結晶
15:sp−Cナノ・クラスター
21:加熱炉
22:熱レフレクター
23:熱フィルター
24:被加熱体
25:バーナ
26:炉室
27:排気口
28:金網
10: Hot gas sensible heat recovery mat
11: Si-C fiber
12: SiO 2 thin film
13: Si-C-O amorphous matrix
14: β-SiC nanocrystal
15: sp 2 -C nano-cluster
21: Heating furnace
22: Thermal reflector
23: Heat filter
24: Heated object
25: Burner
26: Furnace room
27: Exhaust port
28: Wire mesh

Claims (3)

Si−C系繊維を、厚み:5〜10mm、容積空隙率:90〜95%、通気抵抗による圧力損失:50〜200Paとなるように堆積又は編み上げてなる高温ガス顕熱自己回収マット。   A high-temperature gas sensible heat self-recovery mat obtained by depositing or braiding Si-C fibers so that the thickness is 5 to 10 mm, the volume porosity is 90 to 95%, and the pressure loss due to ventilation resistance is 50 to 200 Pa. 熱フィルター又は熱レフレクターとして使用される請求項1記載の高温ガス顕熱自己回収マット。   The hot gas sensible heat self-recovery mat according to claim 1, which is used as a heat filter or a heat reflector. 少なくとも表裏面のうち1面が耐熱性の金網により覆われてなる請求項1〜2のいずれかに記載の高温ガス顕熱回収マット。   The hot gas sensible heat recovery mat according to claim 1, wherein at least one of the front and back surfaces is covered with a heat-resistant wire mesh.
JP2007006264U 2007-08-14 2007-08-14 Hot gas sensible heat recovery mat Expired - Lifetime JP3136873U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006264U JP3136873U (en) 2007-08-14 2007-08-14 Hot gas sensible heat recovery mat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006264U JP3136873U (en) 2007-08-14 2007-08-14 Hot gas sensible heat recovery mat

Publications (1)

Publication Number Publication Date
JP3136873U true JP3136873U (en) 2007-11-08

Family

ID=43287270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006264U Expired - Lifetime JP3136873U (en) 2007-08-14 2007-08-14 Hot gas sensible heat recovery mat

Country Status (1)

Country Link
JP (1) JP3136873U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
JP5640123B1 (en) * 2013-08-09 2014-12-10 株式会社超高温材料研究センター Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
JP2015045464A (en) * 2013-08-29 2015-03-12 日立造船株式会社 Fluid bed heat recovery device, and heat transporter used in the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
WO2012046515A1 (en) * 2010-10-07 2012-04-12 株式会社超高温材料研究センター Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
JP5640123B1 (en) * 2013-08-09 2014-12-10 株式会社超高温材料研究センター Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
WO2015019681A1 (en) * 2013-08-09 2015-02-12 株式会社超高温材料研究センター Method for improving thermal efficiency of heating device and device for improving thermal efficiency of heating device
US10267579B2 (en) 2013-08-09 2019-04-23 Japan Ultra-High Temperature Materials Research Center Method and apparatus for improving thermal efficiency of heating device
JP2015045464A (en) * 2013-08-29 2015-03-12 日立造船株式会社 Fluid bed heat recovery device, and heat transporter used in the same

Similar Documents

Publication Publication Date Title
US6815038B2 (en) Honeycomb structure
JP3136873U (en) Hot gas sensible heat recovery mat
ES2341274T3 (en) PANAL FILTER AND CERAMIC FILTER ASSEMBLY.
JPWO2008078799A1 (en) Honeycomb structure and manufacturing method thereof
CN106482533A (en) A kind of gas cleaning and heat-exchange integrated device
CN108440007A (en) A kind of control of two-dimensional braided silicon carbide fibre fabric enhancing composite material of silicon carbide filter plate
ATE518099T1 (en) PORE BODY DEVICE FOR A PORE BURNER, METHOD FOR PRODUCING A PORE BODY DEVICE FOR A PORE BURNER AND PORE BURNER
JP4980299B2 (en) Silicon carbide based porous material
JP4801789B1 (en) Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
JP2008279480A (en) Heat retentive burner apparatus for ladle
CN103224401A (en) Energy-efficient sol combined mullite castable used for blast furnace air supply branch pipe inner liner
JP2008043852A (en) Ceramics filter
JP4071381B2 (en) Honeycomb filter and manufacturing method thereof
JP4991636B2 (en) Method for producing silicon carbide based porous material
JP2016175808A (en) Honeycomb structure
JP4325758B2 (en) Energy-saving heating method and heating furnace for articles
JP5640123B1 (en) Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
JP2016175809A (en) Honeycomb structure
JP3246632U (en) Heating device
CN107726856A (en) A kind of high temperature resistant furnace wall compound lining with high-heating radiation with strong disconnected hot property
Trimis et al. New ceramic heat exchangers with enhanced heat transfer properties for recuperative gas burners
JP2009011994A (en) Ceramic filter and its manufacturing method
CN206208010U (en) A kind of ceramic sintering kiln of efficient energy-saving
JP2008069727A (en) Exhaust emission control device, support base material for exhaust emission control catalyst and exhaust emission control catalyst
JP3721030B2 (en) Regenerative burner

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term