JP3136735U - Heat dissipation module - Google Patents
Heat dissipation module Download PDFInfo
- Publication number
- JP3136735U JP3136735U JP2007004831U JP2007004831U JP3136735U JP 3136735 U JP3136735 U JP 3136735U JP 2007004831 U JP2007004831 U JP 2007004831U JP 2007004831 U JP2007004831 U JP 2007004831U JP 3136735 U JP3136735 U JP 3136735U
- Authority
- JP
- Japan
- Prior art keywords
- heat
- module according
- heat pipe
- plate
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 52
- 238000012546 transfer Methods 0.000 claims abstract description 53
- 230000008878 coupling Effects 0.000 claims abstract description 10
- 238000010168 coupling process Methods 0.000 claims abstract description 10
- 238000005859 coupling reaction Methods 0.000 claims abstract description 10
- 230000005855 radiation Effects 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
【課題】板式ヒートパイプに、独立し相互連結しない複数のヒートパイプを内設し、放熱効率を向上させる放熱モジュールを提供する。
【解決手段】放熱モジュールの構造は、板式ヒートパイプ10と伝熱組織20の結合であり、該伝熱組織は、該板式ヒートパイプと接触するのに用いる結合端21を備えており、伝熱組織を該板式ヒートパイプ上の予定区域に結合させ、並びに、該伝熱組織のその他区域に開放端22を形成する。その内、該板式ヒートパイプ中は、複数のそれぞれが独立し繋がっていないヒートパイプユニット11により構成されており、該板式ヒートパイプは、迅速且つ均等に熱量を外側に向けて放出して、放熱モジュールの放熱効率を向上させる。
【選択図】図5Disclosed is a heat dissipation module in which a plurality of heat pipes that are independent and not interconnected are installed in a plate heat pipe to improve heat dissipation efficiency.
The structure of the heat dissipation module is a combination of a plate heat pipe 10 and a heat transfer structure 20, and the heat transfer structure includes a coupling end 21 used to contact the plate heat pipe. Tissue is bonded to a predetermined area on the plate heat pipe and an open end 22 is formed in other areas of the heat transfer tissue. Among them, the plate heat pipe is composed of a plurality of heat pipe units 11 that are not connected independently, and the plate heat pipe quickly and evenly releases heat to the outside to dissipate heat. Improve module heat dissipation efficiency.
[Selection] Figure 5
Description
本考案は、放熱モジュールの構造に関するものであり、特に、板式ヒートパイプに独立し且つ相互連結しない複数のヒートパイプを内設することにより、放熱効率を向上させる放熱モジュールを提供する。 The present invention relates to a structure of a heat dissipation module, and in particular, provides a heat dissipation module that improves heat dissipation efficiency by providing a plurality of heat pipes that are independent and not interconnected to a plate heat pipe.
公知の発熱部材の熱量を排除する為の放熱構造についてであるが、例えば、冷蔵庫、クーラー、大型電子看板、高速作動の電子部品等の発熱し易い設備においては、通常、内部の熱量の排除を助ける放熱モジュールを設置して、装置作動の安定性を維持している。その内、一般に見られる構造においては、容易に熱量を発生させる発熱部材上に、良好な伝導効果を持つ補助装置を設けている。それは例えば、銅片、アルミ板、もしくはヒートパイプを表面に密着させる等の異なる構造形態の放熱モジュールであり、発熱部材の表面上に配置し、熱量を対流方式によって該放熱モジュールの構造中に交換させ、放熱モジュールの発熱部材から離れた別の一端からその熱量を排出させている。 Although it is about a heat dissipation structure for eliminating the heat quantity of a known heat generating member, for example, in equipment that easily generates heat, such as a refrigerator, a cooler, a large electronic signboard, a high-speed operating electronic component, etc., the internal heat quantity is usually excluded. A heat dissipating module is installed to maintain the stability of the device operation. Among them, in a general structure, an auxiliary device having a good conduction effect is provided on a heat generating member that easily generates heat. It is a heat dissipation module with a different structure such as, for example, a copper piece, an aluminum plate, or a heat pipe that is in close contact with the surface. The amount of heat is discharged from the other end away from the heat generating member of the heat dissipation module.
例えば、一つの放熱モジュールが一つのヒートパイプ構造である状況において、ヒートパイプは放熱モジュールの前端にあり、熱量を発熱部材からヒートパイプ内に設置した伝熱物質に交換し、該伝熱物質が熱を吸収した後、放熱モジュールの放熱端に向かって流動する。図1に示した放熱端構造であるが、放熱端には通常、伝熱組織20を設けてあり、該伝熱組織20に備えた結合端21は、該ヒートパイプ30の表面上に結合しており、並びに、該伝熱組織20のその他区域には、熱量を排除する開放端22を形成する。この公知の放熱構造において、該伝熱組織20は、該ヒートパイプ30の表面に沿って連続平行設置した放熱片構造であり、その内、該ヒートパイプ30から伝熱組織20間の熱を伝える形態は、図2に示すとおりであり、該ヒートパイプ30の断面構造は、一つの円形輪郭であり、該熱量はヒートパイプ30と伝熱組織20の結合部21を通過し、放射線状形態で伝熱組織20の開放端22に向かって放射伝導する。 For example, in a situation where one heat dissipation module has one heat pipe structure, the heat pipe is at the front end of the heat dissipation module, and the heat quantity is exchanged from the heat generating member to the heat transfer material installed in the heat pipe, and the heat transfer material is After absorbing heat, it flows toward the heat radiating end of the heat radiating module. Although the heat radiating end structure shown in FIG. 1 is usually provided with a heat transfer structure 20 at the heat radiating end, and a coupling end 21 provided in the heat transfer structure 20 is bonded onto the surface of the heat pipe 30. In addition, the other end of the heat transfer structure 20 is formed with an open end 22 for removing heat. In this known heat dissipation structure, the heat transfer structure 20 is a heat dissipating piece structure continuously installed in parallel along the surface of the heat pipe 30, of which heat is transferred from the heat pipe 30 to the heat transfer structure 20. The form is as shown in FIG. 2, and the cross-sectional structure of the heat pipe 30 is a single circular outline, and the amount of heat passes through the joint 21 between the heat pipe 30 and the heat transfer tissue 20, and is in a radial form. Radiation conduction is conducted toward the open end 22 of the heat transfer tissue 20.
また、図3に示した異なる構造の放熱端において、該伝熱元件20は、溝23を備えた金属塊構造であり、連続湾曲分布形態のヒートパイプ30上に設置されている。該伝熱組織20の結合部21と該ヒートパイプ30の接触形態は、図4の示した断面状況からわかるとおり、該熱量の伝導形態は、前述の放射線状を成す形態と同様、該伝熱組織20の開放端22区域に向かって伝導し、並びに、該ヒートパイプ30と伝熱組織20の接触面積がただ線状の結合形態であり、最良の放熱効果を得たいなら、該放熱モジュールの放熱端に、更に大きな面積の構造形態を作らなければならず、このような放熱モジュールの放熱効率は通常、比較的劣るものである。 Moreover, in the heat radiating end of the different structure shown in FIG. 3, the heat transfer source 20 is a metal lump structure provided with a groove 23, and is installed on a heat pipe 30 having a continuous curved distribution form. As can be seen from the cross-sectional state shown in FIG. 4, the contact form between the joint portion 21 of the heat transfer structure 20 and the heat pipe 30 is similar to the above-described radial form in the heat transfer form. Conduction toward the open end 22 region of the tissue 20 and the contact area between the heat pipe 30 and the heat transfer tissue 20 is only a linear coupling form, and if it is desired to obtain the best heat dissipation effect, A structure having a larger area must be formed at the heat dissipation end, and the heat dissipation efficiency of such a heat dissipation module is usually relatively poor.
前述した図2及び図4に示した熱量伝導状況において、該伝熱組織20が熱量を伝導する場合、平均的な散布形態は現われておらず、ヒートパイプ30の輪郭に基づいて円形放射伝導を成すことがはっきりわかる。このような伝導方式は、熱量が該伝熱組織20の結合端21から離れた区域において、例えば、放熱片の四つの角は、元来の放熱効率を効果的に発揮できず、大部分の熱量は放射伝導する過程において、ヒートパイプ30に比較的近い区域に大部分が集中し、距離が比較的遠い区域が獲得し排出する熱量は、更に少なくなる。 In the heat conduction state shown in FIGS. 2 and 4 described above, when the heat transfer structure 20 conducts heat, an average distribution form does not appear, and circular radiation conduction is performed based on the outline of the heat pipe 30. You can see clearly that In such a conduction system, in the area where the amount of heat is away from the coupling end 21 of the heat transfer structure 20, for example, the four corners of the heat radiating piece cannot effectively exhibit the original heat radiating efficiency. In the process of radiating heat, most of the heat is concentrated in an area relatively close to the heat pipe 30, and the area that is relatively far away is acquired and discharged.
公知の構造における熱量分布不均等の欠点に鑑み、該公知の放熱モジュールの構造形態を改めて設計することにより、公知の構造とは異なる組織配置関係を持たせ、全体の放熱効率を向上させ、該放熱モジュールの使用形態及び応用範囲を拡大することが可能となる。 In view of the disadvantage of uneven heat distribution in the known structure, by redesigning the structure form of the known heat dissipation module, the structure arrangement relationship different from that of the known structure is given, and the overall heat dissipation efficiency is improved. The usage pattern and application range of the heat dissipation module can be expanded.
本考案の放熱モジュールの構造を提案する主な目的は、公知の放熱構造の放熱効率の理想的でない状況を改善することにある。また、改善設計である放熱モジュールの構造及び結合形態によって、装置の放熱効率を高め、装置作動の効果を増進することにある。 The main purpose of proposing the structure of the heat dissipation module of the present invention is to improve the non-ideal situation of the heat dissipation efficiency of the known heat dissipation structure. Another object of the present invention is to increase the heat dissipation efficiency of the apparatus and enhance the effect of the apparatus operation by the structure and coupling form of the heat dissipation module which is an improved design.
前述した放熱モジュールの構造は、板式ヒートパイプと伝熱組織の結合を含む。該板式ヒートパイプの部分区域は、一つの発熱部材上に配置し、該発熱部材が生じる熱量を排除するのに用いる。該伝熱組織は、該板式ヒートパイプとの接触もしくは連結するのに用いる結合端を備えており、伝熱組織を該板式ヒートパイプ上の予定区域に結合し、並びに、該伝熱組織のその他区域には開放端を形成する。その内、該板式ヒートパイプには、複数の独立し相互連結しないヒートパイプ組織を設けている故、該板式ヒートパイプは迅速に且つ均等に熱量伝導及び熱交換を行うことができ、また放熱モジュールの放熱効率を高めることができる。 The structure of the heat dissipation module described above includes a combination of a plate heat pipe and a heat transfer structure. The partial area of the plate heat pipe is disposed on one heat generating member, and is used to eliminate the amount of heat generated by the heat generating member. The heat transfer structure includes a coupling end used to contact or connect to the plate heat pipe, couples the heat transfer structure to a predetermined area on the plate heat pipe, and the others of the heat transfer structure An open end is formed in the area. Among them, the plate type heat pipe is provided with a plurality of independent and non-interconnected heat pipe structures, so that the plate type heat pipe can conduct heat quantity conduction and heat exchange quickly and evenly, and a heat dissipation module. The heat radiation efficiency can be increased.
以上説明したように、本考案の放熱モジュールの構造は、装置の放熱効率を高め、装置作動の効果を増進することを特徴とする。 As described above, the structure of the heat dissipating module of the present invention is characterized in that the heat dissipating efficiency of the device is enhanced and the effect of the device operation is enhanced.
以下、本考案の実施例について、図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図5を参照とすると、本考案の最良実施例において、その構造は、一つの板式ヒートパイプ10と一つの伝熱組織20の結合を含む。該板式ヒートパイプ10の部分区域は、一つの発熱部材40(図9参照)上に配置され、発熱部材40上に生じた熱量を取り除くのに用いる。該伝熱組織20は、該板式ヒートパイプ10と接触するか連結するのに用いる結合端21を備え、伝熱組織20を該板式ヒートパイプ10上の予定区域に結合し、並びに、該伝熱組織20のその他区域に開放端22を形成する。この実施例において、該伝熱組織20は、該板式ヒートパイプ10周辺に沿って配置した複数の伝熱片である。その内、該板式ヒートパイプ10は、複数の独立し且つ相互連結しないヒートパイプユニット11により構成されている故、該板式ヒートパイプ10は迅速且つ均等に熱量の伝導及び熱交換を行い、更に、放熱モジュールの放熱効率を向上させることができる。 Referring to FIG. 5, in the best embodiment of the present invention, the structure includes a combination of one plate heat pipe 10 and one heat transfer structure 20. The partial area of the plate heat pipe 10 is disposed on one heat generating member 40 (see FIG. 9), and is used to remove the amount of heat generated on the heat generating member 40. The heat transfer tissue 20 includes a coupling end 21 that is used to contact or connect to the plate heat pipe 10 to couple the heat transfer tissue 20 to a predetermined area on the plate heat pipe 10, as well as the heat transfer An open end 22 is formed in other areas of the tissue 20. In this embodiment, the heat transfer structure 20 is a plurality of heat transfer pieces arranged along the periphery of the plate heat pipe 10. Among them, since the plate heat pipe 10 is composed of a plurality of independent and non-interconnected heat pipe units 11, the plate heat pipe 10 conducts heat conduction and heat exchange quickly and evenly. The heat dissipation efficiency of the heat dissipation module can be improved.
図6を参照すると、採用した実施例において、該板式ヒートパイプ10内に配置した複数のヒートパイプユニット11は、平行並列分布形態を採用しており、並びに、それぞれのヒートパイプユニット11間は、独立し相互連結しないで作動する。実際においては、異なるヒートパイプユニット11内には相変化可能な物質を組み合わせる。例えば、純水、冷媒、有機溶剤、それを組み合わせた物質などである。複数の独立し相互連結しないヒートパイプを配置した構造形態において、全体が熱量を排除する効率を大幅に向上させるものであり、公知の単一ヒートパイプの構造形態と比較すると、放熱効率は数倍高くなっている。また、熱量の伝熱組織20内の伝導形態において採用した実施例は、図に示したとおりであり、その熱量は、該伝熱組織20の開放端22上に平均的に散布しており、該伝熱組織20の全ての開放端22の放熱区域を効果的に利用して、全体の放熱効果を向上させる。 Referring to FIG. 6, in the adopted embodiment, the plurality of heat pipe units 11 arranged in the plate heat pipe 10 adopts a parallel and parallel distribution form, and between each of the heat pipe units 11, Operates independently and without interconnection. In practice, different heat pipe units 11 are combined with phase changeable substances. For example, pure water, a refrigerant, an organic solvent, or a substance that combines them. In the structural form where a plurality of independent and non-interconnected heat pipes are arranged, the whole greatly improves the efficiency of removing heat, and the heat dissipation efficiency is several times compared with the known single heat pipe structure form It is high. Moreover, the Example employ | adopted in the conduction | electrical_connection form in the heat transfer structure | tissue 20 of a calorie | heat amount is as showing in the figure, The calorie | heat amount is disperse | distributing on the open end 22 of this heat transfer structure | tissue 20 on average, The entire heat radiation effect is improved by effectively utilizing the heat radiation area of all the open ends 22 of the heat transfer structure 20.
続いて参照する図7及び図8は、本考案の放熱モジュールの構造の実施例2であり、それは、該板式ヒートパイプ10上に溝23を備えた金属塊状の伝熱組織20を配置したものである。その内の伝熱組織20の結合端21は、該板式ヒートパイプ10の表面と大面積の接合を形成しており、公知の構造中におけるただの線状接触だけとを比較すると、大きな熱量伝導区域を持っている。また、該結合部21と板式ヒートパイプ10が形成する大面積接合の為に、板式ヒートパイプ10内の熱量は、図8中に示したような伝導形態となり、迅速且つ均等に該伝熱組織20の開放端22に散布し、迅速放熱の目的を達成する。 Next, FIGS. 7 and 8 to be referred to are a second embodiment of the structure of the heat dissipation module of the present invention, which is a plate-type heat pipe 10 on which a metal block heat transfer structure 20 having grooves 23 is arranged. It is. The joint end 21 of the heat transfer structure 20 forms a large-area joint with the surface of the plate heat pipe 10, and a large amount of heat conduction is compared with only a linear contact in a known structure. Have an area. Further, because of the large area joining formed by the coupling portion 21 and the plate heat pipe 10, the amount of heat in the plate heat pipe 10 becomes a conduction form as shown in FIG. 20 is spread on the open end 22 to achieve the purpose of quick heat dissipation.
この他、本考案の複数のヒートパイプを持つ配置構造は、図9に示すとおりであり、該板式ヒートパイプ10一端の部分表面区域を、直接的か間接的に(中間に一つの放熱片もしくは熱電対等を設ける)一つの発熱部材40(作動中のCPU)上に水平連結させる時、各ヒートパイプユニット11は矢印方向に、迅速に熱量を伝熱組織20まで伝える。使用している場合、外の力を受けて該板式ヒートパイプ10に破損が生じても、単一もしくは少数のヒートパイプユニット11が影響を受けるだけであり、その他のヒートパイプユニット11はやはり熱量排除作業を継続することができ、装置の正常作動を維持し、またメンテナンス人員に比較的長い対応時間を与える。装置作動が影響を受けないことを確実に保証している点は、公知の構造と比較すると、最高の信頼度となる。 In addition, the arrangement structure having a plurality of heat pipes of the present invention is as shown in FIG. 9, and a partial surface area of one end of the plate heat pipe 10 is directly or indirectly (one heat radiation piece or When a horizontal connection is made on one heat generating member 40 (an active CPU) provided with a thermocouple or the like, each heat pipe unit 11 quickly transfers heat to the heat transfer structure 20 in the direction of the arrow. In use, even if the plate-type heat pipe 10 is damaged due to external force, only one or a small number of heat pipe units 11 are affected, and the other heat pipe units 11 also have a heat quantity. Exclusion work can be continued, maintaining normal operation of the device, and providing a relatively long response time for maintenance personnel. The point of ensuring that the operation of the apparatus is not affected is the highest reliability when compared to known structures.
前述をまとめると、本考案の放熱モジュールの構造は、発熱部材の熱量を迅速に排除し、放熱モジュール効率を効果的に向上させる放熱構造であり、複数の独立し且つ相互連結しないヒートパイプユニット11の板式ヒートパイプ10を配置し、該板式ヒートパイプ10と伝熱模組20間は緊密結合して迅速的に熱量を伝える構造形態を形成する。これにより、公知の放熱モジュール放熱効率不良の欠点を確実に改善し、該放熱モジュールを更に広範な領域に応用することができ、例えばチップモジュールの小型化や電子看板の薄型化に、非常に大きな進歩をもたらすものである。 In summary, the structure of the heat dissipating module of the present invention is a heat dissipating structure that quickly eliminates the amount of heat of the heat generating member and effectively improves the efficiency of the heat dissipating module, and a plurality of independent and non-interconnected heat pipe units 11. The plate-type heat pipe 10 is disposed, and the plate-type heat pipe 10 and the heat transfer pattern 20 are tightly coupled to form a structure for rapidly transferring the heat amount. As a result, it is possible to reliably improve the disadvantages of known heat dissipation efficiency of the heat dissipation module and to apply the heat dissipation module to a wider range of areas. For example, the chip module is very small and the electronic signboard is very thin. It brings about progress.
前述は、本考案の最良の実施例であるというだけで、本考案の実施範囲を限定するものでは決してない。本考案の実用新案登録請求の範囲に基づいて為された同等の変化や修飾の全ては、本考案の実用新案の範囲に含まれるものとする。 The foregoing is only the best embodiment of the present invention, and does not limit the scope of the present invention. All equivalent changes and modifications made based on the scope of the utility model registration request of the present invention shall be included in the scope of the utility model of the present invention.
10 板式ヒートパイプ
11 ヒートパイプユニット
20 伝熱組織
21 結合端
22 開放端
23 溝
30 ヒートパイプ
40 発熱部材
DESCRIPTION OF SYMBOLS 10 Plate type heat pipe 11 Heat pipe unit 20 Heat transfer structure 21 Joint end 22 Open end 23 Groove 30 Heat pipe 40 Heat generating member
Claims (25)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096202713U TWM317745U (en) | 2007-02-13 | 2007-02-13 | Improved structure of heat sink |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3136735U true JP3136735U (en) | 2007-11-08 |
Family
ID=38515183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007004831U Expired - Fee Related JP3136735U (en) | 2007-02-13 | 2007-06-26 | Heat dissipation module |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080190587A1 (en) |
JP (1) | JP3136735U (en) |
DE (1) | DE202007008908U1 (en) |
TW (1) | TWM317745U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290218A (en) * | 2008-05-31 | 2009-12-10 | Boeing Co:The | Thermal management device and method for making the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009086825A2 (en) * | 2008-01-04 | 2009-07-16 | Noise Limit Aps | Condenser and cooling device |
DE102008000415B4 (en) * | 2008-02-26 | 2011-06-01 | Günther, Eberhard, Dipl.-Ing. | Arrangement for dissipating heat from electrical components |
US20090266514A1 (en) * | 2008-04-24 | 2009-10-29 | Abb Research Ltd | Heat exchange device |
WO2010072221A2 (en) * | 2008-12-23 | 2010-07-01 | Noise Limit Aps | Cooling device with bended flat tube and related manufacturing method |
EP3194875B1 (en) * | 2014-09-15 | 2021-03-24 | Aavid Thermalloy, LLC | Arrangement comprising a thermosiphon device with bent tube section |
JP6400635B2 (en) | 2016-06-30 | 2018-10-03 | ファナック株式会社 | Cooling structure for electronic equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030000689A1 (en) * | 2001-06-29 | 2003-01-02 | Dah-Chyi Kuo | Heat dissipater |
US7237338B2 (en) * | 2005-01-05 | 2007-07-03 | Cpumate Inc. | Method for manufacturing heat-dissipating device with isothermal plate assembly of predetermined shape |
-
2007
- 2007-02-13 TW TW096202713U patent/TWM317745U/en not_active IP Right Cessation
- 2007-06-26 DE DE202007008908U patent/DE202007008908U1/en not_active Expired - Lifetime
- 2007-06-26 JP JP2007004831U patent/JP3136735U/en not_active Expired - Fee Related
- 2007-08-16 US US11/840,176 patent/US20080190587A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009290218A (en) * | 2008-05-31 | 2009-12-10 | Boeing Co:The | Thermal management device and method for making the same |
US9500416B2 (en) | 2008-05-31 | 2016-11-22 | The Boeing Company | Thermal management device and method for making the same |
Also Published As
Publication number | Publication date |
---|---|
US20080190587A1 (en) | 2008-08-14 |
DE202007008908U1 (en) | 2007-09-13 |
TWM317745U (en) | 2007-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3136735U (en) | Heat dissipation module | |
TWI458927B (en) | Heat sink | |
TWI279183B (en) | Composite heat dissipating apparatus | |
ATE529893T1 (en) | HEAT EXCHANGER | |
TWI688329B (en) | Clustered heat dissipation device and chassis thereof | |
TW200712848A (en) | Heat-emitting element cooling apparatus and heatsink | |
TW200819697A (en) | Micro spray cooling system | |
TWI498519B (en) | Heat dissipating module | |
CN110351991A (en) | Heat transfer substrate and heat spreader structures | |
CN201156860Y (en) | Water cooling head construction for heat radiating | |
CN206532224U (en) | CPU phase transformations suppress radiator structure and electronic product | |
WO2012130063A1 (en) | Power supply module and electronic device utilizing the power supply module | |
CN201716656U (en) | Multi-heat-source heat dissipation module structure | |
CN109362206B (en) | A kind of spaceborne high heat flux density TR assembly array integrated installation method | |
JP2003343985A (en) | Plate type heat exchanger | |
TWI640740B (en) | Vapor-liquid flow heat transfer module | |
CN206442651U (en) | A kind of novel aluminum alloy heat sink section bar | |
TWM357183U (en) | Heat-dissipation module | |
KR20100014102A (en) | Process and assembly for flush connecting evaporator sections of juxtaposed heat pipies to a fixing base | |
TWM385200U (en) | Heat pipe bridging type structure and its heat dissipating module | |
TWI422315B (en) | Heat sink dissipation | |
CN219165024U (en) | Wind-liquid mixed type heat radiation module structure | |
JPH09293811A (en) | Cooler for heating body | |
CN212934601U (en) | Multiple heat radiation structure for computer chip | |
TWM623271U (en) | Heat dissipation module suitable for multiple heat sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101017 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |