JP3135691B2 - Low thermal expansion super heat resistant alloy - Google Patents

Low thermal expansion super heat resistant alloy

Info

Publication number
JP3135691B2
JP3135691B2 JP04216381A JP21638192A JP3135691B2 JP 3135691 B2 JP3135691 B2 JP 3135691B2 JP 04216381 A JP04216381 A JP 04216381A JP 21638192 A JP21638192 A JP 21638192A JP 3135691 B2 JP3135691 B2 JP 3135691B2
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
strength
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04216381A
Other languages
Japanese (ja)
Other versions
JPH05209249A (en
Inventor
光司 佐藤
和久 三瓶
敏行 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Toyota Motor Corp
Original Assignee
Hitachi Metals Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Toyota Motor Corp filed Critical Hitachi Metals Ltd
Priority to JP04216381A priority Critical patent/JP3135691B2/en
Publication of JPH05209249A publication Critical patent/JPH05209249A/en
Application granted granted Critical
Publication of JP3135691B2 publication Critical patent/JP3135691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン部品やセ
ラミックスおよび超硬合金との複合材として使用され、
高温強度に優れ、かつ低い熱膨張係数を必要とされる超
耐熱合金に関するものである。
The present invention is used as a composite material with gas turbine parts, ceramics and cemented carbide,
The present invention relates to a super heat-resistant alloy which is excellent in high-temperature strength and requires a low coefficient of thermal expansion.

【0002】[0002]

【従来の技術】従来、低い熱膨張係数が必要な用途の合
金としては、Fe-36%Ni系のインバー合金、Fe-42%Ni
系の42ニッケル合金、Fe-29%Ni-17%Co系のコバール
合金等が知られている。これらの合金は熱膨張係数は低
いが、常温および高温での強度が小さいため、強度が必
要とされる部品には用いることができない。
2. Description of the Related Art Conventionally, alloys for applications requiring a low coefficient of thermal expansion include Fe-36% Ni-based invar alloys and Fe-42% Ni.
There are known 42-based nickel alloys and Fe-29% Ni-17% Co-based Kovar alloys. Although these alloys have a low coefficient of thermal expansion, they have low strength at room temperature and high temperature, and therefore cannot be used for parts requiring strength.

【0003】一方、上記の合金の熱膨張係数には及ばな
いものの、通常のオーステナイト合金に比べ熱膨張係数
が小さく、かつ、Al、Ti、Nb等の析出強化元素添加
により高温強度を高めた合金として、特公昭41−27
67号に記載されたインコロイ903合金や、このイン
コロイ903合金の一連の改良合金として、特開昭50
−30729号、特開昭50−30730号、米国特許
4200459号、特開昭59−56563号、特開昭60−
128243号、特開昭53−6225号、特開昭50
−30728号、特公昭63−43457号、米国特許
4006011号などに開示された合金が知られている。
[0003] On the other hand, an alloy having a coefficient of thermal expansion smaller than that of an ordinary austenitic alloy and having an increased high-temperature strength by adding a precipitation strengthening element such as Al, Ti, or Nb, though not as high as that of the above alloys. As
No. 67, No. 67, and a series of improved alloys of the Incoloy 903 alloy are disclosed in
-30729, JP-A-50-30730, U.S. Patent
4200459, JP-A-59-56563, JP-A-60-56
128243, JP-A-53-6225, JP-A-50
-30728, JP-B-63-43457, U.S. Patent
An alloy disclosed in, for example, Japanese Patent No. 4006011 is known.

【0004】[0004]

【発明が解決しようとする課題】近年、ガスタービン部
品の使用温度の上昇に伴い、常温から高温までより高い
強度と、各種の部品や部材間に設けられたクリアランス
を常温から高温まで一定量に維持できる材料の要求や、
セラミックスや超硬合金のような低熱膨張材料と金属材
料との接合性の向上に対する要求は、ますます高まる傾
向にある。その用途の一例が、自動車のタービンロータ
の軸部と翼部(通常セラミックスである)を接合するタ
ーボカラーである。他の使用例はガスタービンのコンプ
レッサーケース、排気ケースおよびシール材等の部品
や、セラミックス製の内筒と低熱膨張超耐熱合金製の外
筒からなるアルミダイカスト用スリーブあるいは、超硬
合金と台金の緩衝材として、低熱膨張超耐熱合金を用い
た超硬合金製刃物などがある。従来、このようなニーズ
に対しては、特公昭41−2767号に開示されるイン
コロイ903が、実用化されてきたが、インコロイ90
3は500℃前後の使用温度において、切欠感受性が著し
く高くなることが明らかとなり、問題となっていた。実
際、この種の低熱膨張超耐熱合金は、実用されている製
品においては応力集中部をいくつか持つ場合が多く、そ
の部分の切欠強度が平滑面の強度より低いと、設計上の
破壊寿命よりも大幅に早い破壊を生じることとなる。こ
のような切欠強度の低下は、この種の合金では500℃前
後の温度で最も敏感となるため、500℃の平滑−切欠複
合クリープ破断試験において、平滑部より切欠部の方が
早期に破断する材料は、実用上の使用条件が極端に限定
される。よって、500℃の平滑−切欠複合クリープ破断
試験において、切欠破断強度は平滑破断強度を上回るこ
とが重要である。
In recent years, as the operating temperature of gas turbine components has risen, the strength of the gas turbine components has been increased from room temperature to high temperature, and the clearance provided between various components and members has been maintained at a constant level from room temperature to high temperature. The demand for sustainable materials,
There is a tendency that demands for improving the bondability between low thermal expansion materials such as ceramics and cemented carbide and metal materials are increasing. One example of the application is a turbo collar for joining a shaft part and a wing part (usually ceramics) of a turbine rotor of an automobile. Other applications include parts such as gas turbine compressor cases, exhaust cases, and sealing materials; aluminum die-casting sleeves consisting of a ceramic inner cylinder and an outer cylinder made of a low thermal expansion super heat-resistant alloy; or a cemented carbide and base metal. As a cushioning material, there is a cemented carbide blade using a low thermal expansion super heat resistant alloy. Conventionally, Incoloy 903 disclosed in Japanese Patent Publication No. 41-2767 has been put to practical use to meet such needs.
No. 3 became a problem because it became clear that the notch sensitivity was significantly increased at an operating temperature of about 500 ° C. In fact, this kind of low-thermal-expansion super-heat-resistant alloy often has several stress-concentrated parts in practical products, and if the notch strength of that part is lower than the strength of the smooth surface, it will be longer than the designed fracture life. Will also result in significantly faster destruction. Such a decrease in notch strength is most sensitive at temperatures around 500 ° C. in this type of alloy, so in a 500 ° C. smooth-notch composite creep rupture test, the notch breaks earlier than the smooth part. Materials have extremely limited practical use conditions. Therefore, it is important that the notch rupture strength exceeds the smooth rupture strength in the 500 ° C. smooth-notch composite creep rupture test.

【0005】この点に関する一連の改良合金としては、
先に挙げた特開昭50−30729号、特開昭50−3
0730号、米国特許4200459号、特開昭59−565
63号、特開昭60−128243号、特開昭53−6
225号、特開昭50−30728号、特公昭63−4
3457号、米国特許4006011号などが提案され、これ
らの改良のなかから、インコロイ909が実用化される
ようになった。インコロイ909は確かにインコロイ9
03より、切欠破断強度には優れているが、700〜8
00℃程度での高温加熱時の組織が不安定であること、
あるいは、セラミックスや超硬合金とのろう付け処理な
どの短時間高温加熱時の時効硬化性が不十分であり、硬
さの点で不十分であるといった問題があった。一方、イ
ンコロイ903の切欠感受性を改善する手法の一つとし
てCr添加も検討されているが、従来検討されてきたF
e−Co−Niのマトリックス組成範囲では、Crの添
加はいたずらに熱膨張係数の増加を招くのみで、切欠感
受性や耐酸化性を改善するに十分なCr量を添加するこ
とができず、実用化には至っていない。
A series of improved alloys in this regard include:
JP-A-50-30729 and JP-A-50-3 mentioned above
No. 0730, U.S. Pat. No. 4,2004,591, JP-A-59-565.
No. 63, JP-A-60-128243, JP-A-53-6
No. 225, JP-A-50-30728, JP-B-63-4
No. 3457, U.S. Pat. No. 4,0060,11 and the like have been proposed, and among these improvements, Incoloy 909 has been put to practical use. Incoloy 909 is certainly Incoloy 9
03, the notch breaking strength is excellent, but 700 to 8
Instability of the tissue during high temperature heating at about 00 ° C,
Alternatively, there has been a problem that the age hardening property during short-time high-temperature heating, such as brazing treatment with ceramics or cemented carbide, is insufficient, and the hardness is insufficient. On the other hand, Cr addition has been studied as one of the techniques for improving the notch sensitivity of Incoloy 903, but F which has been conventionally studied has been studied.
In the e-Co-Ni matrix composition range, the addition of Cr unnecessarily increases the coefficient of thermal expansion, but cannot add a sufficient amount of Cr to improve notch sensitivity and oxidation resistance. It has not been converted.

【0006】本発明は、かかる問題点に鑑み、これまで
に実用化されてきた低熱膨張超耐熱合金インコロイ90
3やインコロイ909と同レベルの低熱膨張特性を有
し、かつこれらの合金では得られなかった高い時効硬化
性と切欠破断強度を両立する新規の低熱膨張超耐熱合金
を提供するものである。
[0006] In view of the above problems, the present invention provides a low thermal expansion super heat resistant alloy Incoloy 90 which has been put to practical use.
The present invention provides a novel low thermal expansion super heat resistant alloy having low thermal expansion properties at the same level as No. 3 or Incoloy 909 and having both high age hardening properties and notch breaking strength, which cannot be obtained with these alloys.

【0007】[0007]

【課題を解決するための手段】本願発明者は、かかる問
題点を解決すべく、Fe-Co-Ni系合金を対象に実験を
行なった結果、時効硬化性の改善と切欠感受性の改善に
寄与するCrの最適添加範囲と、このようなCr添加に
よっても従来合金と遜色のない低い熱膨張係数を持ち、
かつ、結晶粒の微細化と切欠強度改善に役立つ適量のLa
ves相を析出させるFe、CoおよびNiの割合と、さらに
安定かつ時効硬化性の高いガンマプライム相を析出する
ためのTi、NbおよびAlの適正な添加範囲を見出し、
その結果、従来合金にない高い高温強度と低熱膨張係数
を兼備した合金を発明するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventor conducted experiments on Fe-Co-Ni alloys, and as a result, contributed to the improvement of age hardening property and the improvement of notch sensitivity. Has the optimum addition range of Cr and a low coefficient of thermal expansion comparable to that of the conventional alloy even by such addition of Cr.
In addition, an appropriate amount of La that helps refine the crystal grains and improve the notch strength
To find out the proportions of Fe, Co and Ni for precipitating the ves phase and the proper addition ranges of Ti, Nb and Al for precipitating a more stable and age-hardenable gamma prime phase,
As a result, the inventors have invented an alloy having both high high-temperature strength and a low coefficient of thermal expansion, which are not found in conventional alloys.

【0008】すなわち本発明は、重量%にて、C 0.2%
以下、Si 1.0%以下、Mn 1.0%以下、Cr 0.5〜4.0%、
Al 0.25〜1.0%、Ti 0.5〜2.5%、Nb 3.0〜6.0%、B
0.02%以下、Ni 24%以上30%未満およびCo 20〜28%を含
有し、残部は不純物を除き、実質的にFeからなること
を特徴とする低熱膨張超耐熱合金であり、望ましくは重
量%にてC 0.1%以下、Si 1.0%以下、Mn 1.0%以下、C
r 0.5〜4.0%、Al 0.25〜1.0%、Ti 0.5〜2.5%、Nb
およびTaの1種または2種をNb+1/2Taで3.0〜6.0
%、B 0.01%以下、Ni 27%以上30%未満およびCo 20
〜25%を含有し、残部は不純物を除き、実質的にFeから
なる低熱膨張超耐熱合金であり、さらに望ましくは、重
量%にて、C 0.1%以下、Si 1.0%以下、Mn 1.0%以
下、Cr 0.5〜2.95%、Al 0.25〜1.0%、Ti 0.5〜2.5
%、NbおよびTaの1種または2種をNb+1/2Taで3.0
〜6.0%、B 0.01%以下、Ni 27〜29.8%およびCo 20〜2
5%を含有し、残部は不純物を除き、実質的にFeからな
る低熱膨張超耐熱合金である。
That is, according to the present invention, C 0.2%
Hereinafter, Si 1.0% or less, Mn 1.0% or less, Cr 0.5 to 4.0%,
Al 0.25-1.0%, Ti 0.5-2.5%, Nb 3.0-6.0%, B
0.02% or less, Ni is 24% or more and less than 30%, and Co is 20 to 28%, and the remainder is a low thermal expansion super heat resistant alloy characterized by being substantially composed of Fe, excluding impurities. At 0.1% or less, Si 1.0% or less, Mn 1.0% or less, C
r 0.5-4.0%, Al 0.25-1.0%, Ti 0.5-2.5%, Nb
One or two of Ta and Nb + 1 / 2Ta at 3.0 to 6.0
%, B 0.01% or less, Ni 27% or more and less than 30%, and Co 20
A low thermal expansion super-heat-resistant alloy consisting essentially of Fe except for impurities, and more desirably 0.1% or less of C, 1.0% or less of Si, and 1.0% or less of Mn in weight%. , Cr 0.5-2.95%, Al 0.25-1.0%, Ti 0.5-2.5
%, One or two of Nb and Ta are 3.0% by Nb + 1 / 2Ta.
6.0%, B 0.01% or less, Ni 27-29.8% and Co 20-2
It is a low-thermal-expansion super-heat-resistant alloy consisting essentially of Fe, containing 5% and the remainder excluding impurities.

【0009】[0009]

【作用】以下、本発明合金の成分限定理由について述べ
る。CはTiやNbと結合して炭化物を形成し、結晶粒の
粗大化を防ぎ、強度の向上に寄与するが、0.2%を越える
過度の添加はTiやNbの炭化物が多くなりすぎて析出強
化元素として作用するTiやNbを減少させるとともに、
合金の熱膨張係数を増大させるので、Cは0.2%以下とす
る。望ましいCの範囲は0.1%以下である。
The reasons for limiting the components of the alloy of the present invention will be described below. C combines with Ti and Nb to form carbides and prevents coarsening of crystal grains and contributes to the improvement of strength. However, excessive addition exceeding 0.2% results in too much Ti and Nb carbides to strengthen precipitation. While reducing Ti and Nb acting as elements,
C is set to 0.2% or less to increase the coefficient of thermal expansion of the alloy. A desirable range of C is 0.1% or less.

【0010】Siは脱酸剤としての効果のほかに、結晶
粒微細化と粒界形状の改善に役立つLaves相の析出を促
進させるので必須の添加元素であるが、1%を越える過
度の添加は熱間加工性と高温強度の低下を招くので、1.
0%以下に限定する。Mnは、脱酸剤として添加されるの
で合金中に含まれるが、過度の添加は合金の熱膨張係数
を増加させるので好ましくない。したがって、Mnは1.0
%以下に限定する。
[0010] Si is an essential additive element in addition to its effect as a deoxidizing agent, because it promotes the precipitation of a Laves phase useful for refining crystal grains and improving the grain boundary shape, but excessive addition exceeding 1%. Causes deterioration in hot workability and high-temperature strength, so 1.
Limit to 0% or less. Mn is included in the alloy because it is added as a deoxidizing agent, but excessive addition is undesirable because it increases the coefficient of thermal expansion of the alloy. Therefore, Mn is 1.0
% Or less.

【0011】Crは本発明において、時効硬化性の改善
と切欠感受性の改善において重要な役割を果たす。すな
わち、Crはマトリックス中に固溶して、析出強化相で
あるガンマプライム相の析出を促進させ、短時間の時効
でも十分な強度が得られるとともに、切欠感受性の一因
と考えられる結晶粒界の酸化抵抗を高める。そのために
Crは最低0.5%以上を必要とするが、4%を超える過度
の添加は、マトリックスを構成するFeとCoおよびN
iの比をいかに調整しても、十分な低熱膨張特性が得ら
れなくなるため、0.5〜4.0%に限定する。望ましいCr
の範囲は0.5〜2.95%である
In the present invention, Cr plays an important role in improving age hardenability and improving notch sensitivity. That is, Cr forms a solid solution in the matrix to promote the precipitation of the gamma-prime phase, which is a precipitation strengthening phase, so that sufficient strength can be obtained even by aging for a short time, and the crystal grain boundaries considered to be one of the causes of notch sensitivity. Increases oxidation resistance. For this purpose, Cr needs to be at least 0.5% or more. Excessive addition of more than 4% can reduce Fe, Co, and N constituting the matrix.
No matter how the ratio of i is adjusted, sufficient low thermal expansion characteristics cannot be obtained, so the content is limited to 0.5 to 4.0%. Desirable Cr
Ranges from 0.5 to 2.95%

【0012】Alは時効処理によって、(Ni,Co)3(Al,T
i,Nb)からなる組成の直径数10nm程度の微細なガンマプ
ライム相を析出し、高温引張強度を著しく向上させる。
ガンマプライム相中のAlの濃度が低下すると、700
〜800℃程度の高温で、ガンマプライム相が不安定と
なり、六方晶のη相や斜方晶のδ相が析出するようにな
り、常温と高温の強度の低下を招くようになる。したが
って、安定なガンマプライム相を析出させるために、A
lは最低0.25%以上の添加を必要とするが、1%を超え
る過度の添加はガンマプライム相を多量に析出させ、熱
間加工性を低下させるので、0.25〜1.0%に限定する。
Al is (Ni, Co) 3 (Al, T
A fine gamma-prime phase having a composition of i, Nb) having a diameter of about several tens of nanometers is precipitated, and the high-temperature tensile strength is significantly improved.
When the concentration of Al in the gamma prime phase decreases, 700
At a high temperature of about 800 ° C., the gamma-prime phase becomes unstable, and a hexagonal η phase and an orthorhombic δ phase are precipitated, resulting in a decrease in strength at room temperature and high temperature. Therefore, in order to precipitate a stable gamma prime phase, A
l requires a minimum addition of 0.25% or more, but an excessive addition exceeding 1% precipitates a large amount of the gamma prime phase and lowers hot workability, so it is limited to 0.25 to 1.0%.

【0013】前述したようにTiとNbは、まずCと結合
して炭化物を形成し、残りのTiとNbが下記に説明する
ようにAlとともにNi、Co等と結合し、ガンマプライ
ム相を形成して合金を強化する。Tiは時効処理によっ
て、Ni、Co、Al、Nbと共にガンマプライム相を析出
し、高温引張強度を著しく向上させる。そのために必要
なTi量は最低0.5%であるが、2.5%を越える過度の添加
はガンマプライム相を不安定にするとともに、熱膨張係
数の増加や熱間加工性の低下を招くので、Tiは0.5〜2.
5%に限定する。
As described above, Ti and Nb first combine with C to form a carbide, and the remaining Ti and Nb combine with Al and Ni and Co together with Al to form a gamma prime phase as described below. To strengthen the alloy. Ti precipitates a gamma prime phase together with Ni, Co, Al, and Nb by aging treatment, and remarkably improves high-temperature tensile strength. The Ti content required for this is at least 0.5%, but excessive addition exceeding 2.5% destabilizes the gamma-prime phase, increases the thermal expansion coefficient and lowers the hot workability. 0.5-2.
Limited to 5%.

【0014】NbはTiと同様に、時効処理によってN
i、Co、Alとともにガンマプライム相を析出し、熱間
強度を著しく向上させる。さらに一部のNbは直径数μm
程度のLaves相を粒界および粒内に析出させ、結晶粒の
微細化を可能にすると共に、粒界の強度を高める作用を
持ち、高温引張強度と500℃前後の切欠クリープ破断強
度を著しく向上させる作用を持つ。そのためにNbは3.0
%以上を必要とするが、6.0%を越える過度の添加は、熱
膨張係数を高めると共に熱間加工性を低下させるので、
Nbは3.0〜6.0%に限定する。また、TaはNbと同族の元
素でNbの2倍の原子量を持つのでNbの一部を3.0≦Nb
+1/2Ta≦6.0の範囲で置換が可能である。
Similarly to Ti, Nb is Nb by aging treatment.
Precipitates a gamma prime phase together with i, Co, and Al, and significantly improves hot strength. Some Nb has a diameter of several μm
A small amount of Laves phase precipitates at the grain boundaries and inside the grains, enabling the crystal grains to be refined, and also has the effect of increasing the strength of the grain boundaries, significantly improving the high-temperature tensile strength and the notch creep rupture strength at around 500 ° C. Has the effect of causing. Therefore Nb is 3.0
% Or more, but excessive addition exceeding 6.0% increases the thermal expansion coefficient and decreases the hot workability, so
Nb is limited to 3.0 to 6.0%. Also, Ta is an element of the same family as Nb and has twice the atomic weight of Nb.
Substitution is possible in the range of + 1 / 2Ta ≦ 6.0.

【0015】Bは結晶粒界に偏析して粒界強度を高め、
熱間加工性と500℃前後の切欠クリープ破断強度の向上
に寄与するので極く微量でも有効である。しかし、0.02
%を越える過剰のB添加はボロン化合物を形成するた
め、逆に合金の初期溶融温度を低下させ、熱間加工性を
害するので0.02%以下に限定する。望ましいBの範囲は
0.01%以下である。
B segregates at the crystal grain boundaries to increase the grain boundary strength,
Since it contributes to the improvement of hot workability and notch creep rupture strength at around 500 ° C, even a very small amount is effective. But 0.02
Excessive addition of B in excess of% results in the formation of a boron compound, conversely lowering the initial melting temperature of the alloy and impairing the hot workability, so is limited to 0.02% or less. Desirable range of B is
0.01% or less.

【0016】NiはCo,Feとともにマトリックスを構成
し、FeとCoおよびNiの比は合金の熱膨張係数と金属
間化合物の析出形態に著しく影響を及ぼす。本発明合金
は、従来合金の中でも最も高いレベルの高温強度を付与
するために、TiやNbさらにはAlなどの析出強化元素
を多く含んでいるが、従来合金にないFe、Co、Niの
割合を見出して高い高温引張強度と低熱膨張係数の両立
が可能となった。さらに、本発明合金のFeとCoとNi
の量とその割合においては、微細球状のLaves相の析出
量が従来合金に比べてはるかに多く、粒界強化に役立
ち、500℃前後の切欠クリープ破断強度を高める効果を
持つ。そのために必要なNi量は24%以上である。Ni量
が24%を下回るとオーステナイト相が不安定になるとと
もに、ガンマプライム相の析出が不十分となって時効応
答性が鈍くなって高温強度を低下させる。逆に30%以上
のNiは熱膨張係数を増加させ、Laves相の析出量を減少
させるので、結晶粒の微細化や粒界強化が困難となり、
本発明の目的達成はできなくなる。したがって、Niは2
4%以上30%未満であることが重要である。望ましいNiの
範囲は27%以上30%未満であり、さらに望ましくは27〜2
9.8%である。
Ni forms a matrix together with Co and Fe, and the ratio of Fe to Co and Ni significantly affects the coefficient of thermal expansion of the alloy and the form of precipitation of intermetallic compounds. The alloy of the present invention contains a large amount of precipitation strengthening elements such as Ti, Nb and Al in order to provide the highest level of high-temperature strength among conventional alloys. It was found that both high temperature tensile strength and low coefficient of thermal expansion were compatible. Further, Fe, Co, and Ni of the alloy of the present invention are used.
With respect to the amount and ratio of the alloy, the precipitation amount of the fine spherical Laves phase is much larger than that of the conventional alloy, which is useful for strengthening the grain boundary and has the effect of increasing the notch creep rupture strength at around 500 ° C. The Ni amount required for that purpose is 24% or more. If the Ni content is less than 24%, the austenite phase becomes unstable, and the precipitation of the gamma prime phase becomes insufficient, whereby the aging response becomes dull and the high-temperature strength decreases. Conversely, Ni of 30% or more increases the coefficient of thermal expansion and reduces the amount of precipitation of the Laves phase, which makes it difficult to refine crystal grains and strengthen grain boundaries.
The object of the present invention cannot be achieved. Therefore, Ni is 2
It is important that it is 4% or more and less than 30%. A desirable Ni range is 27% or more and less than 30%, and more preferably 27 to 2%.
9.8%.

【0017】CoもNiと同様Feとともにマトリックス
を構成し、熱膨張係数の低下とLa-ves相の析出に
役立つ。そのためにCoは20%以上の添加を必要とする。
逆に28%を越えるCoの添加は熱膨張係数の増加と、過度
のLaves相析出にともなう高温強度の低下をまねくの
で、Coは20〜28%の範囲とする。望ましいCoの範囲は2
0〜25%である。
Co, like Ni, forms a matrix together with Fe, and serves to lower the coefficient of thermal expansion and precipitate the La-ves phase. Therefore, Co needs to be added in an amount of 20% or more.
Conversely, if Co exceeds 28%, the thermal expansion coefficient increases and the high-temperature strength decreases due to excessive Laves phase precipitation, so Co is set in the range of 20 to 28%. Desirable range of Co is 2
0 to 25%.

【0018】[0018]

【実施例】【Example】

(実施例1)表1に本発明合金、比較合金および従来合
金の化学組成を示す。本発明合金および従来合金は、真
空誘導溶解炉にて溶解し、10kgのインゴットとした後、
1150℃×20hr保持の均質化処理を施し、その後加熱温度
1100℃で鍛伸して、30mm角の試料とした。その後、従来
合金No.21を除く他の合金はすべて982℃×1hr保持後空
冷する固溶化処理を、No.21は930℃×1hr保持後空冷す
る固溶化処理を実施した。
(Example 1) Table 1 shows the chemical compositions of the alloys of the present invention, comparative alloys and conventional alloys. The alloys of the present invention and conventional alloys are melted in a vacuum induction melting furnace to form a 10 kg ingot,
1150 ° C x 20hrs homogenization treatment, then heating temperature
The sample was forged at 1100 ° C. to obtain a 30 mm square sample. Thereafter, all the alloys except for the conventional alloy No. 21 were subjected to a solution treatment in which the alloy was kept at 982 ° C. × 1 hour and air-cooled, and a solution treatment in which No. 21 was kept at 930 ° C. × 1 hour and air-cooled.

【0019】[0019]

【表1】 [Table 1]

【0020】従来合金No.21はインコロイ903、No.
22はインコロイ909であり、インコロイ903(No.2
1)のみは合金の再結晶温度が低く、結晶粒が成長しやす
いので、固溶化処理温度は他の合金より低い930℃で実
施した。時効処理条件は、セラミックスや超硬合金との
ろう付けによる実用上の接合処理条件を模擬して、850
℃で30分保持後、100℃/hの冷却速度で650℃まで炉冷
後、空冷とした。この熱処理は従来のインコロイ903
やインコロイ909の標準時効処理に比べて、高温短時
間の熱処理である。表1に示す合金のうち、本発明合金
No.4、従来合金No.21およびNo.22の熱処理後の光学
顕微鏡ミクロ組織写真を、図1に示す。図1より、本発
明合金No.4は微細な結晶粒をもち、粒界および粒内に
微細なLaves相が均一に分布していることがわかる。一
方、従来合金No.21(インコロイ903)は、固溶化処
理温度を低めたにもかかわらず、結晶粒は粗大化し、粒
界や粒内には本発明合金のようなLaves相の析出は見ら
れない。また、従来合金No.22(インコロイ909)は
高温の時効処理によって、少量のLaves相の他に粒内に
針状のδ相の析出が見られ、このような析出相の生成の
ために、常温と高温での十分な引張強度を得ることがで
きない。
The conventional alloy No. 21 is Incoloy 903, No.
22 is Incoloy 909, Incoloy 903 (No.
In the case of only 1), the recrystallization temperature of the alloy was low and crystal grains were easy to grow, so the solution treatment temperature was 930 ° C, which was lower than other alloys. The aging conditions were set at 850 to simulate practical bonding conditions for brazing with ceramics and cemented carbide.
After holding at 30 ° C. for 30 minutes, the furnace was cooled to 650 ° C. at a cooling rate of 100 ° C./h and air-cooled. This heat treatment is performed using the conventional Incoloy 903.
This is a high-temperature, short-time heat treatment as compared with the standard aging treatment of Incoloy 909 and Incoloy 909. Among the alloys shown in Table 1, the microstructure photographs of the alloy No. 4 of the present invention, the conventional alloys No. 21 and No. 22 after the heat treatment are shown in FIG. FIG. 1 shows that the alloy No. 4 of the present invention has fine crystal grains, and fine Laves phase is uniformly distributed in the grain boundaries and in the grains. On the other hand, in the conventional alloy No. 21 (Incoloy 903), although the solution treatment temperature was lowered, the crystal grains became coarse, and the precipitation of Laves phase like the alloy of the present invention was not observed in the grain boundaries and in the grains. I can't. In addition, in the conventional alloy No. 22 (Incoloy 909), a needle-like δ phase was observed in the grains in addition to a small amount of the Laves phase due to the high-temperature aging treatment. Sufficient tensile strength at normal and high temperatures cannot be obtained.

【0021】(実施例2)表2に本発明合金、比較合金
および従来合金の常温引張特性、500℃引張特性、500℃
平滑−切欠複合クリープ破断特性および30℃から400℃
までの平均熱膨張係数を示す。引張試験は常温、500℃
ともASTM法に規定された試験方法に基づき、平行部
直径 6.35mm標点間距離 25.4mmのA370の縮小引張試験片
で実施した。また、平滑−切欠複合クリープ破断試験も
ASTM法に規定された試験方法に基づき、平滑部、切
欠部とも直径 4.52mm、平滑部の標点間距離 18.08mmのA
453の9号試験片を用いた。試験温度は500℃で初期応力
はNo.21と22のみ50kgf/mm2とし、他はいずれも80kgf/m
m2の初期応力で試験を行なった。破断時間が200hrを超
過したものについては、8〜16時間毎に5kgf/mm2の応力
増加を行ない、強制的に破断させた。
(Example 2) Table 2 shows the room-temperature tensile properties, 500 ° C tensile properties, and 500 ° C of the alloys of the present invention, comparative alloys and conventional alloys.
Smooth-notched composite creep rupture characteristics and 30 ° C to 400 ° C
The average thermal expansion coefficient up to is shown. Tensile test at room temperature, 500 ℃
In both cases, based on the test method specified by the ASTM method, the test was performed on a reduced tensile test specimen of A370 having a parallel portion diameter of 6.35 mm and a distance between gauge points of 25.4 mm. In addition, the smooth-notch composite creep rupture test was performed based on the test method specified in the ASTM method, and the diameter of both the smooth part and the notch part was 4.52 mm, and the distance between the gauge points of the smooth part was 18.08 mm.
453 No. 9 test pieces were used. Initial Stress at test temperature 500 ° C. is a No.21 and 22 only 50 kgf / mm 2, and all other is 80 kgf / m
The test was conducted in the initial stress of m 2. When the rupture time exceeded 200 hours, the stress was increased by 5 kgf / mm 2 every 8 to 16 hours to force the rupture.

【0022】[0022]

【表2】 [Table 2]

【0023】表2には、初期応力と最終破断時の応力
(破断応力の欄)、破断に至るまでの試験時間の総計
(破断寿命の欄)および平滑部で破断した場合には伸び
の値、切欠部で破断した場合には、「N」の記号を伸び
の欄に記載した。熱膨張係数の測は直径5mm、長さ19.5m
mの試験片を用いて30℃から400℃までの平均熱膨張係数
を求めた。
Table 2 shows the initial stress and the stress at the time of final rupture (in the column of rupture stress), the total test time up to rupture (in the column of rupture life), and the value of elongation when ruptured in a smooth part. In the case of breakage at the notch, the symbol "N" was described in the column of elongation. Measurement of thermal expansion coefficient is 5mm in diameter and 19.5m in length
The average coefficient of thermal expansion from 30 ° C. to 400 ° C. was determined using a test piece of m.

【0024】表1および表2より本発明合金No.1〜9お
よびNo.31〜35は、いずれも優れた常温および500℃の
引張強さを有し、500℃の平滑−切欠複合クリープ破断
試験において、いずれも平滑部での破断で、切欠強度が
平滑部の強度を上回っており、かつその破断応力も高い
ことがわかる。さらに、常温から400℃までの平均熱膨
張係数において、本発明合金はいずれも8.5×10マイナ
ス6乗/℃以下の値を示し、従来合金No.21やNo.22にく
らべ、遜色のない低い熱膨張係数を併せ持つことがわか
る。それに対し、比較合金No.10は、本発明合金No.9
と比較してNiの含有量が30%以上とわずかに高い以外は
ほとんど類似した組成にもかかわらず、Laves相の析出
が不十分のため切欠部で破断が生じたものと考えられ
る。
According to Tables 1 and 2, the alloys Nos. 1 to 9 and 31 to 35 of the present invention all have excellent tensile strength at room temperature and 500 ° C., and have a smooth-notched composite creep rupture at 500 ° C. In the tests, it can be seen that the notch strength exceeded the strength of the smooth portion, and that the breaking stress was high, in each case of breaking at the smooth portion. Further, in the average coefficient of thermal expansion from room temperature to 400 ° C., all of the alloys of the present invention show a value of 8.5 × 10−6 / ° C. or less, which is as low as that of the conventional alloys No. 21 and No. 22. It can be seen that they also have a coefficient of thermal expansion. On the other hand, the comparative alloy No. 10 is the alloy No. 9 of the present invention.
It is probable that despite the almost similar composition except that the Ni content was slightly higher at 30% or more as compared with, the Laves phase was insufficiently precipitated to cause breakage at the notch.

【0025】比較合金No.11は、本発明合金に比べ、高
Ni、低Coのマトリックス組成で、特開昭53−62
25号に含まれる合金であるが、この組成では常温と高
温での引張強度は高い値が得られるが、Ni/Co比が
高すぎるためにLaves相が析出せず、結晶粒が粗大化し
て切欠部破断となり、また、熱膨張係数も本発明合金に
劣る。比較合金No.12は、本発明合金に対してCrを含
まない組成であるために、高温短時間の時効では、十分
にガンマプライム相が析出せず、強度が本発明合金に比
べて劣る。さらに、粒界酸化抵抗も低くなるために、切
欠部で破断を生じる。また、比較合金No.13は、本発明
合金よりもCrが高く、良好な常温・高温の引張強度が
得られるが、熱膨張係数が高くなりすぎる。
Comparative alloy No. 11 has a higher Ni and lower Co matrix composition than the alloy of the present invention.
Although the alloy contained in No. 25 has a high tensile strength at room temperature and high temperature with this composition, the Laves phase does not precipitate because the Ni / Co ratio is too high, and the crystal grains become coarse. Notch breakage occurs, and the coefficient of thermal expansion is inferior to that of the alloy of the present invention. Since the comparative alloy No. 12 has a composition that does not contain Cr with respect to the alloy of the present invention, the aging at high temperature for a short time does not sufficiently precipitate the gamma prime phase, and is inferior in strength to the alloy of the present invention. Further, since the intergranular oxidation resistance is lowered, a fracture occurs at the notch. Further, Comparative Alloy No. 13 has higher Cr than the alloy of the present invention, and provides good room-temperature and high-temperature tensile strength, but has too high a coefficient of thermal expansion.

【0026】また、従来合金No.21(インコロイ903)
は、常温および500℃の引張強さこそ本発明合金と同等
の強度が得られるものの、500℃の切欠強度が極端に低
い。No.21(インコロイ903)の切欠感受性が異常に高
い理由は、Nbがやや低いことと、FeとCoおよびNiの
割合がLaves相の析出を生じさせるには十分な組織とな
らず、その結果として粒界強度が十分保たれていないこ
とが原因であると考えられる。従来合金No.22(インコ
ロイ909)は、No.21(インコロイ903)のAlを低下
させ、Nbを増加させた合金であり、No.21と同じFeと
CoとNiの割合であってもLaves相の析出が生じるよう
になり、切欠破断強度は確かに向上している。しかし、
Alを含まないために高温の時効をおこなうと安定なガ
ンマプライム相を析出することができず、本発明合金に
比べると明らかに強度は低下している。
Also, a conventional alloy No. 21 (Incoloy 903)
Although the same strength as the alloy of the present invention can be obtained only at room temperature and at a tensile strength of 500 ° C., the notch strength at 500 ° C. is extremely low. The notch sensitivity of No. 21 (Incoloy 903) is abnormally high because Nb is slightly low and the proportion of Fe, Co and Ni is not sufficient to cause precipitation of the Laves phase. It is considered that the cause is that the grain boundary strength is not sufficiently maintained. Conventional alloy No. 22 (Incoloy 909) is an alloy in which Al of No. 21 (Incoloy 903) is reduced and Nb is increased, and Laves has the same ratio of Fe, Co and Ni as No. 21. Precipitation of the phase occurs, and the notch rupture strength is certainly improved. But,
Since Al is not contained, a stable gamma-prime phase cannot be precipitated when high-temperature aging is performed, and the strength is clearly lower than that of the alloy of the present invention.

【0027】[0027]

【発明の効果】本発明の合金をガスタービン部品、セラ
ミックス接合部品および超硬合金接合部品等の用途に使
用すれば、従来合金では得られなかった高い高温強度と
低熱膨張特性を同時に満足することができ、常温から高
温まで高強度かつ各種の部材や部品間に設けられたクリ
アランスを常温から高温まで一定量に維持することが必
要な構造用材料への適応が可能となる。また、セラミッ
クスや超硬合金のような低熱膨張材料と構造用の材料と
の接合に際し高強度で信頼性の高い接合が得られる。
When the alloy of the present invention is used for gas turbine parts, ceramic joint parts, cemented carbide joint parts, etc., it simultaneously satisfies high high-temperature strength and low thermal expansion characteristics which cannot be obtained with conventional alloys. Thus, it is possible to adapt to structural materials which require high strength from room temperature to high temperature and a constant clearance provided between various members and components from room temperature to high temperature. In addition, when joining a low thermal expansion material such as ceramics and cemented carbide to a structural material, a highly reliable and highly reliable joint can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金No.4、従来合金No.21、および従
来合金No.22の熱処理後の光学顕微鏡ミクロ金属組織写
真である。
FIG. 1 is an optical microscopic microstructure photograph of an alloy No. 4 of the present invention, a conventional alloy No. 21, and a conventional alloy No. 22 after heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手 敏行 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平2−70040(JP,A) 特開 平4−218642(JP,A) 特表 平6−500361(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 30/00 - 30/06 C22C 38/00 - 38/58 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Ide 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-2-70040 (JP, A) JP-A-4-218642 (JP, A) Special Table Hei 6-500361 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 30/00-30/06 C22C 38/00-38/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%にて、C 0.1%以下、SI 1.0%
以下、Mn 1.0%以下、Cr 0.5〜4.0%、Al 0.25〜
1.0%、Ti 0.5〜2.5%、NbおよびTaの1種または2
種をNb+1/2Taで3.0〜6.0%、B 0.01%以下、Ni 2
7%以上30%未満およびCo 20〜25%を含有し、残部は
不純物を除き、実質的にFeからなることを特徴とする
低熱膨張超耐熱合金。
(1) In weight%, C is 0.1% or less, SI is 1.0%.
Below, Mn 1.0% or less, Cr 0.5 to 4.0%, Al 0.25 to
1.0%, Ti 0.5 to 2.5%, one or two of Nb and Ta
Seeds are 3.0-6.0% at Nb + 1 / 2Ta, B 0.01% or less, Ni 2
A low-thermal-expansion super-heat-resistant alloy containing 7% or more but less than 30% and Co of 20 to 25%, with the balance being substantially Fe, excluding impurities.
【請求項2】 重量%にて、C 0.1%以下、Si 1.0%
以下、Mn 1.0%以下、Cr 0.5〜2.95%、Al 0.25
〜1.0%、Ti 0.5〜2.5%、NbおよびTaの1種または
2種をNb+1/2Taで3.0〜6.0%、B 0.01%以下、Ni
27〜29.8%およびCo 20〜25%を含有し、残部は不純物
を除き、実質的にFeからなることを特徴とする低熱膨
張超耐熱合金。
2. In % by weight, C: 0.1% or less, Si: 1.0%
Below, Mn 1.0% or less, Cr 0.5-2.95%, Al 0.25
-1.0%, Ti 0.5-2.5%, one or two of Nb and Ta are 3.0-6.0% by Nb + 1 / 2Ta, B 0.01% or less, Ni
A low-heat-expansion super-heat-resistant alloy containing 27 to 29.8% and 20 to 25% Co, with the balance being substantially Fe, excluding impurities.
JP04216381A 1991-09-19 1992-07-22 Low thermal expansion super heat resistant alloy Expired - Fee Related JP3135691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04216381A JP3135691B2 (en) 1991-09-19 1992-07-22 Low thermal expansion super heat resistant alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26847991 1991-09-19
JP3-268479 1991-09-19
JP04216381A JP3135691B2 (en) 1991-09-19 1992-07-22 Low thermal expansion super heat resistant alloy

Publications (2)

Publication Number Publication Date
JPH05209249A JPH05209249A (en) 1993-08-20
JP3135691B2 true JP3135691B2 (en) 2001-02-19

Family

ID=26521405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04216381A Expired - Fee Related JP3135691B2 (en) 1991-09-19 1992-07-22 Low thermal expansion super heat resistant alloy

Country Status (1)

Country Link
JP (1) JP3135691B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256858A (en) * 2004-03-09 2005-09-22 Railway Technical Res Inst Brake disc for vehicle
DE102005061790A1 (en) * 2005-12-23 2007-07-05 Mtu Aero Engines Gmbh Material for component of gas turbine comprises matrix based on iron alloy with intermetallic material of Laves phase
CN103084753B (en) * 2013-01-23 2016-07-27 宝山钢铁股份有限公司 A kind of ferronickel Precise Alloy welding wire
JP6459576B2 (en) * 2014-02-12 2019-01-30 日立金属株式会社 Die casting sleeve

Also Published As

Publication number Publication date
JPH05209249A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
EP0633325B1 (en) Nickel base alloy with superior stress rupture strength and grain size control
WO2012026354A1 (en) Co-based alloy
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JP3127471B2 (en) Low thermal expansion super heat resistant alloy
AU2017200656A1 (en) Ni-based superalloy for hot forging
EP0104738B1 (en) Controlled expansion alloy
AU2017200657A1 (en) Ni-based superalloy for hot forging
JP3135691B2 (en) Low thermal expansion super heat resistant alloy
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JP5595495B2 (en) Nickel-base superalloy
JP2556198B2 (en) Ni-base heat-resistant alloy turbine blade casting
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP3424314B2 (en) Heat resistant steel
JP2002097537A (en) Co-ni based heat resistant alloy and manufacturing method
JP3289847B2 (en) Low thermal expansion super heat resistant alloy with excellent oxidation resistance
EP0533059B1 (en) Super alloy with low thermal expansion
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
US5449490A (en) Nickel-chromium-tungsten base superalloy
WO2016121495A1 (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING SAME
WO2004005565A1 (en) Casting steel having high strength and low thermal expansion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees