JP3135279B2 - Torsional crystal oscillator - Google Patents

Torsional crystal oscillator

Info

Publication number
JP3135279B2
JP3135279B2 JP03121487A JP12148791A JP3135279B2 JP 3135279 B2 JP3135279 B2 JP 3135279B2 JP 03121487 A JP03121487 A JP 03121487A JP 12148791 A JP12148791 A JP 12148791A JP 3135279 B2 JP3135279 B2 JP 3135279B2
Authority
JP
Japan
Prior art keywords
torsional
axis
crystal resonator
cut angle
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03121487A
Other languages
Japanese (ja)
Other versions
JPH05199063A (en
Inventor
宏文 川島
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP03121487A priority Critical patent/JP3135279B2/en
Priority to DE1992621215 priority patent/DE69221215T2/en
Priority to EP19920304806 priority patent/EP0516400B1/en
Publication of JPH05199063A publication Critical patent/JPH05199063A/en
Priority to US08/110,628 priority patent/US5334900A/en
Application granted granted Critical
Publication of JP3135279B2 publication Critical patent/JP3135279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、捩り水晶振動子のカッ
ト角と辺比Rzx(厚み/幅)に関する。特に、小型化、
高精度化、耐衝撃性、低廉化の要求の強い腕時計、ポケ
ットベル、ICカードや移動無線等の基準信号源として
最適な新カットの捩り水晶振動子に関する。
The present invention relates to a cut angle and a side ratio R zx (thickness / width) of a torsional quartz crystal resonator. In particular, miniaturization,
The present invention relates to a new-cut torsional crystal resonator that is most suitable as a reference signal source for watches, pagers, IC cards, mobile radios, and the like that require high precision, shock resistance, and low cost.

【0002】[0002]

【従来の技術】周波数が200kHz〜600kHzの水晶
振動子は、音叉形状した屈曲水晶振動子と縦水晶振動子
が用いられてきた。
2. Description of the Related Art A tuning fork-shaped bent crystal resonator and a vertical crystal resonator have been used as a crystal resonator having a frequency of 200 kHz to 600 kHz.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら使用されている音叉型屈曲水晶振動子は高調波モード
を使用するため、電極形成が複雑で、リード線等の支持
による振動エネルギー損失が多く、その結果、等価直列
抵抗R1 が上昇するなどの課題が残されていた。一方、
縦水晶振動子は、周波数が振動腕の長さに反比例するた
め、600kHz以下の振動子を実現しようとすると、お
のずからサイズが大きくなり、小型化できないという課
題が残されていた。このようなことから、周波数が200
kHz〜600kHzで、しかも超小型で、零温度係数を
有し、化学的エッチング加工が容易な新カットの水晶振
動子が所望されていた。
However, since the tuning fork-type bent quartz crystal resonator conventionally used uses the harmonic mode, the formation of the electrodes is complicated and the vibration energy loss due to the support of the lead wire is large. As a result, problems such equivalent series resistance R 1 increases had been left. on the other hand,
Since the frequency of the vertical crystal resonator is inversely proportional to the length of the vibrating arm, there has been a problem that the size of the vertical crystal resonator is naturally increased to realize a resonator of 600 kHz or less, and the size cannot be reduced. Therefore, the frequency is 200
There has been a demand for a new-cut crystal unit which is ultra-small, has a zero temperature coefficient at a frequency in the range of kHz to 600 kHz, and is easy to chemically etch.

【0004】[0004]

【課題を解決するための手段】本発明は以下の方法で従
来の課題を解決するものである。すなわち、捩り振動モ
ードで振動する水晶振動子で、z軸(光軸)と垂直とな
るZ板水晶をx軸(電気軸)を回転軸として、角度φ=
−90゜〜+90゜回転し、更に、z軸の新軸z'軸の回り
に角度θ=10゜〜80゜回転した水晶板から前記振動子を
形成し、更に、振動子の厚みz0 と幅x0 の比Rzx(z
0 /x0 )を0.1から1.5に形成することにより課題を
解決している。
The present invention solves the conventional problem by the following method. That is, a quartz crystal vibrating in a torsional vibration mode, a Z-plate crystal perpendicular to the z-axis (optical axis) is defined by an angle φ =
The vibrator is formed from a quartz plate rotated by −90 ° to + 90 ° and further rotated by an angle θ = 10 ° to 80 ° around a new axis z ′ of the z-axis, and further, the thickness z 0 of the vibrator is formed. the ratio of the width x 0 R zx (z
The problem is solved by forming ( 0 / x 0 ) from 0.1 to 1.5.

【0005】[0005]

【作用】このように、本発明は捩り水晶振動子で、しか
も、カット角(φ,θ)がZ板をx軸の回りにφ=−90
゜〜+90゜回転し、さらに、z’軸の回りにθ=10゜〜
80゜回転し、この板より、辺比Rzx(厚み/幅)が0.1
〜1.5を有する振動子をエッチング法により形成するこ
とにより、零温度係数を持った捩り水晶振動子が得られ
る。
As described above, the present invention is directed to a torsional quartz oscillator, and the cut angle (φ, θ) is set such that the Z plate is rotated around the x-axis by φ = −90.
゜ ~ + 90 ° rotate, and θ = 10 ° ~ around z 'axis
It rotates by 80 °, and the side ratio R zx (thickness / width) is 0.1 from this plate.
By forming a vibrator having .about.1.5 by an etching method, a torsional crystal vibrator having a zero temperature coefficient can be obtained.

【0006】[0006]

【実施例】次に、本発明を実施例に基づいて具体的に述
べる。図1は、本発明の捩り水晶振動子1とその座標系
を示す。座標系は原点0、電気軸x、機械軸y、光軸z
からなり、0−xyzを構成している。まず、厚み
0 、幅x0 、長さy0 からなり、y軸回りに捩りモー
メントを有する捩り水晶振動子1はz軸と垂直となるZ
板水晶に一致するように置く。次に、x軸とz’軸を回
転軸として、反時計方向の回転を正とすると、角度φ=
−90゜〜+90゜、θ=10゜〜80゜回転される。以後、こ
のカットをTTカットと呼ぶ。次に、1次温度係数αを
零にするカット角(φ,θ)と辺比Rzx(厚みz0 /幅
0 )との関係を示す。
Next, the present invention will be specifically described based on examples.
Bell. FIG. 1 shows a torsional crystal resonator 1 of the present invention and its coordinate system.
Is shown. Coordinate system is origin 0, electric axis x, mechanical axis y, optical axis z
To form 0-xyz. First, the thickness
z 0, Width x0, Length y0And twist mode around the y-axis.
Torsional quartz resonator 1 having a
Place it to match the sheet crystal. Next, rotate the x axis and z 'axis.
Assuming that the counterclockwise rotation is positive as the axis of rotation, the angle φ =
−90 ° to + 90 °, θ = 10 ° to 80 °. Since then,
Is called a TT cut. Next, the primary temperature coefficient α
Cut angle (φ, θ) and side ratio R to be zerozx(Thickness z0/width
x0).

【0007】図2は、本発明の捩り水晶振動子の1次温
度係数αが零になるときのカット角(φ,θ)と辺比R
zxとの関係(a)とその時の2次温度係数βの値(b)
である。θ=0゜、10゜、20゜、30゜の計算値とθ=10
゜と30゜のときの実験値を示す。θ=0 ゜〜30゜の範囲
では、φ=−50゜〜+60゜で辺比Rzxの組み合わせによ
り、無数にα=0となることがよく分かる。また、カッ
ト角θ=10゜のとき、φ=30゜付近でβの絶対値は最小
値を示す。例えば、φ=28゜、θ=10゜で、α=0 とな
り、その時のβは、計算値で、−1.16×10-8/℃2 、音
叉形状での実験値で、−1.29×10-8/℃2 とその絶対値
は音叉型屈曲水晶振動子の約1/3倍と相当に小さい値
が得られた。
FIG. 2 shows a cut angle (φ, θ) and a side ratio R when the first-order temperature coefficient α of the torsional quartz resonator according to the present invention becomes zero.
Relationship with zx (a) and value of secondary temperature coefficient β at that time (b)
It is. Calculated values of θ = 0 °, 10 °, 20 °, 30 ° and θ = 10
The experimental values at ゜ and 30 ゜ are shown. It is well understood that in the range of θ = 0 ° to 30 °, α = 0 infinitely depending on the combination of the side ratio R zx in φ = −50 ° to + 60 °. When the cut angle θ = 10 °, the absolute value of β shows the minimum value near φ = 30 °. For example, when φ = 28 ° and θ = 10 °, α = 0, and β at that time is a calculated value of −1.16 × 10 −8 / ° C. 2 , and an experimental value of a tuning fork shape of −1.29 × 10 The absolute value of 8 / ° C. 2 and its absolute value was about 1/3 times that of the tuning-fork type bent quartz resonator, which was considerably smaller.

【0008】 更に、φ=−42゜、θ=30゜でもα=0
となり、そのときのβは計算値で、−1.06×10-8/℃2
、実験値で−1.22×10-8/℃2 とこの場合もβの絶対
値が相当に小さくなることがわかる。φ=−50゜〜+60
゜で、θに依存するが、βは近似的にβ=1.2×10-8
/℃2 〜−3.7×10-8/℃2 とカット角 (φ, θ) と辺
比Rzxの組み合わせにより、α=0となり、しかも、β
の絶対値が小さいので、優れた周波数温度特性を有する
音叉型捩り水晶振動子が得られた。
Further, even when φ = −42 ° and θ = 30 °, α = 0
Where β is a calculated value, −1.06 × 10−8 / ° C.2
It can be seen that the experimental value is -1.22 × 10 -8 / ° C.2, and in this case also, the absolute value of β is considerably small. φ = −50 ゜ ~ + 60
°, depending on the theta, beta is an approximation β = - 1.2 × 10-8
/ ° C2 to -3.7 × 10-8 / ° C2, the cut angle (φ, θ) and the side ratio Rzx, α = 0, and β
Is small, so that a tuning-fork type torsional quartz resonator having excellent frequency-temperature characteristics was obtained.

【0009】図3は、図2の振動子と同じ関係で、カッ
ト角θをθ=40゜、60゜、80゜とさらに大きくしたとき
の関係である。すなわち、 (a) がα=0となるときの
カット角(φ,θ)と辺比Rzxとの関係で、(b)はそ
のときの2次温度係数βの値である。θ=40゜〜80゜の
範囲では、φ=35゜付近でα=0となる辺比Rzxは存在
しないが、その近辺を除けばφ=−90゜〜+90゜の範囲
でα=0となり、そのときのβは約−1.0×10-8/℃2
3.8×10-8/℃2 とθ=0゜〜30゜のときと同様
に、優れた周波数温度特性を持った音叉型捩り水晶振動
子が得られる。このように、カット角φ=−90゜〜+90
゜、θ=0゜〜80゜と辺比Rzx=0.1〜1.5の組み合わ
せにより、α=0となる関係が得られる。この代表的様
子は以下の図4と図5で示される。
FIG. 3 shows the same relationship as that of the vibrator of FIG. 2 when the cut angle θ is further increased to θ = 40 °, 60 °, and 80 °. That is, (a) shows the relationship between the cut angle (φ, θ) when α = 0 and the side ratio R zx, and (b) shows the value of the secondary temperature coefficient β at that time. In the range of θ = 40 ° to 80 °, there is no side ratio R zx where α = 0 near φ = 35 °, but α = 0 in the range of φ = −90 ° to + 90 ° except for the vicinity. Where β is about −1.0 × 10 −8 / ° C. 2
~ - 3.8 × 10 -8 / ℃ similarly to the case 2 and theta = 0 ° to 30 °, the resulting tuning fork type torsional quartz crystal resonator having excellent frequency temperature characteristic. Thus, the cut angle φ = −90 ° to +90
The relationship of α = 0 is obtained by the combination of ゜, θ = 0 ° to 80 ° and the side ratio R zx = 0.1 to 1.5. This typical situation is shown in FIGS. 4 and 5 below.

【0010】図4は、本発明のカット角φ=28゜、θ=
10゜のときの周波数温度特性の一実施例を示す。実線は
計算値で、○印は測定値である。一方、破線は屈曲モー
ドでの周波数温度特性である。すでに図2で述べたよう
に、本発明の音叉型捩り水晶振動子の方が周波数温度特
性に大変に優れていることがよく分かる。図5は、本発
明のカット角φ=−40゜、θ=30゜のときの周波数温度
特性の他の実施例を示す。図4の場合と同様に屈曲モー
ド水晶振動子より優れた音叉型捩り水晶振動子が得られ
ることが分かる。
FIG. 4 shows the cut angle φ = 28 ° and θ =
An example of the frequency temperature characteristic at 10 ° is shown. The solid line is the calculated value, and the circles are the measured values. On the other hand, the broken line shows the frequency temperature characteristics in the bending mode. As already described with reference to FIG. 2, it can be clearly understood that the tuning-fork type torsional quartz resonator according to the present invention is much more excellent in frequency-temperature characteristics. FIG. 5 shows another embodiment of the frequency temperature characteristic when the cut angle φ = −40 ° and θ = 30 ° according to the present invention. As in the case of FIG. 4, it can be seen that a tuning-fork type torsional crystal resonator superior to the bending mode crystal resonator can be obtained.

【0011】次に、本発明の音叉型捩り水晶振動子を励
振する電極構成について述べる。図6は、本発明のカッ
ト角(φ,θ)を有する水晶板から形成される音叉型捩
り水晶振動子1'(a) とその電極構成の断面図 (b) を
示す。端子A,Bは電極端子を示し、端子Aは電極2、
5、7、8に接続され、一方端子Bは電極3、4、6、
9に接続されている。この電極構成のとき本発明の捩り
水晶振動子1’を励振する圧電定数はe16であり、以
下、e16とカット角(φ,θ)との関係を示す。
Next, an electrode configuration for exciting the tuning-fork type torsional quartz crystal resonator of the present invention will be described. FIG. 6 shows a cross-sectional view (b) of a tuning-fork type torsional quartz crystal resonator 1 '(a) formed from a quartz plate having a cut angle (φ, θ) of the present invention and its electrode configuration. Terminals A and B indicate electrode terminals, and terminal A is electrode 2,
5, 7, 8 while terminal B is connected to electrodes 3, 4, 6,.
9 is connected. Piezoelectric constant exciting the torsional quartz crystal resonator 1 'of the present invention when the electrode configuration is e 16, below, shows the relationship between e 16 and the cut angle (phi, theta).

【0012】図7は、カット角θをパラメータにしたと
きの圧電定数e16とカット角φとの関係を示す。θ=0
゜のとき、あらゆるカット角φでe16は零となり、本捩
り水晶振動子を励振することができないことが分かる。
しかし、カット角θを徐々に大きくすると、e16の絶対
値も徐々に大きくなり、θ=30゜で最大を示す。図示し
ていないが、θを更に大きくすると、e16の絶対値は徐
々に小さくなり、θ=60゜で最小となり、更に大きくす
ると、e16の絶対値は再び大きくなる。このことから、
本発明で示した電極構成ではθ=0゜の捩り水晶振動子
は励振できないことになる。又、θ=10゜以下ではe16
の絶対値が非常に小さいので、等価直列抵抗R1 が大き
く実用的でない。それ故、本発明では小さいR1 を得る
ためにθを10゜以上に設ける。次に、振動子を小型化に
できる理由について述べる。
FIG. 7 shows the relationship between the piezoelectric constant e 16 and the cut angle φ when the cut angle θ is used as a parameter. θ = 0
In the case of ゜, it can be seen that e 16 becomes zero at any cut angle φ, and it is not possible to excite the present torsional crystal resonator.
However, when gradually increasing the cut angle theta, the absolute value of e 16 also gradually increases, indicating the maximum theta = 30 °. Although not shown, when θ is further increased, the absolute value of e 16 gradually decreases, becomes minimum at θ = 60 °, and when further increased, the absolute value of e 16 increases again. From this,
With the electrode configuration shown in the present invention, the torsional quartz crystal resonator with θ = 0 ° cannot be excited. When θ is less than 10 °, e 16
Since the absolute value is very small, the equivalent series resistance R 1 is not greater practical. Therefore, in the present invention, θ is set to 10 ° or more in order to obtain a small R 1 . Next, the reason why the vibrator can be reduced in size will be described.

【0013】図8は、辺比Rzx=0.8を有する本発明の
音叉型捩り水晶振動子のカット角θをパラメータにした
ときのカット角φと周波数定数(f・y0 )との関係を
示す。カット角(φ,θ)によって異なるが、周波数定
数は80〜97kHz・cmと辺比(幅〜長さ)0.1を持つ
音叉型屈曲水晶振動子の7.9kHz・cmより大きく、
縦水晶振動子の270kHz・cmより小さく、屈曲振動
と縦振動の間に有り、本発明の音叉型捩り水晶振動子は
周波数が200kHz〜600kHz位の範囲で特に効力を
発揮することになる。
FIG. 8 is a graph showing the relationship between the cut angle φ and the frequency constant (f · y 0 ) when the cut angle θ of the tuning-fork type torsional quartz crystal resonator of the present invention having a side ratio R zx = 0.8 is used as a parameter. Show the relationship. Although the frequency constant varies depending on the cut angle (φ, θ), the frequency constant is larger than 7.9 kHz · cm of the tuning fork type bent crystal resonator having a side ratio (width to length) of 0.1 to 80 to 97 kHz · cm,
It is smaller than 270 kHz · cm of the vertical crystal oscillator, and lies between the bending vibration and the vertical vibration. The tuning fork type torsional crystal oscillator of the present invention is particularly effective when the frequency is in the range of about 200 kHz to 600 kHz.

【0014】次に、本発明の音叉型捩り水晶振動子の電
気的等価回路定数の代表値を示す。
Next, representative values of electrical equivalent circuit constants of the tuning fork type torsional quartz crystal resonator of the present invention will be shown.

【0015】[0015]

【表1】 [Table 1]

【0016】表1は、本発明のカット角φ=0゜、θ=
30゜とφ=26゜、θ=10゜の時の音叉型捩り水晶振動子
の電気的等価回路定数の代表値を示す。φ=0゜、θ=
30゜の時、周波数f=444.1kHzで、R1 =2.2k
Ω、Q=378,000 、一方、φ=26゜、θ=10゜のとき、
f=385.8kHzで、R1 =14.4kΩ、Q=276,000 と
1 の小さい、Q値の高い振動子が得られた。また、本
発明の他のカット角(φ,θ)でも上記結果と同様なR
1 とQ値が得られることは、e16の値から明らかであ
る。
Table 1 shows that the cut angles φ = 0 ° and θ =
The representative values of the electrical equivalent circuit constants of the tuning fork type torsional quartz resonator at 30 °, φ = 26 °, and θ = 10 ° are shown. φ = 0 ゜, θ =
At 30 °, frequency f = 444.1 kHz and R 1 = 2.2 k
Ω, Q = 378,000, while φ = 26 °, θ = 10 °
In f = 385.8kHz, R 1 = 14.4kΩ , small Q = 276,000 and R 1, high oscillator Q factor is obtained. In addition, at other cut angles (φ, θ) of the present invention, R
It is clear from the value of e 16 that 1 and Q value are obtained.

【0017】[0017]

【発明の効果】以上述べたように、本発明のTTカット
捩り水晶振動子を提供することにより、次の著しい効果
を有する。 (1)カット角φ=−90゜〜+90゜、θ=10゜〜80゜と
辺比Rzx=0.1〜1.5の組み合わせにより、1次温度係
数αが零となるので、優れた周波数温度特性を示す。 (2)特に、2次温度係数βが音叉型屈曲水晶振動子の
約1/3倍になるカット角(φ,θ)と辺比Rzxが存在
するので、温度に対する周波数変化が屈曲振動や縦振動
により小さくなる。 (3)本発明のカット角(φ,θ)の内、φ=−55゜〜
+30゜、θ=10゜〜80゜のカット角では、エッチング法
によって容易に形成できるので、小型化、薄型化ができ
る。同時に、1枚のウェハ上に多数個の振動子を一度に
バッチ処理できるので、低廉化が可能である。 (4)周波数定数が基本波の音叉型屈曲水晶振動子と縦
水晶振動子の間にあるので、周波数が200kHz〜600
kHzで特に、効力を発揮する。 (5)同時に、超小型化が可能である。 (6)振動子の上下面に励振電極を配置することによ
り、等価直列抵抗R1 の小さい、Q値の高い捩り水晶振
動子が得られる。 (7)本振動子は音叉形状に加工されるので、リード線
等の支持による振動エネルギー損失が小さくなり、耐衝
撃性に優れた捩り水晶振動子が得られる。
As described above, the provision of the TT-cut torsional quartz resonator of the present invention has the following remarkable effects. (1) Excellent because the primary temperature coefficient α becomes zero by the combination of the cut angle φ = −90 ° to + 90 °, θ = 10 ° to 80 ° and the side ratio R zx = 0.1 to 1.5. FIG. (2) In particular, since there is a cut angle (φ, θ) and a side ratio R zx where the secondary temperature coefficient β is about 1 / times that of the tuning-fork type bent quartz crystal resonator, the frequency change with respect to temperature causes It becomes smaller due to longitudinal vibration. (3) Among the cut angles (φ, θ) of the present invention, φ = −55 ° to
At a cut angle of + 30 ° and θ = 10 ° to 80 °, it can be easily formed by an etching method, so that the size and thickness can be reduced. At the same time, a large number of transducers can be batch-processed on one wafer at a time, so that the cost can be reduced. (4) Since the frequency constant is between the tuning-fork type bent crystal resonator of the fundamental wave and the vertical crystal resonator, the frequency is from 200 kHz to 600 kHz.
Particularly effective at kHz. (5) At the same time, ultra-miniaturization is possible. By placing the excitation electrode (6) top and bottom surfaces of the vibrator, a small equivalent series resistance R 1, high torsional quartz crystal resonator Q value is obtained. (7) Since the vibrator is processed into a tuning fork shape, vibration energy loss due to support of a lead wire or the like is reduced, and a torsional crystal vibrator excellent in impact resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の捩り水晶振動子とその座標系である。FIG. 1 shows a torsional crystal resonator of the present invention and its coordinate system.

【図2】本発明の捩り水晶振動子の1次温度係数αが零
になるときのカット角(φ,θ)と辺比Rzxとの関係
(a)とその時の2次温度係数βの値(b)である。
FIG. 2 shows the relationship (a) between the cut angle (φ, θ) and the side ratio R zx when the primary temperature coefficient α of the torsional quartz crystal resonator of the present invention becomes zero, and the secondary temperature coefficient β at that time. Value (b).

【図3】本発明の捩り水晶振動子の1次温度係数αが零
るときのカット角(φ,θ)と辺比Rzxとの関係
(a)とその時の2次温度係数βの値(b)である。
[3] first order temperature coefficient of the torsional quartz crystal resonator of the present invention α cut angle Rutoki such to zero (φ, θ) and the relationship between the Henhi Rzx (a) and the secondary temperature coefficient β when the Value (b).

【図4】本発明の音叉型捩り水晶振動子の周波数温度特
性の一実施例である。
FIG. 4 is an embodiment of a frequency-temperature characteristic of the tuning-fork type torsional quartz crystal resonator of the present invention.

【図5】本発明の音叉型捩り水晶振動子の周波数温度特
性の他の実施例である。
FIG. 5 is another embodiment of the frequency-temperature characteristics of the tuning-fork type torsional quartz crystal resonator of the present invention.

【図6】本発明のカット角(φ,θ)を有する水晶板か
ら形成される音叉型捩り水晶振動子(a)とその電極構
成の断面図(b)を示す。
FIG. 6 shows a tuning-fork type torsional crystal resonator (a) formed from a crystal plate having a cut angle (φ, θ) according to the present invention, and a sectional view (b) of the electrode configuration thereof.

【図7】本発明のカット角θをパラメータにしたときの
圧電定数e16とカット角φとの関係である。
FIG. 7 shows the relationship between the piezoelectric constant e 16 and the cut angle φ when the cut angle θ of the present invention is used as a parameter.

【図8】本発明の音叉型捩り水晶振動子のカット角θを
パラメータにしたときのカット角φと周波数定数(f・
0 )との関係を示す。
FIG. 8 is a graph showing the relationship between a cut angle φ and a frequency constant (f ·
y 0 ).

【符号の説明】[Explanation of symbols]

1 捩り水晶振動子 1’ 音叉型捩り水晶振動子 2〜9 励振電極 A,B 電極端子 x0 振動部の幅 y0 振動部の長さ z0 振動子の厚み φ, θ カット角 x 電気軸 y 機械軸 z 光軸1 torsional quartz crystal resonator 1 'tuning fork type torsional quartz crystal resonator 2-9 excitation electrodes A, B electrode terminals x 0 thickness length z 0 resonator width y 0 the vibration of the vibrating portion phi, theta cut angle x electric axis y Mechanical axis z Optical axis

フロントページの続き (56)参考文献 特開 平1−236808(JP,A) 特開 昭54−138394(JP,A) 特開 昭54−100688(JP,A) 特開 昭53−91688(JP,A) 特開 平2−131008(JP,A) 特開 平2−112311(JP,A) 特開 昭64−58108(JP,A) 特公 昭62−46093(JP,B2) 特公 昭62−46092(JP,B2) 特公 昭61−60611(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H03H 9/00 - 9/215 Continuation of the front page (56) References JP-A-1-236808 (JP, A) JP-A-54-138394 (JP, A) JP-A-54-100688 (JP, A) JP-A-53-91688 (JP) JP-A-2-131008 (JP, A) JP-A-2-112123 (JP, A) JP-A-64-58108 (JP, A) JP-B-62-46093 (JP, B2) JP-B-sho 62-46092 (JP, B2) JP-B 61-60611 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) H03H 9/00-9/215

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 捩り振動モードで振動する水晶振動子
で、z軸(光軸)と垂直となるZ板水晶をx軸(電気
軸)を回転軸として、角度φ=−90°〜+90°回転
し、更にz軸の新軸z'軸の回りに角度θ=10°〜8
0°回転した水晶板からなり、更に、前記水晶振動子の
厚みz 0 と幅x 0 の比R zx (z 0 /x 0 )を0.1から1.
5としたことを特徴とする捩り水晶振動子。
1. A quartz crystal vibrating in a torsional vibration mode, wherein a Z-plate crystal perpendicular to the z-axis (optical axis) is rotated about the x-axis (electric axis) at an angle φ = −90 ° to + 90 °. Rotate, and further around a new axis z ′ axis of the z axis, an angle θ = 10 ° to 8
A quartz plate rotated by 0 ° , and
The ratio R zx (z 0 / x 0 ) of the thickness z 0 to the width x 0 is from 0.1 to 1.
5. A torsional crystal resonator characterized in that:
JP03121487A 1990-12-19 1991-05-27 Torsional crystal oscillator Expired - Lifetime JP3135279B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03121487A JP3135279B2 (en) 1991-05-27 1991-05-27 Torsional crystal oscillator
DE1992621215 DE69221215T2 (en) 1991-05-27 1992-05-27 Swinging quartz crystal resonator
EP19920304806 EP0516400B1 (en) 1991-05-27 1992-05-27 Torsional quartz crystal resonator
US08/110,628 US5334900A (en) 1990-12-19 1993-08-23 Torsional quartz crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03121487A JP3135279B2 (en) 1991-05-27 1991-05-27 Torsional crystal oscillator

Publications (2)

Publication Number Publication Date
JPH05199063A JPH05199063A (en) 1993-08-06
JP3135279B2 true JP3135279B2 (en) 2001-02-13

Family

ID=14812380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03121487A Expired - Lifetime JP3135279B2 (en) 1990-12-19 1991-05-27 Torsional crystal oscillator

Country Status (1)

Country Link
JP (1) JP3135279B2 (en)

Also Published As

Publication number Publication date
JPH05199063A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
US5334900A (en) Torsional quartz crystal resonator
US4454444A (en) LiTaO3 Piezoelectric resonator
US5311096A (en) KT cut width-extensional mode quartz crystal resonator
JP3322153B2 (en) Tuning fork type crystal vibrating piece
JPH06112760A (en) Tortion crystal vibrator
JPH0232807B2 (en)
JP3135279B2 (en) Torsional crystal oscillator
JPH04123605A (en) Crystal resonator
JP3135317B2 (en) Torsional crystal oscillator
JP3135307B2 (en) Torsional crystal oscillator
JPS5851687B2 (en) Tuning fork crystal oscillator
JP3363457B2 (en) Torsional crystal oscillator
JP3135286B2 (en) Torsional crystal oscillator
JPH06112761A (en) Tortion crystal vibrator
JP3149835B2 (en) Spherical pot for convex processing
JP3176642B2 (en) KT cut crystal unit
EP0516400B1 (en) Torsional quartz crystal resonator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH05199064A (en) Torsional crystal vibrator
JPH0590880A (en) Tortional quartz oscillator
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone
JPH0590877A (en) Tortional crystal resonator
JPH0537285A (en) Twist crystal resonator
JP2884568B2 (en) Manufacturing method of rectangular AT-cut quartz resonator
JPH05121998A (en) Torsional crystal vibrator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11