JP3132897B2 - Ice transport method for cold heat transport device and PI tank thereof - Google Patents

Ice transport method for cold heat transport device and PI tank thereof

Info

Publication number
JP3132897B2
JP3132897B2 JP04149460A JP14946092A JP3132897B2 JP 3132897 B2 JP3132897 B2 JP 3132897B2 JP 04149460 A JP04149460 A JP 04149460A JP 14946092 A JP14946092 A JP 14946092A JP 3132897 B2 JP3132897 B2 JP 3132897B2
Authority
JP
Japan
Prior art keywords
ice
transport
tank
water
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04149460A
Other languages
Japanese (ja)
Other versions
JPH05340566A (en
Inventor
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04149460A priority Critical patent/JP3132897B2/en
Publication of JPH05340566A publication Critical patent/JPH05340566A/en
Application granted granted Critical
Publication of JP3132897B2 publication Critical patent/JP3132897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、氷や氷によって冷却さ
れた水を遠隔地域に移送し、その冷熱を冷房に利用し、
或は冷水等を直接、使用に供する多目的の冷熱輸送装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention transfers ice or water cooled by ice to a remote area, and uses the cold heat for cooling.
Alternatively, the present invention relates to a multipurpose cold and hot transport apparatus for directly using cold water or the like.

【0002】[0002]

【従来の技術】冷熱輸送装置によって遠隔地域の冷房或
いは冷水需要に供せられる氷は、長距離を長い導管によ
って移送される方法がとられる。
2. Description of the Related Art Ice provided for cooling or chilled water demand in remote areas by a cold transport apparatus is transported over long distances by long conduits.

【0003】この場合の氷の状態は、一般的には、スラ
リー状或いは、ハーベスト状に製氷し、これを搬送水と
共に移送ポンプによって搬送管に圧流させる方法がとら
れている。そして圧送された氷は、地域の需要先に供給
されて冷房、其の他の熱交換の媒体に供せられる。な
お、スラリー状とは、微視的に不定型(従って凹凸を有
する)の氷片が無秩序に連続的に集合した、いわゆるシ
ャーベットを流動化した状態を云い、ハーベスト状とは
不定型に砕かれた氷板の細片や不定形粒度の氷片等を云
う。
In this case, the state of the ice in this case is generally such that ice is made into a slurry or a harvest, and the ice is made to flow into a transport pipe together with transport water by a transport pump. The pumped ice is then supplied to local demands for cooling and other heat exchange media. Note that the slurry state is a state in which a so-called sherbet is fluidized, in which microscopically irregular (and thus irregular) ice pieces are randomly and continuously collected. And ice chips of irregular size.

【0004】遠隔地へ輸送された氷はPI槽と呼ばれる
槽に一旦、貯溜され、其処から供給手段、たとえばポン
プ等によって需要先へ搬送水と共に供給される。
[0004] The ice transported to a remote place is once stored in a tank called a PI tank, and then supplied to the demand destination by a supply means, such as a pump, together with the transport water.

【0005】図12は従来のPI槽の縦断面図で、5は
PI槽、13は搬送水、21はPI(PLUG IC
E:プラグアイス)を示す。ここに従来のPIとは固体
氷、円柱状の氷等をも含めた氷を言い、請求項1、2に
規定する円柱状の氷でさえも従来のPI槽に長時間滞留
する場合はブリッジ発生の懸念を有する意味において、
請求項3のPI槽では従来の氷として捉えるものであ
る。図では簡単のため、複数の長方形で示してある。な
お、図は、PI槽5の中に長時間貯溜している間に搬送
水13上に浮揚していたPI21が相互に氷結し合い、
いわゆるブリッジと称する架橋現象を生じ、その後、搬
送水13が需要先へ供給されて水位が減っても、それに
追従出来ずにいる状態を示したものである。この状態は
後述の通り、冷熱輸送装置にとって不具合を生じる。
FIG. 12 is a longitudinal sectional view of a conventional PI tank, 5 is a PI tank, 13 is carrier water, and 21 is a PI (PLUG IC).
E: plug ice). Here, the conventional PI means ice including solid ice, columnar ice, and the like. Even if the columnar ice defined in claims 1 and 2 stays in the conventional PI tank for a long time, it is bridged. In the sense of having concerns about occurrence,
In the PI tank of claim 3, it is regarded as conventional ice. In the figure, for simplicity, a plurality of rectangles are shown. The figure shows that the PIs 21 floating on the transport water 13 during the long-term storage in the PI tank 5 freeze each other,
This is a state in which a bridge phenomenon called a bridge occurs, and after that, even if the transport water 13 is supplied to a demand destination and the water level decreases, it cannot follow the level. This state causes a problem for the cold transport device as described later.

【0006】[0006]

【発明が解決しようとする課題】上記従来の冷熱輸送装
置には解決すべき次の課題があった。
The above-mentioned conventional cold transport apparatus has the following problems to be solved.

【0007】即ち、従来の装置ではスラリー氷、ハーベ
スト氷はシャーベット状を呈しているため、氷比率(氷
/水)を低くし、つまり水量を多くして流動性を高めて
いるので移送ポンプ動力が大きくなるという問題があっ
た。
That is, in the conventional apparatus, since the slurry ice and the harvest ice have a sherbet shape, the ice ratio (ice / water) is lowered, that is, the flow rate is increased by increasing the amount of water. There was a problem that it became large.

【0008】また、スラリー状であるため粒径の大きい
ものは、後に残され且つ管上面に集合するので管上部で
ブリッジを生じ、水流は管下部を流れる状態となり、次
々にブリッジが成長し、閉塞が生ずるという問題があっ
た。
[0008] In addition, since the slurry has a large particle size because it is left behind and aggregates on the upper surface of the tube, a bridge is formed at the upper portion of the tube, and the water flows in the lower portion of the tube, and the bridge grows one after another. There is a problem that blockage occurs.

【0009】また氷比率を高めようとすると流動性向上
剤のような添加物を必要とし、冷水の質、コストといっ
た面等から問題があった。
In order to increase the ice ratio, an additive such as a fluidity improver is required, and there is a problem in terms of quality of cold water, cost and the like.

【0010】また、従来のPI槽は単なる容器であるた
め、氷と水の密度差によってその内容がPI層と搬送水
層とに層分離され、そのためPI層に閉塞(ブリッジ)
が起り易く、閉塞が進むと図12に示すように、閉塞し
たPI21がPI槽5の内壁に固着し、搬送水13層と
の間に隙間Kを作ったり、PI槽5の上部においては、
PI槽5が詰まって搬送されてきた後続のPIを槽内に
投入できない状態となる、等の問題があった。
Further, since the conventional PI tank is merely a container, its contents are separated into a PI layer and a transport water layer by the difference in density between ice and water, so that the PI layer is closed (bridge).
As the blockage progresses, as shown in FIG. 12, the closed PI 21 adheres to the inner wall of the PI tank 5 to form a gap K with the 13 layers of the transport water, or at the top of the PI tank 5,
There has been a problem that the PI tank 5 is clogged and a subsequent PI that has been conveyed cannot be put into the tank.

【0011】本発明は上記問題点を解消するため、搬送
管内でブリッジを生じない氷輸送方法及び氷が貯溜中に
ブリッジを生じることのないPI槽を提供することを目
的とする。
An object of the present invention is to provide an ice transport method that does not generate a bridge in a transport pipe and a PI tank that does not generate a bridge during storage of ice in order to solve the above problems.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題の解決
手段として、次の(1)〜(3)に記載の冷熱輸送装置
の氷輸送方法及びそのPI槽を提供しようとするもので
ある。 (1).氷の遠隔移送を伴う冷熱輸送装置において、氷
形状を円柱状の固体氷とし搬送管内を搬送水と共に移送
手段により遠隔のPI槽に向けて搬送することを特徴と
する冷熱輸送装置の氷輸送方法。 (2).氷形状を単純円柱型、両端円錐頭型、両端小円
柱型、三角マリット頭型の何れかの型としたことを特徴
とする前記(1)に記載の冷熱輸送装置の氷輸送方法。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems by providing the following method (1) to (3) for transporting ice of a cold heat transport apparatus and its PI tank. . (1). An ice transport method for a cold transport apparatus, wherein the ice is cylindrically solid ice and transported together with transport water to a remote PI tank by transport means in a cold transport apparatus with remote transport of ice. . (2). The ice transport method of the cold transport apparatus according to the above (1), wherein the ice shape is any one of a simple cylinder type, a conical head at both ends, a small cylinder at both ends, and a triangular marit head.

【0013】〔注〕,本請求項2中、「単純円柱型」と
は正面図が図2に示す形状を、「両端円錐頭型」とは正
面図が図3に示す形状を、「両端小円柱型」とは正面図
が図4に示す形状を、「三角マリット頭型」とは正面図
が図5(a)(但し、本図は片側マリット頭のみ示す。
本請求項は両側マリット頭も含む)に示す形状をなし、
かつ、その側面図が図5(b)に示す形状をそれぞれ云
う。 (3).上記(1)に記載の冷熱輸送装置の氷輸送方法
に用いられる前記PI槽であって、内部上方に複数の重
量バランスばねでほぼ水平に吊るされた上面が開口され
底面及び側面に多数の穴を有する多孔容器を具備してな
ることを特徴とする冷熱輸送装置のPI槽。
[Note] In the present invention, the term "simple columnar type" refers to the shape shown in FIG. 2 in the front view, and the term "conical head at both ends" refers to the shape shown in FIG. The "small columnar type" has a front view as shown in FIG. 4, and the "triangular mitt head type" has a front view as shown in FIG.
The present invention also includes a double-sided mitt head).
And the side view shows the shape shown in FIG.5 (b), respectively. (3). The ice transport method of the cold heat transport device according to the above (1)
Wherein the PI tank is provided with a perforated container having an upper surface opened substantially horizontally suspended by a plurality of weight balance springs and having a plurality of holes on the bottom surface and side surfaces. PI tank for cold transport equipment.

【0014】なお、本明細書では固体氷、特に円柱状の
氷をPIと呼称する。
In the present specification, solid ice, particularly cylindrical ice, is referred to as PI.

【0015】[0015]

【作用】本発明は上記のように構成されるので次の作用
を有する。
The present invention is configured as described above and has the following effects.

【0016】(1).上記(1)の構成にあっては、氷
形状を円柱状の固体氷とし、搬送管内を搬送水と共に移
送手段により遠隔のPI槽に向けて搬送するので、円柱
状の固体氷同士は、たとえば円柱状の軸方向に並列とな
った場合は直線で接することとなって相互のズレを阻む
凹凸がないため、常に氷同士の動きが保証され、固着し
合うことがない。また、管壁等に固着することもない。
(1). In the configuration of the above (1), since the ice shape is cylindrical solid ice, and the inside of the transport pipe is transported together with the transport water to the remote PI tank by the transport means, the columnar solid ice is, for example, When the cylinders are arranged in parallel in the axial direction, they come into contact with each other in a straight line, and there is no unevenness that hinders mutual displacement. Therefore, the movements of the ice pieces are always guaranteed, and they do not stick to each other. Also, there is no sticking to the tube wall or the like.

【0017】同様に円柱面と円柱端面とが接触した場合
も線接触となって固着し合うことがない。円柱端面同士
が接触した場合は接触面には凹凸がなく、かつ、両面間
に搬送水による水膜が形成されるので固着し合うことが
ない。
Similarly, when the cylindrical surface and the cylindrical end surface come into contact with each other, they are in line contact and do not adhere to each other. When the end surfaces of the cylinders are in contact with each other, there is no unevenness on the contact surfaces, and a water film is formed between both surfaces by the transport water, so that they do not adhere to each other.

【0018】従って搬送管内等に氷のブリッジが形成さ
れることがない。
Therefore, no ice bridge is formed in the transfer pipe or the like.

【0019】(2).上記(2)の構成にあっては、上
記(1)の構成における氷の形状を、単純円柱型、両端
円錐頭型、両端小円柱型、三角マリット頭型の何れかの
型とするので、氷同士が、必ず、線と線、線と面、線と
点、面と面、面と点、点と点の何れかの組合わせで接触
することとなり、スラリー状、ハーベスト状の場合のよ
うに凹部と凸部とが接触して相互の動きを拘束し合うと
いった状態が生じない。
(2). In the configuration of the above (2), the shape of the ice in the configuration of the above (1) is any one of a simple columnar type, a conical head type at both ends, a small columnar type at both ends, and a triangular marit head type. Ice will always come into contact with any combination of line-to-line, line-to-line, line-to-line, line-to-point, surface-to-surface, surface-to-point, and point-to-point, as in the case of slurry or harvest. Therefore, there is no occurrence of a state in which the concave portion and the convex portion come into contact with each other to restrict the mutual movement.

【0020】この結果、氷同士に常に動きが保証され、
相互に固着し合うことがない。従って搬送管内等に氷の
ブリッジが形成されることがない。
As a result, the movement between the ices is always guaranteed,
They do not stick to each other. Therefore, no bridge of ice is formed in the transfer pipe or the like.

【0021】(3).上記(3)の構成にあっては、P
I槽内に、上面が開口され底面及び側面に多数の穴を有
する多孔容器を重量バランスばねでほぼ水平に吊るすの
で、上記(1)の冷熱輸送装置の氷輸送方法におけるP
I槽として用い上部から搬送水を氷(PI)と共に流入
させると、搬送水と共に流入した氷(PI)はPI槽内
の多孔容器に留まり、搬送水はPI槽の下部に溜まる。
(3). In the configuration of the above (3), P
The I tank, since the upper surface is suspended substantially horizontally perforated container having a plurality of holes in the apertured bottom and side surfaces by weight balance spring, P in the ice transportation method for cold transport device of the above (1)
Carrier water flows in with ice (PI) from above using as I tank
Then, the ice (PI) that flows in with the carrier water is
The transport water stays in the lower part of the PI tank.

【0022】この状態が続くと多孔容器内には氷(P
I)が増え、重量が増大する。この結果、多孔容器は浮
力及びばね力とバランスする深さ迄搬送水内に沈み、常
に氷は搬送水に浸ることとなって搬送水を冷却し続け、
かつ、従来のようにブリッジとなって水面との間に隙間
を生じたり、後続の氷の流入を妨げたりすることがな
い。
If this state continues, ice (P
I) increases and the weight increases. As a result, the perforated container sinks into the carrier water to a depth that balances the buoyancy and spring force, and the ice is constantly immersed in the carrier water and continues to cool the carrier water,
In addition, unlike a conventional case, a bridge does not form a gap with the water surface and does not hinder the subsequent inflow of ice.

【0023】[0023]

【実施例】本発明の第1、第2実施例を図1〜図11に
より説明する。なお、従来例と同様の構成部材には同符
号を付し、必要ある場合を除き、説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention will be described with reference to FIGS. The same components as those in the conventional example are denoted by the same reference numerals, and description thereof will be omitted unless necessary.

【0024】(第1実施例)請求項1,2の発明に係る
第1実施例の方法を図1〜図10により説明する。
(First Embodiment) A method according to a first embodiment of the present invention will be described with reference to FIGS.

【0025】図1は第1実施例の方法に係る冷熱輸送装
置の系統図、図2〜図10は第1実施例の方法に用いる
氷の諸形状を示す模式図である。
FIG. 1 is a system diagram of a cold heat transport apparatus according to the method of the first embodiment, and FIGS. 2 to 10 are schematic views showing various shapes of ice used in the method of the first embodiment.

【0026】図1において、1は後述のPI槽5等へ搬
送するための氷(以降、PIという)20を製造する製
氷設備、2は製氷設備1から供給されるPI20を搬送
水に混じて搬送管4へ送り出すための搬送設備、3は搬
送設備2内にあって搬送水と共にPI20を搬送管4に
送り出すための移送ポンプ、4は搬送水とPI20をP
I槽5へ搬送するための搬送管、5は比較的、遠隔の地
に設けられた、PI20を貯溜するためのPI槽、6は
冷熱需要先の冷水熱交換器7へ搬送水、PI20等を送
給するための循環ポンプ、7は、たとえば冷房のために
冷媒を冷却するための冷水熱交換器、8は熱交換を終え
た搬送水等を搬送設備2へ返送する中途に設けられ、そ
こから上記PI槽5へ搬送水を調節水として返送するた
めの返送タンク、9はPI槽5で余剰となった搬送水等
を搬送設備2へ返送するための返送ポンプ、10は返送
タンク8とPI槽5とを連通する管である。
In FIG. 1, reference numeral 1 denotes an ice making facility for producing ice (hereinafter referred to as PI) 20 to be conveyed to a PI tank 5 or the like, which will be described later, and 2 denotes a mixture of PI 20 supplied from the ice making facility 1 and carrier water. The transfer equipment for sending out to the transfer pipe 4, the transfer pump 3 for sending PI 20 together with the transfer water to the transfer pipe 4 in the transfer equipment 2, and the transfer pump 4 for transferring the PI 20 to the transfer pipe 4.
A transfer pipe for transferring to the I tank 5, a PI tank 5 for storing the PI 20, which is provided in a relatively remote place, and a transfer water 6 to the chilled water heat exchanger 7 of the cold heat demand destination, a PI 20, etc. A circulating pump for feeding the chilled water, a chilled water heat exchanger for cooling the refrigerant for cooling, for example, and a circulating pump 8 for returning the transported water or the like after the heat exchange to the transport equipment 2, From there, a return tank for returning the transport water as regulated water to the PI tank 5, a return pump 9 for returning excess transport water or the like in the PI tank 5 to the transport equipment 2, and a return tank 8. And a pipe communicating with the PI tank 5.

【0027】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0028】製氷設備1により円柱状の固体氷として製
造されたPI20は搬送設備2の移送ポンプ3により搬
送管4内を圧送されてPI槽5内に貯えられる。
The PI 20 produced as columnar solid ice by the ice making equipment 1 is pumped through the transfer pipe 4 by the transfer pump 3 of the transfer equipment 2 and stored in the PI tank 5.

【0029】PI槽5内では、PI層Aが上部に搬送水
層Bは槽の下部に溜まり、冷水となる。
In the PI tank 5, the PI layer A accumulates in the upper part and the transport water layer B accumulates in the lower part of the tank and becomes cold water.

【0030】そして地域に需要のある場合は、循環ポン
プ6により需要先の冷水熱交換器7に送られて冷房その
他に供せられた後、返送タンク8に一時的に貯えられ
る。そしてPI槽5の余剰の冷水と合流し、返送ポンプ
9によって搬送設備2に戻され、搬送水となって再び循
環されたり、PI20の原水となる。また一部は返送タ
ンク8から管10を通ってPI槽5に戻されPI槽5の
調節水となる。
When there is a demand in the area, the water is sent to the chilled water heat exchanger 7 of the demand destination by the circulating pump 6 to be used for cooling or the like, and then temporarily stored in the return tank 8. Then, it merges with the surplus cold water in the PI tank 5, is returned to the transport equipment 2 by the return pump 9, is circulated again as transport water, or becomes raw water of the PI 20. Part of the water is returned from the return tank 8 to the PI tank 5 through the pipe 10 and becomes the regulated water for the PI tank 5.

【0031】以上の通り、本実施例によれば搬送水と共
にPI槽5へ搬送するPI20を円柱状の固体氷とした
ので、その表面に凹凸部分がなく、形体も適度の大きさ
に揃っているため、たとえばPI20同士の相手側の凹
部に他方の凸部がひっかかって相互のズレや動きが阻ま
れた状態で一定時間を経過し、遂に固着し合うといった
現象が生ぜず、従って、そのような現象が多数の相互間
に生じ、かつ、端部は搬送管4等の壁面に固着して起る
ブリッジ現象が生ぜず、搬送管4等がPI20で閉塞す
ることがないという利点がある。
As described above, according to the present embodiment, the PI 20 to be transported to the PI tank 5 together with the transport water is cylindrical ice, so that the surface thereof has no irregularities and the shape is uniform. Therefore, for example, a phenomenon occurs in which a certain period of time elapses in a state where the other protrusions are caught in the recesses on the other side of the PIs 20 and the mutual displacement and movement are prevented, and finally the two stick together. There is an advantage that a large number of phenomena occur between a large number of parts, and a bridging phenomenon that occurs due to the end portion sticking to the wall surface of the transport pipe 4 or the like does not occur, and the transport pipe 4 or the like is not blocked by the PI 20.

【0032】また、PI20はその表面に凹凸がなく、
かつ粒度も揃っているので、たとえば、隣接し合ったP
I20同士の間隙に他の不定形の微細な氷片が多数入り
込んで、その間隙を充填し、遂には融着し合って相互の
動きを妨げるという事態が生じないので、流動性が非常
によく、ポンピング、搬送等が円滑に行なわれるという
利点もある。また、同様な理由から、PI槽5内でも容
易にブリッジを生じないという利点がある。
The PI 20 has no irregularities on its surface.
In addition, since the particle sizes are uniform, for example, adjacent P
Since a large number of other irregularly shaped fine ice chips enter the gaps between the I20s, filling the gaps and finally fusing together to prevent mutual movement, the fluidity is very good. Also, there is an advantage that pumping, transportation and the like are performed smoothly. Further, for the same reason, there is an advantage that a bridge is not easily generated even in the PI tank 5.

【0033】上記PI20は代表的に単純な円柱状の例
で示したが、その形状は単純な円柱状に限定されるもの
ではなく、図2〜図10に示される何れの型が用いられ
てもよい。
Although the PI 20 is typically shown as a simple columnar example, the shape is not limited to a simple columnar shape, and any of the types shown in FIGS. Is also good.

【0034】即ち、図2〜図5は円柱状の固体氷PI2
0の形状を示す図で、図2の20は単純円柱型、図3の
20aは両端円錐頭型、図4の20bは両端小円柱型、
そして図5の20cは片側マリット頭型にしたもので、
(a)は正面図、(b)は(a)の右側面図である。こ
れ等の形状にすることによってPI20〜20cの各同
士が接触しても上記した理由によりブリッジなどの支障
を来たすことがない。
That is, FIGS. 2 to 5 show cylindrical solid ice PI2.
2 is a diagram showing the shape of 0, 20 in FIG. 2 is a simple columnar type, 20a in FIG. 3 is a conical head at both ends, 20b in FIG.
And 20c of FIG. 5 is a one-sided maritt head type,
(A) is a front view, (b) is a right side view of (a). By adopting these shapes, even if the PIs 20 to 20c come into contact with each other, there will be no trouble such as a bridge for the above-mentioned reason.

【0035】図6〜図10はPI20の円柱状側面の全
周に溝を設けた例で20dは角型溝を、20eはV字型
溝を、20fはこれらの溝を直状に、20gは斜状にそ
れぞれ設けた例である。但し、直状の溝よりは斜状の溝
が、隣同士で噛合う懸念がないという理由で一層、望ま
しい。このような形状にすれば隣接が点接触となり、氷
同士の固着ないしは管壁等への固着が一層、阻まれると
いう利点がある。なお、20gは図の矢印例の様に回転
すると軸方向に螺旋自進するので他PIとの固着が一
層、阻まれる。
6 to 10 show examples in which grooves are provided on the entire circumference of the cylindrical side surface of the PI 20. 20d is a square groove, 20e is a V-shaped groove, 20f is a straight groove of these grooves, and 20g is a straight groove. Are examples provided in an oblique manner. However, a slanted groove is more preferable than a straight groove because there is no concern that adjacent grooves mesh with each other. Adopting such a shape has the advantage that the adjacent portions are in point contact with each other, and the fixation of the ice pieces or the fixation to the tube wall or the like is further prevented. When 20g rotates as shown in the example of the arrow in the figure, it is spirally advanced in the axial direction, so that adhesion to other PIs is further prevented.

【0036】(第2実施例) 請求項の発明に係る第2実施例を図11により説明す
る。
(Second Embodiment) A second embodiment according to the third aspect of the present invention will be described with reference to FIG.

【0037】図11は第2実施例のPI槽の縦断面図
で、4は搬送水13及びPI20の流入する搬送管、5
aはPI槽であり、図1に基づき説明した第1実施例の
方法において図1中のPI槽5に代えて用いられるもの
である。6aは需要先へ搬送水13を供給するための供
給口、9aは搬送設備へ余剰の搬送水13を還流させる
ための循環口、11は上方が開口し、側壁及び底板に多
数の穴を穿設され、PI槽5a内の比較的上方に複数の
重量バランスばね12によってほぼ水平に吊るされた多
孔容器、12は多孔容器11に所要量のPI20が留ま
るとその重量で伸長して、搬送水13の水面にPI20
が浮遊して逸脱しない程度の適切な深さに沈み、バラン
スするよう多孔容器11を4方でPI槽5aの天井から
吊下げる重量バランスばね、13は搬送水である。
FIG. 11 is a longitudinal sectional view of the PI tank according to the second embodiment. Reference numeral 4 denotes a transport pipe into which the transport water 13 and the PI 20 flow.
a is a PI tank, which is the first embodiment described with reference to FIG.
Used in place of PI tank 5 in FIG. 1 in the method
It is. 6a is a supply port for supplying the transport water 13 to the demand destination, 9a is a circulation port for returning excess transport water 13 to the transport equipment, 11 is open at the top, and has many holes in the side wall and the bottom plate. A porous container, which is suspended substantially horizontally by a plurality of weight balance springs 12 relatively upward in the PI tank 5a. 13 PI20 on the water surface
Is a weight balance spring that suspends the porous container 11 from the ceiling of the PI tank 5a in four directions so as to sink and sink to an appropriate depth not to deviate and deviate.

【0038】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0039】多孔容器11には、搬送管4から搬送水1
3と共に搬送されて来たPI20が貯えられている。多
孔容器11の底部と搬送水13の水面との間に隙間が生
ずると多孔容器11は自重によって下降し、搬送水13
の中に浸る。
The transport water 1 is supplied from the transport pipe 4 to the porous container 11.
The PI 20 conveyed together with the PI 3 is stored. When a gap is formed between the bottom of the porous container 11 and the water surface of the transport water 13, the porous container 11 descends by its own weight and the transport water 13
Immerse in

【0040】このようにしてPI20の群は常に多孔容
器11と共に、搬送水13の水位にほぼ対応する形で、
応動し、PI槽5aの中にブリッジを生じることがない
という利点がある。
In this manner, the group of PIs 20 is always together with the porous container 11 in a form substantially corresponding to the water level of the transport water 13.
There is an advantage that no reaction occurs and no bridge occurs in the PI tank 5a.

【0041】なお、多孔容器11とPI槽5aの側壁と
の間には、隙間Sが設けられていて多孔容器11が搬送
水13に浸っている時には、この隙間Sには、搬送水1
3が廻り込むのでPI20とPI槽5aとのブリッジは
起らない。
A gap S is provided between the porous container 11 and the side wall of the PI tank 5a. When the porous container 11 is immersed in the carrier water 13, the gap S
No bridge occurs between the PI 20 and the PI tank 5a because 3 flows around.

【0042】[0042]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0043】即ち、請求項1,2にあっては、冷熱輸送
装置の氷輸送方法において、搬送する氷が円柱状の固体
の氷であるため、ブリッジを生じることがない。また氷
対水の氷比率が大きくとれるので搬送水量が少くてよ
い。従って、移送ポンプ動力が小さくてよい。
That is, according to the first and second aspects, cold transport
In the ice transport method of the apparatus, since the ice to be transported is columnar solid ice, no bridge is generated. Also, since the ice ratio of water to ice can be increased, the amount of transported water may be small. Therefore, the transfer pump power may be small.

【0044】また、氷は水より低密度であり、更にその
上、円柱状をなすため管内の上部と接触し、そして若干
表面を溶解しながら搬送されるので金属面(管内壁)と
の接触が滑らかとなり搬送抵抗が少くなる。
Further, ice has a lower density than water, and furthermore, is in contact with the upper part of the inside of the tube because of its cylindrical shape, and is conveyed while slightly melting the surface, so that it comes into contact with the metal surface (the inner wall of the tube). And the transport resistance is reduced.

【0045】そのうえ、スラリー氷のように流動性向上
剤を使用しなくても充分流動性を保持できる。
In addition, sufficient fluidity can be maintained without using a fluidity improver as in the case of slurry ice.

【0046】請求項3にあっては、請求項1の冷熱輸送
装置の氷輸送方法に用いたとき、PI槽内に多孔容器を
バネで吊し、これでPIを受けるので、PIがPI槽内
壁とブリッジして搬送水の水面との間に隙間を作ること
がなくなる。
According to the third aspect, the cold heat transport of the first aspect is provided .
When used for the ice transport method of the device , the porous container is suspended by a spring in the PI tank, and the PI is received by this. Therefore, the PI bridges with the inner wall of the PI tank to form a gap between the surface of the transport water and the PI tank. Disappears.

【0047】また、ブリッジが生じないので搬送されて
来るPIが詰ってPI槽内に投入できなくなるといった
不具合も解消する。従って、氷輸送システムの運転に支
障を来たすこともなくなり、冷熱輸送装置及びその氷輸
送方法の信頼性が向上する。
In addition, the problem that the conveyed PI is clogged because no bridge is formed and cannot be put into the PI tank is also solved. Therefore, the operation of the ice transport system is not hindered, and the cold transport device and the ice transport device are not hindered.
The reliability of the transmission method is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の方法に係る冷熱輸送装置
の系統図、
FIG. 1 is a system diagram of a cold heat transport device according to a method of a first embodiment of the present invention,

【図2】第1実施例に用いる単純円柱型PIの正面図、FIG. 2 is a front view of a simple cylindrical PI used in the first embodiment,

【図3】第1実施例に用いる両端円錐頭型PIの正面
図、
FIG. 3 is a front view of a double-sided conical head type PI used in the first embodiment;

【図4】第1実施例に用いる両端小円柱型PIの正面
図、
FIG. 4 is a front view of a small-column PI at both ends used in the first embodiment,

【図5】第1実施例に用いる片側マリット頭型PIの図
で(a)は正面図、(b)は(a)の右側面図、
FIGS. 5A and 5B are views of a one-sided maritt head PI used in the first embodiment, where FIG. 5A is a front view, FIG. 5B is a right side view of FIG.

【図6】第1実施例に用いる表面無溝のPIの側面図、FIG. 6 is a side view of a surfaceless grooved PI used in the first embodiment;

【図7】第1実施例に用いる角形溝を有するPIの側面
図、
FIG. 7 is a side view of a PI having a square groove used in the first embodiment,

【図8】第1実施例に用いるV形溝を有するPIの側面
図、
FIG. 8 is a side view of a PI having a V-shaped groove used in the first embodiment.

【図9】第1実施例に用いる、円柱軸方向に直状の溝を
有するPIの正面図、
FIG. 9 is a front view of a PI used in the first embodiment and having a straight groove in a cylindrical axis direction;

【図10】第1実施例に用いる、円柱軸に対し、斜状の
溝を有するPIの正面図、
FIG. 10 is a front view of a PI having an oblique groove with respect to a cylindrical axis used in the first embodiment;

【図11】本発明の第2実施例のPI槽の縦断面図、FIG. 11 is a longitudinal sectional view of a PI tank according to a second embodiment of the present invention;

【図12】従来例のPI槽の縦断面図である。FIG. 12 is a longitudinal sectional view of a conventional PI tank.

【符号の説明】[Explanation of symbols]

1 製氷設備 2 搬送設備 3 移送ポンプ 4 搬送管 5,5a PI槽 6 循環ポンプ 6a 供給口 7 冷水熱交換器 8 返送タンク 9 返送ポンプ 9a 循環口 10 管 11 多孔容器 12 重量バランスばね 13 搬送水 20〜20g PI REFERENCE SIGNS LIST 1 ice making equipment 2 transfer equipment 3 transfer pump 4 transfer pipe 5,5a PI tank 6 circulation pump 6a supply port 7 cold water heat exchanger 8 return tank 9 return pump 9a circulation port 10 pipe 11 perforated container 12 weight balance spring 13 transfer water 20 ~ 20g PI

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 氷の遠隔移送を伴う冷熱輸送装置におい
て、氷形状を円柱状の固体氷とし搬送管内を搬送水と共
に移送手段により遠隔のPI槽に向けて搬送することを
特徴とする冷熱輸送装置の氷輸送方法。
1. A cold transport apparatus for remotely transporting ice, wherein the ice is cylindrical solid ice and transported in a transport pipe together with transport water to a remote PI tank by transport means. How to transport the ice on the device.
【請求項2】 氷形状を単純円柱型、両端円錐頭型、両
端小円柱型、三角マリット頭型の何れかの型としたこと
を特徴とする請求項1記載の冷熱輸送装置の氷輸送方
法。
2. The ice transport method according to claim 1, wherein the ice shape is any one of a simple columnar type, a conical head type at both ends, a small columnar shape at both ends, and a triangular malt head type. .
【請求項3】 請求項1の冷熱輸送装置の氷輸送方法に
用いられる前記PI槽であって、内部上方に複数の重量
バランスばねでほぼ水平に吊るされた上面が開口され底
面及び側面に多数の穴を有する多孔容器を具備してなる
ことを特徴とする冷熱輸送装置のPI槽。
3. The method for transporting ice in a cold transport apparatus according to claim 1.
The PI tank to be used , comprising: a perforated container having an upper surface opened substantially horizontally suspended by a plurality of weight balance springs above the inside and having a plurality of holes on the bottom surface and side surfaces. PI tank of transportation equipment.
JP04149460A 1992-06-09 1992-06-09 Ice transport method for cold heat transport device and PI tank thereof Expired - Fee Related JP3132897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04149460A JP3132897B2 (en) 1992-06-09 1992-06-09 Ice transport method for cold heat transport device and PI tank thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04149460A JP3132897B2 (en) 1992-06-09 1992-06-09 Ice transport method for cold heat transport device and PI tank thereof

Publications (2)

Publication Number Publication Date
JPH05340566A JPH05340566A (en) 1993-12-21
JP3132897B2 true JP3132897B2 (en) 2001-02-05

Family

ID=15475612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04149460A Expired - Fee Related JP3132897B2 (en) 1992-06-09 1992-06-09 Ice transport method for cold heat transport device and PI tank thereof

Country Status (1)

Country Link
JP (1) JP3132897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529461A (en) * 2014-08-21 2016-02-24 Yassir Badawi A refrigerating air conditioning unit

Also Published As

Publication number Publication date
JPH05340566A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US20210041183A1 (en) Heat exchange system for freezing a phase change material and methods thereof
US4300622A (en) Discharging a latent-heat accumulator
EP0074612B1 (en) Heat-storing apparatus
JP3132897B2 (en) Ice transport method for cold heat transport device and PI tank thereof
NZ227581A (en) Thermal storage unit: heat exchange path extended during supply cycle
CA1135581A (en) Latent heat accumulator
KR101135987B1 (en) Ice slurry delivery system with mixing tank
JP2007085672A (en) Ice thermal storage equipment and its operating method
JP2007064516A (en) Stratification type heat storage tank device
JPH0755209A (en) Ice water slurry-supply apparatus
JPH03140767A (en) Ice heat accumulator
KR100924420B1 (en) Cold water bucket of cold/hot water purifiers
SU1530161A1 (en) Apparatus for cooling liquid
JPH055374Y2 (en)
JPH0942718A (en) Ice thermal storage apparatus
JPH06185764A (en) Deicing tank in cooling system
JP2008164210A (en) Heat accumulator
JP4617548B2 (en) Hydrate slurry production method, hydrate slurry production apparatus and aqueous solution
US3186040A (en) Method and apparatus for distributing molten metal and the like
JPH0297835A (en) Construction of stored ice radiator in ice heat accumulation system
JPH08114333A (en) Heat exchanger for air-conditioning machine
JPS6230432Y2 (en)
JPH10130707A (en) Stave cooler
Friefeld et al. Storing and extracting latent heat
JPS5860193A (en) Heat accumulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001024

LAPS Cancellation because of no payment of annual fees