JPH06185764A - Deicing tank in cooling system - Google Patents

Deicing tank in cooling system

Info

Publication number
JPH06185764A
JPH06185764A JP4334716A JP33471692A JPH06185764A JP H06185764 A JPH06185764 A JP H06185764A JP 4334716 A JP4334716 A JP 4334716A JP 33471692 A JP33471692 A JP 33471692A JP H06185764 A JPH06185764 A JP H06185764A
Authority
JP
Japan
Prior art keywords
ice
water
tank
heat exchanger
thaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4334716A
Other languages
Japanese (ja)
Other versions
JP2875696B2 (en
Inventor
Hiroshi Kashiwagi
博 柏木
Mitsuru Kobayashi
満 小林
Shunji Hachisuga
舜治 蜂須賀
Yoshio Gomachi
善雄 五町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Sasakura Engineering Co Ltd
Original Assignee
Obayashi Corp
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Sasakura Engineering Co Ltd filed Critical Obayashi Corp
Priority to JP4334716A priority Critical patent/JP2875696B2/en
Publication of JPH06185764A publication Critical patent/JPH06185764A/en
Application granted granted Critical
Publication of JP2875696B2 publication Critical patent/JP2875696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To perform a good deicing in a deicing tank in which ice water fed from a cold heat supplying source is mixed with returned water returned from a heat exchanger. CONSTITUTION:There is provided a deicing tank 21 in which ice water fed from a cold heat supplying source 1 is mixed with returned water returned from a heat exchanger 5. Multi-stage horizontal partition plates 25 are installed within the deicing tank 21. Each of the horizontal partition plates 25 is provided with openings which are staggered to each other at each of the stages so as to move the ice upwardly while the ice is stayed in water for a long period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷の潜熱を利用した冷
房システムに関し、特に、送られてきた氷水を熱交換器
または空調機(以下、総称して熱交換器という。)へ送
る前に、この氷水の中の氷を解氷する解氷槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system utilizing latent heat of ice, and in particular, before sending ice water sent thereto to a heat exchanger or an air conditioner (hereinafter collectively referred to as heat exchanger). The present invention relates to a thaw tank that thaws ice in this ice water.

【0002】[0002]

【従来の技術】地域の冷暖房をおこなうシステムにおい
て、冷房に用いられる冷熱の供給は、冷水でおこなわれ
ることが多い。この場合に、供給される熱量は、顕熱変
化によるものだけである。そして、例えば送られる冷水
の温度は5℃、熱交換器で使用され還流してきた還流水
の温度は15℃がせいぜいであり、このため供給される
熱量は、水1kgで10Kcal程度が限界となる。このため
必要な冷熱を供給するためには、大量の冷水を送らなけ
ればならず、送るための動力が大きくなってしまう。
2. Description of the Related Art In a system for heating and cooling a region, cold water used for cooling is often supplied by cold water. In this case, the amount of heat supplied is only due to sensible heat change. For example, the temperature of the cold water to be sent is 5 ° C., and the temperature of the reflux water used in the heat exchanger that has been refluxed is 15 ° C. at most, so that the amount of heat supplied is limited to about 10 Kcal for 1 kg of water. . Therefore, in order to supply the required cold heat, a large amount of cold water must be sent, and the power for sending the cold water becomes large.

【0003】これに対し、冷熱の供給を、氷と水の混合
状態である氷水で行う方式がある。この場合には、例え
ば氷0.2kgと水0.8kgを混合して送り、還流水の温
度を12℃であるとすれば、1kgの氷が解ける際に回り
から奪う熱量は80Kcalであるから、 0.2×80+(12−0)=28Kcal/kg の冷熱を送れることになる。これにより少量の氷水で大
きな冷熱を供給できることとなる。
On the other hand, there is a system of supplying cold heat with ice water which is a mixed state of ice and water. In this case, for example, if 0.2 kg of ice and 0.8 kg of water are mixed and sent, and the temperature of the reflux water is 12 ° C., the amount of heat taken from the surroundings when 1 kg of ice is thawed is 80 Kcal. , 0.2 × 80 + (12-0) = 28Kcal / kg of cold heat can be sent. This makes it possible to supply a large amount of cold heat with a small amount of ice water.

【0004】配管の径を小さくするためには、氷水の氷
の充填率(IPF)を大きくすればよい。このような技
術が特開平1−285727に記載されている。
In order to reduce the diameter of the pipe, the ice filling rate (IPF) of the ice water may be increased. Such a technique is described in JP-A 1-285727.

【0005】しかしながら、氷の充填率(IPF)を大
きくした氷水を送る場合には、末端の熱交換器に達した
際にも内部の氷は解けていない。従って、熱交換器の設
計に際して、氷が通過するに必要な流路断面積の確保並
びに解氷に必要な滞留時間を持たせるための槽内容積の
確保を考慮する必要があり、このため、氷だけが流れる
熱交換器に比べ熱交換器における熱交換の効率を低下さ
せるという欠点があった。
However, when sending ice water having a large ice filling factor (IPF), the ice inside does not melt even when it reaches the end heat exchanger. Therefore, when designing the heat exchanger, it is necessary to consider ensuring the flow passage cross-sectional area necessary for ice to pass and the tank internal volume to have a residence time necessary for deicing. There is a drawback that the efficiency of heat exchange in the heat exchanger is lower than that in the heat exchanger in which only ice flows.

【0006】この欠点を解消するため、例えば特開平1
−263441に記載された技術のように、氷水の上よ
り、熱交換器からの還流水を散水し、解氷をおこなおう
とするものが存在する。即ち、図2に示すように、氷蓄
熱槽1から送られてきた氷水は一度解氷槽3に入れられ
る。そして熱交換器5からの還流水が、この解氷槽3の
中で氷水に散水される。この散水により氷水の中の氷は
解氷される。そして、この解氷槽3からは冷水だけが取
り出され熱交換器5へ送られる。
In order to solve this drawback, for example, Japanese Patent Laid-Open No.
There is a technique, such as the technique described in -263441, in which reflux water from a heat exchanger is sprinkled over ice water to perform deicing. That is, as shown in FIG. 2, the ice water sent from the ice heat storage tank 1 is once put in the thaw tank 3. Then, the reflux water from the heat exchanger 5 is sprinkled on the ice water in the thaw tank 3. This water spray breaks the ice in the ice water. Then, only cold water is taken out from the thaw tank 3 and sent to the heat exchanger 5.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記従
来技術の解氷槽3では、散水された水は解氷槽3の上部
に浮んだ氷に瞬時に接触するだけで、解氷が十分におこ
なわれないという問題があった。
However, in the above-described conventional thaw tank 3, the sprinkled water only comes into immediate contact with the ice floating above the thaw tank 3, so that the thaw is sufficiently performed. There was a problem of not being able to.

【0008】本発明は、以上の問題を解決するために成
されたもので、冷熱の供給源からの氷水を、熱交換器か
らの還流水によって十分に解氷することのできる冷房シ
ステムにおける解氷槽を提供することを目的とする。
The present invention has been made to solve the above problems, and is a solution in a cooling system in which ice water from a cold heat source can be sufficiently thawed by reflux water from a heat exchanger. The purpose is to provide an ice bath.

【0009】[0009]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明は、冷熱の供給源から氷と水の混合状態で
送られてきた氷水の氷を、熱交換器または空調機から還
流した還流水により融解させる解氷槽において、解氷槽
内部に多段に設けられた仕切板と、各仕切板に開けられ
各段で互い違いの位置を有する開口部と、解氷槽の一端
に設けられた氷水導入部と、解氷槽の他端に設けられた
冷水取出部と、を備えた冷房システムの解氷槽である。
In order to achieve the above-mentioned object, the present invention provides an ice water from a heat exchanger or an air conditioner, which is supplied from a cold heat source in a mixed state of ice and water. In the thaw tank that is melted by the refluxed reflux water, a partition plate provided in multiple stages inside the thaw tank, an opening opened in each partition plate and having staggered positions at each step, and at one end of the thaw tank It is an ice-melting tank of a cooling system, which is provided with an ice-water introducing unit provided and a cold-water extracting unit provided at the other end of the ice-melting tank.

【0010】[0010]

【作用】解氷槽の氷水導入部から内部に導入された氷水
の氷は、各段の水平仕切板に遮られ、長い経路をたど
り、かつ、停滞することなく上方に移動する。このため
水(還流水)と流動状態すなわち攪拌状態で接触するこ
とができ、解氷が十分におこなわれる。
The ice of the ice water introduced from the ice water introducing portion of the thaw tank is blocked by the horizontal partition plate of each stage, follows the long path, and moves upward without stagnation. Therefore, it can be brought into contact with water (reflux water) in a fluidized state, that is, in a stirred state, and the deicing is sufficiently performed.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1を基に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0012】本実施例における冷熱の供給源は、氷蓄熱
槽1である。この氷蓄熱槽1は、製氷器7から氷を供給
されるもので、この氷を水と共に蓄え、氷と水の混合状
態である氷水を末端の熱交換器5へ向けて送る。
The cold heat supply source in this embodiment is the ice heat storage tank 1. The ice heat storage tank 1 is supplied with ice from the ice maker 7, stores the ice together with water, and sends ice water in a mixed state of ice and water toward the heat exchanger 5 at the end.

【0013】末端の熱交換器5は、例えばその地域の各
建物9毎に存在する。そして、この建物9において熱交
換器5の上流側には氷分離器11が設けられている。こ
の氷分離器11は、前記送られてきた氷水13を、氷水
15と冷水17とに分ける。この分けられた氷水15
は、送られてきた氷水13よりも更に氷の充填率(IP
F)が大きくなっている。分けられた氷水15は、熱交
換器5からの還流水19の一部と混ぜられる。これによ
り氷水15に含まれる氷が解氷される。
The terminal heat exchanger 5 is present, for example, for each building 9 in the area. An ice separator 11 is provided upstream of the heat exchanger 5 in this building 9. The ice separator 11 divides the sent ice water 13 into ice water 15 and cold water 17. This divided ice water 15
Is more packed with ice than the sent ice water 13 (IP
F) is getting bigger. The separated ice water 15 is mixed with a part of the reflux water 19 from the heat exchanger 5. As a result, the ice contained in the ice water 15 is thawed.

【0014】この解氷は、解氷をより効率的におこなう
ため、解氷槽21の中でおこなわれる。即ち、この混ぜ
られた還流水19と氷水15は解氷槽21の下部に設け
られた氷水導入部23から内部に導入される。内部には
水平仕切板25が多段に設けられている。各水平仕切板
25には開口部27が開けられ、各開口部27は各段で
互い違いの位置を有する。
This thawing is carried out in the thawing tank 21 in order to carry out the thawing more efficiently. That is, the mixed reflux water 19 and ice water 15 are introduced into the inside from the ice water introducing portion 23 provided in the lower portion of the thaw tank 21. Horizontal partition plates 25 are provided in multiple stages inside. An opening 27 is opened in each horizontal partition plate 25, and each opening 27 has a staggered position in each step.

【0015】この開口部41の大きさは、上方にいくほ
ど小さくなる氷の大きさに合わせて、上方の段の開口部
41ほど大きさを小さくすることもできる。また各水平
仕切板25の上下方向の間隔も、変化する氷の大きさに
合わせ、上方にいくほど徐々に小さくすることもでき
る。また解氷槽21の上部には、氷水取出部29が設け
られている。
The size of the opening 41 can be made smaller as the opening 41 in the upper tier conforms to the size of ice that becomes smaller as it goes upward. Further, the vertical spacing between the horizontal partition plates 25 can also be gradually reduced in accordance with the changing size of ice. An ice water take-out section 29 is provided on the upper portion of the thaw tank 21.

【0016】氷水取出部29から取出された冷水31
は、前記氷分離器11により分けられた冷水17と合流
する。合流の後、熱交換器5へ送られる。
Cold water 31 taken out from the ice water take-out section 29
Joins the cold water 17 separated by the ice separator 11. After merging, it is sent to the heat exchanger 5.

【0017】熱交換器5内では、冷水と、冷房されるべ
き部屋の空気との間で熱交換がおこなわれる。この結
果、空気は冷やされ、冷水は暖められ還流水19として
氷蓄熱槽1へ還流される。
In the heat exchanger 5, heat exchange is performed between cold water and air in the room to be cooled. As a result, the air is cooled, the cold water is warmed, and is returned to the ice heat storage tank 1 as the return water 19.

【0018】以下、本実施例の作用について説明する。
例えば夜間の電力を利用して製氷機7が氷をつくり、氷
蓄熱槽1に蓄える。氷蓄熱槽1は、例えば昼間の冷房の
需要に応じて、氷と水の混合状態である氷水13を配管
33を通して各建物9へ送る。各建物9では氷分離器1
1により、さらにIPFの高い氷水15と、冷水17と
に分けられた後、氷水15は還流水19の一部と混ぜら
れ解氷槽21において解氷される。解氷槽21を出た冷
水31と、前記氷分離器11からの冷水17は合流し
て、熱交換器5へ送られ、建物9内部の冷房に使われ
る。その後、冷水は暖められて還流水19となり氷蓄熱
槽1へ戻る。
The operation of this embodiment will be described below.
For example, the ice machine 7 makes ice by using electric power at night and stores it in the ice heat storage tank 1. The ice heat storage tank 1 sends ice water 13 which is a mixed state of ice and water to each building 9 through a pipe 33 in accordance with, for example, a demand for cooling in the daytime. Ice separator 1 in each building 9
After being divided into ice water 15 having a higher IPF and cold water 17 by 1, the ice water 15 is mixed with a part of the reflux water 19 to be thawed in the thaw tank 21. The cold water 31 exiting the thaw tank 21 and the cold water 17 from the ice separator 11 join together and are sent to the heat exchanger 5 to be used for cooling the inside of the building 9. After that, the cold water is warmed to become the reflux water 19 and returns to the ice heat storage tank 1.

【0019】以上の実施例によれば、氷蓄熱槽1から送
られてくる氷水のIPFが大きく、従って建物9に送ら
れた際に内部に氷が残っていても、熱交換器5に送られ
るのは氷水ではなく、氷を含まない冷水である。従っ
て、通常の多管式またはプレーと式熱交換器であっても
氷つまりを生ぜず熱交換の効率を十分に向上させること
ができる。
According to the above embodiment, the IPF of the ice water sent from the ice heat storage tank 1 is large, and therefore, even if the ice remains inside when it is sent to the building 9, it is sent to the heat exchanger 5. It is not ice water, but cold water that does not contain ice. Therefore, even a conventional multi-tube type or play type heat exchanger can sufficiently improve the efficiency of heat exchange without causing ice clogging.

【0020】そして、前記したように冷熱の供給源であ
る氷蓄熱槽1から各建物9へ送られる氷水13のIPF
を大きくすることができるので、冷水だけで建物への冷
熱の供給をおこなう場合に比べ、少量の氷水を送ればす
む。これにより送るための動力を小さくできる。さら
に、少量ですむため氷蓄熱槽1から建物9への配管33
の径を小さくできる。
Then, as described above, the IPF of the ice water 13 sent to each building 9 from the ice heat storage tank 1 which is the source of cold heat.
Since it is possible to increase the temperature, it is possible to send a small amount of ice water compared to the case of supplying cold heat to the building only with cold water. This can reduce the power for sending. Furthermore, since it requires a small amount, piping 33 from the ice heat storage tank 1 to the building 9
The diameter of can be reduced.

【0021】また、解氷槽21において解氷をおこなう
前に、氷分離器11によりIPFの高い氷水15と、冷
水17とに分けるので、解氷に必要な還流水19の量を
少なくできる。従って解氷槽21を出た冷水31の温度
は十分に低い状態を維持でき、この冷水31と氷分離器
11を出た冷水17との合流により作られる冷水も、温
度の低いものとすることができる。
Further, before the thawing is performed in the thawing tank 21, the ice separator 11 separates the ice water 15 having a high IPF and the chilled water 17, so that the amount of the reflux water 19 necessary for the thawing can be reduced. Therefore, the temperature of the cold water 31 discharged from the defrosting tank 21 can be maintained at a sufficiently low temperature, and the cold water produced by the merging of the cold water 31 and the cold water 17 discharged from the ice separator 11 should also have a low temperature. You can

【0022】特に、解氷槽21の内部に設けられた水平
仕切板25の働きにより、氷水は各水平仕切板25に開
けられた開口部27を通って上の段の水平仕切板25へ
と移動をおこなうことにより、氷と水との比重差・固体
と液体との相違にもとずく氷と水との接触面における相
対速度の増大が図られ、解氷速度が増大し、結果的に解
氷槽内での滞留時間を減少させることができるので、解
氷槽の容積を小さくできる。このように、解氷槽21内
での氷水は、解氷速度の増大を狙った十分な流速をとり
ながら上方へ移動するので、少ない還流水19により十
分な解氷がおこなわれる。よって温度の低い冷水31が
解氷槽21から熱交換器5に送られるので、熱交換率を
より向上させることができる。
In particular, due to the action of the horizontal partition plate 25 provided inside the thaw tank 21, the ice water passes through the openings 27 formed in each horizontal partition plate 25 to reach the horizontal partition plate 25 in the upper stage. By moving, the relative velocity at the contact surface between ice and water is increased due to the difference in specific gravity between ice and water and the difference between solid and liquid, which increases the speed of deicing Since the residence time in the thaw tank can be reduced, the thaw tank volume can be reduced. In this way, since the ice water in the thaw tank 21 moves upward while taking a sufficient flow velocity aiming at increasing the thaw speed, a sufficient amount of reflux water 19 is sufficient for the thaw operation. Therefore, the cold water 31 having a low temperature is sent from the thaw tank 21 to the heat exchanger 5, so that the heat exchange rate can be further improved.

【0023】なお、本実施例では仕切板を水平に下が、
必ずしも水平である必要はなく、垂直または斜めであっ
てもよい。
In this embodiment, the lower part of the partition plate is
It does not necessarily have to be horizontal, but may be vertical or diagonal.

【0024】[0024]

【発明の効果】以上説明したように、本発明の冷房シス
テムの解氷槽によれば、解氷槽内部に導入された氷水の
氷は、多段に設けられた仕切板に遮られ、解氷速度を増
大させるに十分な流速を保って移動することになり、水
(還流水)と常に氷と水とが相対速度を有する状態すな
わち攪拌状態で接触することができ、解氷が十分におこ
なわれる。これにより、少ない還流水で十分な解氷がお
こなえ、解氷槽から熱交換器へ送られる冷水の温度を低
くでき、熱交換効率を向上させることができる。
As described above, according to the thaw tank of the cooling system of the present invention, the ice water introduced into the thaw tank is blocked by the partition plates provided in multiple stages to thaw the ice. The water moves at a flow velocity sufficient to increase the velocity, and water (reflux water) can constantly contact with ice and water in a state having a relative velocity, that is, in a stirring state, and the ice is sufficiently thawed. Be done. As a result, a sufficient amount of reflux water can be used to sufficiently thaw the temperature of the cold water sent from the thaw tank to the heat exchanger, and the heat exchange efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略水路図である。FIG. 1 is a schematic waterway diagram showing an embodiment of the present invention.

【図2】従来例を示す概略水路図である。FIG. 2 is a schematic waterway diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 氷蓄熱槽 3 熱交換器 7 製氷器 9 建物 11 氷分離器 21 解氷槽 25 水平仕切板 1 Ice Storage Tank 3 Heat Exchanger 7 Ice Maker 9 Building 11 Ice Separator 21 Thawing Tank 25 Horizontal Partition Plate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月25日[Submission date] December 25, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

フロントページの続き (72)発明者 小林 満 大阪府大阪市中央区北浜東4番33号 株式 会社大林組本店内 (72)発明者 蜂須賀 舜治 大阪府大阪市中央区北浜東4番33号 株式 会社大林組本店内 (72)発明者 五町 善雄 大阪府大阪市中央区北浜東4番33号 株式 会社大林組本店内Front page continued (72) Inventor Mitsuru Kobayashi 4-33 Kitahama Higashi, Chuo-ku, Osaka City, Osaka Prefecture Obayashi Honsha Co., Ltd. Inside the Obayashi Main Store (72) Inventor Yoshio Gomachi 4-33 Kitahama Higashi, Chuo-ku, Osaka City, Osaka Prefecture Obayashi Main Store

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷熱の供給源から氷と水の混合状態で送
られてきた氷水の水を、熱交換器または空調機から還流
した還流水により融解させる解氷槽において、解氷槽内
部に多段に設けられた仕切板と、各仕切板に開けられ各
段で互い違いの位置を有する開口部と、解氷槽の一端に
設けられた氷水導入部と、解氷槽の他端に設けられた冷
水取出部と、を備えた冷房システムの解氷槽。
1. In an thaw tank in which ice water sent from a cold heat source in a mixed state of ice and water is melted by reflux water refluxed from a heat exchanger or an air conditioner, inside the thaw tank. Partition plates provided in multiple stages, openings that are opened in each partition plate and have alternating positions at each stage, an ice water introducing part provided at one end of the thaw tank, and an other end of the thaw tank A cooling system defrosting tank equipped with a cold water extraction unit.
JP4334716A 1992-12-15 1992-12-15 Thaw tank for cooling system Expired - Fee Related JP2875696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334716A JP2875696B2 (en) 1992-12-15 1992-12-15 Thaw tank for cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334716A JP2875696B2 (en) 1992-12-15 1992-12-15 Thaw tank for cooling system

Publications (2)

Publication Number Publication Date
JPH06185764A true JPH06185764A (en) 1994-07-08
JP2875696B2 JP2875696B2 (en) 1999-03-31

Family

ID=18280419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334716A Expired - Fee Related JP2875696B2 (en) 1992-12-15 1992-12-15 Thaw tank for cooling system

Country Status (1)

Country Link
JP (1) JP2875696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296287A (en) * 2014-10-17 2015-01-21 中山市蓝水能源科技发展有限公司 Multilayer natural-layering water cold storage device
WO2023078802A1 (en) 2021-11-03 2023-05-11 Evonik Operations Gmbh New method for recycling of polyurethane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296287A (en) * 2014-10-17 2015-01-21 中山市蓝水能源科技发展有限公司 Multilayer natural-layering water cold storage device
WO2023078802A1 (en) 2021-11-03 2023-05-11 Evonik Operations Gmbh New method for recycling of polyurethane

Also Published As

Publication number Publication date
JP2875696B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
CN1486944B (en) Process for refining glass melt and equipment for smelting and refining glass melt
CN101980976B (en) Glass melting furnace
US4461153A (en) Method and apparatus for inoculating crystallization seeds into a liquid latent heat storage substance
US4300622A (en) Discharging a latent-heat accumulator
CN101980973A (en) Glass melting furnace
JPH06185764A (en) Deicing tank in cooling system
KR101135987B1 (en) Ice slurry delivery system with mixing tank
JP2872872B2 (en) Defrosting method for cooling system
CN102788363A (en) Waste heat boiler used for scrap copper smelting furnace
CN207871592U (en) A kind of device for realizing crystallization processes Process Energy cascade utilization
JPH0384345A (en) Cracked ice piece storing system
JP2892202B2 (en) Ice storage device
JPH10325657A (en) Ice thermal storage device
CN108756993A (en) A kind of big temperature difference mine return air heat energy recovery system
JPH08210742A (en) Ice making device and ice thermal storage device
JPH05202406A (en) Method for cooling vertical type smelting furnace
JP3266334B2 (en) Heat storage tank for air conditioning
Eschenburg et al. 1000 ton per day ice plant for underground cooling at Harmony gold mine
SU1449795A1 (en) Refrigerant accumulator
JP2002147912A (en) Heat exchange by water flowing on floor face
JP3731050B2 (en) Low temperature cold water supply system with ice heat storage
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system
JPH0835691A (en) District cooling system using latent heat of ice
JPH037833A (en) Heat transfer apparatus
JPH01266455A (en) Cooling device using ice water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees