JPH0297835A - Construction of stored ice radiator in ice heat accumulation system - Google Patents

Construction of stored ice radiator in ice heat accumulation system

Info

Publication number
JPH0297835A
JPH0297835A JP24879488A JP24879488A JPH0297835A JP H0297835 A JPH0297835 A JP H0297835A JP 24879488 A JP24879488 A JP 24879488A JP 24879488 A JP24879488 A JP 24879488A JP H0297835 A JPH0297835 A JP H0297835A
Authority
JP
Japan
Prior art keywords
ice
water
tank
cooling
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24879488A
Other languages
Japanese (ja)
Other versions
JPH068694B2 (en
Inventor
Hironori Inada
稲田 裕紀
Hirotsugu Kinoshita
裕嗣 木下
Koichi Endo
光一 遠藤
Yukio Kurosaki
黒崎 幸夫
Isao Hasegawa
功 長谷川
Fumihiro Baba
文啓 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Toyo Engineering Corp
Original Assignee
Mitsui Construction Co Ltd
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, Toyo Engineering Corp filed Critical Mitsui Construction Co Ltd
Priority to JP24879488A priority Critical patent/JPH068694B2/en
Publication of JPH0297835A publication Critical patent/JPH0297835A/en
Publication of JPH068694B2 publication Critical patent/JPH068694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to operate both ice making and ice storage operation and cooling load operation in parallel by laying out a cold water reservoir which stores ice generated from supercooling water and a cold water reservoir which stores return water from said cooling load so that they may adjoin by way of a heat transfer wall, and communicating the lower parts of both the reservoirs by way of a filter. CONSTITUTION:During ice making, a refrigerant is cooled by a refrigerator 13 and is circulated by way of a heat exchanger 15. The water to be cooled from an ice accumulator is supercooling by the heat exchanger 15, and fed into a supercooling resolving tank 4. The supercooling water which is supplied by a little by a little from a feed pipe tip 18a, gets frozen when it is placed into contact with an electronic cooling unit 21 which is preset as cooling state. A sherbet-like ice slurry S is generated based on the frozen water as its seed ice. The ice slurry S drops on the wall surface of an ice reservoir 2 and stored as ice in the ice reservoir 2. During cooling load operation, the cooling water in the ice reservoir 2 is fed into cooling load 5 while return water is sprayed into a cooling water tank 3 by a shower 24, cooled by the ice reservoir 2 by way of a heat transfer wall 6, then moves to a cooling water tank 3. Therefore, this construction makes is possible to feed constantly cooling water whose temperature is the most proper to the operation of the cooling load 5 by way of a constant filter 7 from the cooling water tank 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷房負荷用に利用される氷蓄熱システムにお
ける蓄氷放熱槽の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of an ice storage and heat dissipation tank in an ice heat storage system used for cooling loads.

(従来の技術) 近年、氷蓄熱システムが、従来の水蓄熱システムに替わ
るものとして秤々提案されて来ている。
(Prior Art) In recent years, ice heat storage systems have been proposed extensively as an alternative to conventional water heat storage systems.

該氷蓄熱システムは、水が氷になる時の凝固熱を利用す
るものであるため、従来の水の温度変化だけを利用した
水蓄熱システムに比較して、容積当りの蓄熱能力を飛躍
的に向上させることができ、換言すれば、蓄熱スペース
を格段に小型化することが可能となる。
Since this ice heat storage system utilizes the heat of solidification when water turns into ice, it dramatically increases the heat storage capacity per volume compared to conventional water heat storage systems that only use temperature changes in water. In other words, it is possible to significantly reduce the size of the heat storage space.

しかして、従来の氷蓄熱システムにおける蓄氷槽を中心
とした構成は、例えば実開昭63−14063号に開示
されており、第3図に示す夜間の製氷時と、第4図に示
す昼間運転時とでは、作動系統が異なっている。
The configuration of a conventional ice heat storage system centered on an ice storage tank is disclosed, for example, in Japanese Utility Model Application Publication No. 14063/1983. The operating system is different during operation.

即ち、夜間製氷時には、冷凍機30を運転してブライン
の温度を所定温度まで下げて熱交換器31内に送り込み
、一方、蓄氷槽32の底部から引き抜かれた被冷却水を
熱交換器31に送給して、前記ブラインにより0℃以下
の過冷却水にして、蓄氷槽32の上部まで移送し、放出
管33から落下させ、落下時の衝撃により過冷却水を氷
結させ、シャーベット状の氷を生成してゆき、所定の充
填率となるまで、蓄氷槽32内に貯溜する。
That is, when making ice at night, the refrigerator 30 is operated to lower the temperature of brine to a predetermined temperature and the brine is fed into the heat exchanger 31, while the water to be cooled drawn from the bottom of the ice storage tank 32 is transferred to the heat exchanger 31. The supercooled water is turned into supercooled water of 0°C or less by the brine, and then transferred to the upper part of the ice storage tank 32 and dropped from the discharge pipe 33. The supercooled water is frozen by the impact of the fall, and becomes a sherbet-like water. ice is generated and stored in the ice storage tank 32 until a predetermined filling rate is reached.

他方、昼間の運転時(解氷時)には、蓄氷槽32の底部
から引き抜いた0℃付近の水を空調器34等の冷房負荷
に送り込む。
On the other hand, during daytime operation (melting ice), water at around 0° C. drawn from the bottom of the ice storage tank 32 is sent to the cooling load such as the air conditioner 34.

また、空調器34から熱交換器31を経由した二次側返
水を、蓄氷槽32の上部から落下させ。
Further, the secondary return water from the air conditioner 34 via the heat exchanger 31 is dropped from the upper part of the ice storage tank 32.

回転レーキ装置35を介して蓄氷槽32内に散水するこ
とにより、槽内の氷を融解するようになっている。
By sprinkling water into the ice storage tank 32 via the rotating rake device 35, the ice in the tank is melted.

(発明が解決しようとする課題) しかしながら、かかるシステムでは、昼間運転時に蓄氷
槽32内の氷が冷房負荷に対して極端に不足し、新たに
氷を生成しなければならなくなった時でも、空調器34
からの戻り水は、12℃程度にまでなっており、この温
度の戻り水を熱交換器31で一気に過冷却水とするのは
不可能となる。
(Problem to be Solved by the Invention) However, in such a system, even when the ice in the ice storage tank 32 becomes extremely insufficient for the cooling load during daytime operation and new ice must be generated, Air conditioner 34
The temperature of the return water is about 12° C., and it is impossible to convert the return water at this temperature into supercooled water at once in the heat exchanger 31.

よって、昼間に製氷の必要があるときは、−時空調機3
4の運転を中止して製氷を行なうしかないという欠点が
ある。
Therefore, when it is necessary to make ice during the day, -time air conditioner 3
There is a disadvantage that the operation of Step 4 must be stopped to make ice.

また、昼間運転時においては、i記した如く蓄氷槽32
内に散水することにより、槽内の氷を融解するようにな
っており、二次返水の温度は、相当程度上昇しているか
ら、氷の溶解が必要以上に急激に行なわれ、無駄な熱損
失により氷が不足する事態になり易いという問題を有し
ている。
In addition, during daytime operation, the ice storage tank 32
The ice in the tank is melted by sprinkling water inside the tank, and since the temperature of the secondary return water has risen considerably, the ice melts more rapidly than necessary, resulting in wasted waste. There is a problem in that ice tends to run out due to heat loss.

本発明は、かかる従来の課題を解決しうる氷蓄熱システ
ムにおける蓄氷放熱槽の構造を提供することを目的とす
るものである。
An object of the present invention is to provide a structure of an ice storage heat dissipation tank in an ice heat storage system that can solve the conventional problems.

(課題を解決するための手段) 上記目的を達成するため、本発明に係る蓄氷放熱槽の構
造は、過冷却水から生成された氷を貯溜する蓄氷槽と、
冷房負荷からの戻り水を貯溜する冷水槽とを伝熱壁を介
して隣接配置し、前記蓄氷槽と冷水槽の下部近傍をフィ
ルターを介して連通させてなることを特徴とするもので
ある。
(Means for Solving the Problems) In order to achieve the above object, the structure of the ice storage heat dissipation tank according to the present invention includes an ice storage tank that stores ice generated from supercooled water;
A cold water tank for storing return water from a cooling load is arranged adjacently through a heat transfer wall, and the ice storage tank and the vicinity of the lower part of the cold water tank are communicated through a filter. .

また、前記蓄氷槽と冷水槽の下部は、各々下端方向に集
束するテーパー面に形成し、下端にドレン抜きを設ける
のが望ましい。
Further, it is preferable that the lower portions of the ice storage tank and the cold water tank are each formed into a tapered surface that converges toward the lower end, and a drain is provided at the lower end.

(実施例) 以下、本発明の好適な実施例を図面により説明する。(Example) Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1図は1本発明の一実施例を示すものであり、本実施
例に係る蓄氷放熱槽1は、蓄氷槽2と冷水槽3とから構
成されている。
FIG. 1 shows an embodiment of the present invention, and an ice storage and heat dissipation tank 1 according to this embodiment is composed of an ice storage tank 2 and a cold water tank 3.

蓄氷槽2の上部には過冷却解消槽4が設けられており、
該過冷却解消槽4により、過冷却水から氷スラリーを生
成して蓄氷槽2内に貯溜するようになっている。
A supercooling elimination tank 4 is provided at the top of the ice storage tank 2.
The supercooling elimination tank 4 generates ice slurry from the supercooled water and stores it in the ice storage tank 2.

前記冷水槽3は、空調機などの冷房負荷5からの戻り水
を貯溜するものであり、前記冷水槽2とは、伝熱壁6を
介して隣接配置されている。
The cold water tank 3 stores return water from a cooling load 5 such as an air conditioner, and is arranged adjacent to the cold water tank 2 with a heat transfer wall 6 in between.

また、前記蓄氷JfJ2と冷水槽3の下部近傍では、伝
熱壁6による境界を無くし、フィルター7を介して両槽
を連通させている。
In addition, near the bottom of the ice storage JfJ2 and the cold water tank 3, the boundary formed by the heat transfer wall 6 is eliminated, and the two tanks are communicated through the filter 7.

さらに、前記フィルター7より下部では、蓄氷槽2と冷
水槽3は、各々下端方向に集束するテーパー面8.9と
して形成されており、下端には、各々ドレン抜き10.
11が設けられている。
Further, below the filter 7, the ice storage tank 2 and the cold water tank 3 are each formed as a tapered surface 8.9 converging toward the lower end, and each has a drain outlet 10.9 at the lower end.
11 are provided.

また、蓄氷槽2内にも前記フィルター7の上端部付近に
、氷と冷水とを分離するためのフィルター12が設けら
れている。
Further, a filter 12 for separating ice and cold water is provided in the ice storage tank 2 near the upper end of the filter 7.

しかして、本実施例に係る氷蓄熱システムでの製氷時に
は、第1図に示すように冷凍機13により冷媒もしくは
ブラインが0℃以下の所定温度まで冷却されて送給管1
4を介して熱交換器15に送られ、戻り管16から両び
冷凍機13に循環される。
Therefore, when making ice with the ice heat storage system according to this embodiment, as shown in FIG.
4 to the heat exchanger 15, and is circulated through the return pipe 16 to both the refrigerators 13.

同時に、蓄氷槽2の下部からは、戻り管17を介してO
℃程度の被冷却水が熱交換器I3内に流動し、前記冷媒
もしくはブラインとの間で熱交換がなされて、−2℃〜
−3℃程度に過冷却されて、送り管18から前記過冷却
解消槽4へと送給される。
At the same time, O2 is supplied from the lower part of the ice storage tank 2 via the return pipe 17.
The water to be cooled at a temperature of about ℃ flows into the heat exchanger I3, and heat exchanges with the refrigerant or brine, resulting in a temperature of -2℃ to
It is supercooled to about -3° C. and is fed from the feed pipe 18 to the supercooling elimination tank 4.

本実施例に係る過冷却解消槽4には、例えば第2図に示
すように、所定の傾斜角aを有する過冷却降下面19と
、氷送り出し面20とが形成され、電子冷却ユニット2
1が氷送り出し面20に設置されている。
As shown in FIG. 2, for example, the supercooling elimination tank 4 according to this embodiment is formed with a supercooling descending surface 19 having a predetermined inclination angle a and an ice delivery surface 20, and an electronic cooling unit 2
1 is installed on the ice delivery surface 20.

しかして、送り管18の先端18aから穏やかな流速で
少量ずつ供給される過冷却水は、過冷却水降下面6の上
部から矢線方向にゆっくりと降下してゆき、あらかじめ
−5℃程度の冷却状態に設定されている電子冷却ユニッ
ト21に接触することにより氷結し、初期製氷がなされ
る。
Therefore, the supercooled water supplied little by little at a gentle flow rate from the tip 18a of the feed pipe 18 slowly descends in the direction of the arrow from the upper part of the supercooled water descending surface 6, and is pre-heated to about -5°C. When it comes into contact with the electronic cooling unit 21 that is set to a cooling state, it freezes and initial ice is made.

以後は、この氷結晶を種水として、前記過冷却水降下面
19を降下して順次供給される過冷却水が前記種水に接
触することにより連続的にシャーベット状の氷スラリー
Sとして生成されてゆき、先に生成された氷スラリーS
は、後から生成される氷スラリーSにより徐々に押圧さ
れて氷送り出し面20上を先端部20a方向へと緩やか
に」−昇してゆき、該先端部20aから自重により蓄氷
槽2の壁面に沿ってゆっくりと降下して、衝撃を与える
ことなく蓄氷槽2内に蓄氷されていくようになっている
Thereafter, using the ice crystals as seed water, the supercooled water that descends on the supercooled water descending surface 19 and is sequentially supplied comes into contact with the seed water and is continuously produced as a sherbet-like ice slurry S. Teyuki, the previously generated ice slurry S
is gradually pressed by the ice slurry S that will be generated later, and slowly rises on the ice delivery surface 20 toward the tip 20a, and from the tip 20a, the wall surface of the ice storage tank 2 due to its own weight. The ice slowly descends along the ice storage tank 2 and is stored in the ice storage tank 2 without giving any impact.

このようにして過冷却水の顕熱分は、氷スラリーSの潜
熱に変換されて蓄氷槽2内に蓄熱されることとなる。
In this way, the sensible heat of the supercooled water is converted into latent heat of the ice slurry S, and is stored in the ice storage tank 2.

一方、冷房負荷の運転時には、蓄氷槽2の底部から供給
されるθ℃程度の冷却水が送給管22を経由して空調機
等の冷房負荷5へと送り込まれ、戻り管23を介して戻
り水は、シャワー装置24から冷水槽3内に一様に散布
される。
On the other hand, during operation of the cooling load, cooling water of about θ°C supplied from the bottom of the ice storage tank 2 is sent to the cooling load 5 such as an air conditioner via the feed pipe 22, and is sent to the cooling load 5 such as an air conditioner via the return pipe 23. The returned water is uniformly sprayed into the cold water tank 3 from the shower device 24.

しかして、冷水層3に戻された水は、伝熱壁6を介して
蓄氷槽2内の氷により徐々に冷却されて冷水槽3の下方
へと移動してゆくため、冷水槽3内には下部にゆくほど
冷たくなる水の温度分布層が形成され、冷水槽3の下部
に達するときには0℃程度の冷水となっている。
The water returned to the cold water layer 3 is gradually cooled by the ice in the ice storage tank 2 through the heat transfer wall 6 and moves downward into the cold water tank 3. A temperature distribution layer is formed in which the water becomes colder toward the bottom, and when it reaches the bottom of the cold water tank 3, the water is at about 0°C.

よって、常時フィルター7を介して冷水槽3からは、冷
房負荷5の運転に最適温度の冷水を常時送給することが
できる。
Therefore, cold water at an optimal temperature for operation of the cooling load 5 can be constantly supplied from the cold water tank 3 via the filter 7.

その他、第1図において、24.25.26は、各々循
環ポンプである。
Additionally, in FIG. 1, 24, 25, and 26 are circulation pumps, respectively.

かかる構成からなる本実施例では、蓄氷槽2と冷水槽3
とを独立して分離形成し、冷房負荷5からの二次返水を
、従来例のように蓄氷槽2に戻すのではなく、冷水槽3
に戻し、蓄氷槽との間で熱交換を行ない、冷水槽下部か
60℃程度の冷水を得られるように構成しであるため、
製氷及び蓄氷運転と、冷房負荷5の運転とを、並行して
行なうことができる。
In this embodiment having such a configuration, the ice storage tank 2 and the cold water tank 3 are
The secondary return water from the cooling load 5 is not returned to the ice storage tank 2 as in the conventional example, but is instead sent to the cold water tank 3.
It is configured so that it can exchange heat with the ice storage tank and obtain cold water of about 60℃ from the bottom of the cold water tank.
Ice making and ice storage operations and operation of the cooling load 5 can be performed in parallel.

よって、昼間の冷房負荷5の運転時に蓄氷槽2内の氷が
冷房負荷に対して不足し、新たに氷を生成しなければな
らなくなった時でも、冷房負荷5の運転を中止する必要
なしに、上記した製氷及び蓄氷運転を行なうことが可能
となる。
Therefore, even if the ice in the ice storage tank 2 becomes insufficient for the cooling load during daytime operation of the cooling load 5 and new ice must be generated, there is no need to stop the operation of the cooling load 5. Additionally, it becomes possible to perform the ice making and ice storage operations described above.

また、蓄氷槽2内の氷は、上記した如く冷水槽3の水と
の間で伝熱壁6を介して熱交換されることにより徐々に
融解してゆくものである。
Further, the ice in the ice storage tank 2 gradually melts by exchanging heat with the water in the cold water tank 3 via the heat transfer wall 6 as described above.

よって、従来例のように蓄氷槽内に散水することにより
、槽内の氷を融解する方式と異なり、氷の溶解が必要以
上に急激に行なわれることがなく、効率的な熱交換を達
成することができる。
Therefore, unlike the conventional method of melting the ice in the ice storage tank by sprinkling water into it, the ice does not melt more rapidly than necessary, achieving efficient heat exchange. can do.

また、蓄氷槽2と冷水槽3の下部は、各々下端方向に集
束するテーパー面8.9として形成し、下端に、各々ド
レン抜き10,11が設けられているため、蓄氷槽2や
冷水槽3の清掃時や点検時には、前記ドレン抜き10.
11から容易に排水が行なえ、保守点検の効率化が図れ
る。
Further, the lower portions of the ice storage tank 2 and the cold water tank 3 are each formed as a tapered surface 8.9 converging toward the lower end, and drains 10 and 11 are provided at the lower ends, respectively, so that the ice storage tank 2 and the cold water tank 3 When cleaning or inspecting the cold water tank 3, use the drain drain 10.
Drainage can be easily performed from 11, and maintenance and inspection can be made more efficient.

なお、本発明は上記実施例に限定されるものではなく、
例えば、過冷却解消槽4の構成は第2図に示したもの以
外にも適宜変更可能であり、さらに、過冷却水から氷を
生成しつる手段であれば前記過冷却解消槽4による方式
以外の適宜方式も採用しうる等、本発明の要旨を逸脱し
ない範囲内で種々の変形例が可能なことは言うまでもな
い。
Note that the present invention is not limited to the above embodiments,
For example, the configuration of the supercooling elimination tank 4 can be modified as appropriate other than that shown in FIG. It goes without saying that various modifications are possible without departing from the gist of the present invention, such as adopting an appropriate method.

(発明の効果) 本発明は上述した如く構成されており、以下の効果を奏
しうるものである。
(Effects of the Invention) The present invention is configured as described above, and can achieve the following effects.

(1)製氷及び蓄水運転と、冷房負荷の運転とを並行し
て行なうことができ、昼間の運転時に新たに氷を生成し
なければならなくなった時でも、冷房負荷の運転を中止
する必要がなくなる。
(1) Ice making and water storage operation and cooling load operation can be performed in parallel, and even when new ice needs to be generated during daytime operation, cooling load operation does not need to be stopped. disappears.

(2)蓄氷・槽内の氷は、冷水槽の水との間で伝熱壁を
介して熱交換されることにより徐々に融解してゆくから
、効率的な熱交換を達成することができる。
(2) Ice storage/ice in the tank gradually melts by exchanging heat with the water in the cold water tank via the heat transfer wall, making it difficult to achieve efficient heat exchange. can.

(3)蓄氷槽と冷水槽の下部を、各々下端方向に集束す
るテーパー面として形成し、下端に、各々ドレン抜きを
設けるようにすれば、蓄氷槽や冷水槽保守点検を迅速か
つ効率的に行なうことができる。
(3) If the lower parts of the ice storage tank and cold water tank are formed as tapered surfaces that converge toward the bottom end, and drains are provided at the bottom ends of each, maintenance and inspection of the ice storage tank and cold water tank can be done quickly and efficiently. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る蓄氷放熱槽を含めたシステムの一
実施例を示す概念図、第2図は本実施例に係る過冷却解
消槽の構成を示す概念図、第3図及び第4図は各々従来
の氷蓄熱システムの例を示す概念図である。 1・・・蓄氷放熱槽。 2・・・蓄氷槽、 4・・・過冷却解消槽、 6・・・伝熱壁、 8.9・・・テーパー面、 10、l 1−・・ドレン抜き。 13・・・冷凍機、    1 3・・・冷水槽。 5・・・冷房負荷、 7・・・フルター 5・・・熱交換器。
FIG. 1 is a conceptual diagram showing an embodiment of a system including an ice storage heat dissipation tank according to the present invention, FIG. 2 is a conceptual diagram showing the configuration of a supercooling elimination tank according to this embodiment, and FIGS. FIG. 4 is a conceptual diagram showing an example of a conventional ice heat storage system. 1...Ice storage heat dissipation tank. 2...Ice storage tank, 4...Supercooling elimination tank, 6...Heat transfer wall, 8.9...Tapered surface, 10,l 1-...Drain drain. 13... Refrigerator, 1 3... Cold water tank. 5... Cooling load, 7... Filter 5... Heat exchanger.

Claims (2)

【特許請求の範囲】[Claims] (1)過冷却水から生成された氷を貯溜する蓄氷槽と、
冷房負荷からの戻り水を貯溜する冷水槽とを伝熱壁を介
して隣接配置し、前記蓄氷槽と冷水槽の下部近傍をフィ
ルターを介して連通させてなることを特徴とする氷蓄熱
システムにおける蓄氷放熱槽の構造。
(1) An ice storage tank that stores ice generated from supercooled water;
An ice heat storage system characterized in that a cold water tank for storing return water from a cooling load is placed adjacent to the cold water tank via a heat transfer wall, and the ice storage tank and the vicinity of the lower part of the cold water tank are communicated through a filter. Structure of an ice storage heat dissipation tank.
(2)前記蓄氷槽と冷水槽の下部は、各々下端方向に集
束するテーパー面に形成され、下端にドレン抜きが設け
られている特許請求の範囲第1項に記載の氷蓄熱システ
ムにおける蓄氷放熱槽の構造。
(2) The lower portions of the ice storage tank and the cold water tank are each formed into a tapered surface that converges toward the lower end, and a drain is provided at the lower end. Structure of ice heat sink.
JP24879488A 1988-10-01 1988-10-01 Structure of Ice Storage Radiator in Ice Storage System Expired - Lifetime JPH068694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24879488A JPH068694B2 (en) 1988-10-01 1988-10-01 Structure of Ice Storage Radiator in Ice Storage System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24879488A JPH068694B2 (en) 1988-10-01 1988-10-01 Structure of Ice Storage Radiator in Ice Storage System

Publications (2)

Publication Number Publication Date
JPH0297835A true JPH0297835A (en) 1990-04-10
JPH068694B2 JPH068694B2 (en) 1994-02-02

Family

ID=17183497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24879488A Expired - Lifetime JPH068694B2 (en) 1988-10-01 1988-10-01 Structure of Ice Storage Radiator in Ice Storage System

Country Status (1)

Country Link
JP (1) JPH068694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028648A (en) * 2018-08-27 2018-12-18 全球能源互联网欧洲研究院 Cooling back installation and its application method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028648A (en) * 2018-08-27 2018-12-18 全球能源互联网欧洲研究院 Cooling back installation and its application method
CN113048676A (en) * 2018-08-27 2021-06-29 全球能源互联网欧洲研究院 Circulating cooling device and using method thereof
CN113048676B (en) * 2018-08-27 2022-04-22 全球能源互联网欧洲研究院 Circulating cooling device and using method thereof

Also Published As

Publication number Publication date
JPH068694B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4294078A (en) Method and system for the compact storage of heat and coolness by phase change materials
US4408654A (en) Accumulator for storing heat or cold
US4928493A (en) Ice building, chilled water system and method
US4757690A (en) Water freezing enhancement for thermal storage brine tube
US1891713A (en) Air conditioning system
JPH0297835A (en) Construction of stored ice radiator in ice heat accumulation system
JP3136330B2 (en) Heating / cooling method
JP3290765B2 (en) Heat pipe type super cooling ice making equipment
JPH10238828A (en) Ice heat reserve system and ice heat reserve cooling method using the system
JPS58117937A (en) Coldness heat accumulator
JPH03110332A (en) Control structure for circulating water on secondary side for ice heat storage system
SU1331458A1 (en) Accumulator of natural cold for cooling milk at stock-raising farms
KR200166820Y1 (en) Storage device for ice storage system
JPH05256480A (en) Ice cold accumulator
CA1115264A (en) Method and system for the compact storage of heat and coolness by phase change materials
JPS6132288Y2 (en)
JPH08219503A (en) Ice heat storage device utilizing supercooling water
JP2580415Y2 (en) Ice storage tank thawing equipment
JPH07293949A (en) Cooler
JP3642238B2 (en) Ice heat storage device
JPH04174229A (en) Ice heat storage device
JPH05106876A (en) Ice heat accumulation device
JPH08285418A (en) Method for discharging supercooled water in supercooling ice making system
JP2001090997A (en) Ice storage device
JPH02118373A (en) Making of ice and heat accumulating device for ice