JP3132120B2 - Porous silicon and method for producing the same - Google Patents

Porous silicon and method for producing the same

Info

Publication number
JP3132120B2
JP3132120B2 JP04033095A JP3309592A JP3132120B2 JP 3132120 B2 JP3132120 B2 JP 3132120B2 JP 04033095 A JP04033095 A JP 04033095A JP 3309592 A JP3309592 A JP 3309592A JP 3132120 B2 JP3132120 B2 JP 3132120B2
Authority
JP
Japan
Prior art keywords
silicon
porous silicon
probe
producing
conductive probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04033095A
Other languages
Japanese (ja)
Other versions
JPH05234983A (en
Inventor
隆夫 任田
道生 岡嶋
修 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04033095A priority Critical patent/JP3132120B2/en
Publication of JPH05234983A publication Critical patent/JPH05234983A/en
Application granted granted Critical
Publication of JP3132120B2 publication Critical patent/JP3132120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は多孔質シリコンに関し、
とりわけシリコン基板上の微小な領域を制御性よく多孔
質化できる製造方法に関する。
This invention relates to porous silicon.
In particular, the present invention relates to a manufacturing method capable of making a minute region on a silicon substrate porous with good controllability.

【0002】[0002]

【従来の技術】多孔質シリコンは、単結晶シリコンでは
不可能な可視光の領域でフォトルミネッセンス、あるい
はエレクトロルミネッセンスを示すため、発光素子や光
IC用素子として注目されている。従来この多孔質シリ
コンは、単結晶シリコン基板を陽極としてフッ化水素酸
中で電気分解し、大きさが数〜数十nm程度の無数の微
小孔を形成することにより作成されている。(応用物
理、第57巻、第11号、1710〜1720頁、1988年)また
多孔質化しない場所を耐酸性のワックスや窒化珪素薄膜
などで被覆することにより、シリコン基板面内の特定の
領域の多孔質化が行われている。
2. Description of the Related Art Porous silicon has attracted attention as a light-emitting element or an optical IC element because it exhibits photoluminescence or electroluminescence in a visible light region which is impossible with single-crystal silicon. Conventionally, this porous silicon has been produced by electrolysis in hydrofluoric acid using a single crystal silicon substrate as an anode to form innumerable micropores having a size of several to several tens nm. (Applied Physics, Vol. 57, No. 11, pp. 1710-1720, 1988) Also, by coating a non-porous area with an acid-resistant wax or a silicon nitride thin film, a specific area in the silicon substrate surface is obtained. Has been made porous.

【0003】[0003]

【発明が解決しようとする課題】多孔質化しない場所を
耐酸性のワックスなどで被覆することにより、シリコン
基板面内の多孔質化する場所の特定を行う場合、高精度
にその位置を規定したり、領域を限定することが困難で
ある。また窒化珪素薄膜をシリコン基板上に形成した
後、フォトリソプロセスにより窒化珪素薄膜を加工しエ
ッチング用レジストとして用いることにより、ICなど
が形成されたシリコン基板上の特定の場所に多孔質シリ
コンが作成されているが、プロセスが複雑になるなどの
課題がある。
When the place to be made porous is coated with an acid-resistant wax or the like to specify the place to be made porous in the silicon substrate surface, the position is specified with high precision. Or it is difficult to limit the area. In addition, after a silicon nitride thin film is formed on a silicon substrate, the silicon nitride thin film is processed by a photolithography process and used as an etching resist, thereby forming porous silicon at a specific location on the silicon substrate on which an IC or the like is formed. However, there are problems such as complicated processes.

【0004】また従来の製造方法では、微細孔の形状や
数を高精度に制御できないため、多孔質シリコンの特性
制御が困難であるという課題がある。
Further, in the conventional manufacturing method, since the shape and number of the fine holes cannot be controlled with high precision, there is a problem that it is difficult to control the characteristics of the porous silicon.

【0005】本発明は、制御性の優れた微細孔が形成さ
れた多孔質シリコンを提供することを目的とする。
[0005] An object of the present invention is to provide porous silicon in which fine pores having excellent controllability are formed.

【0006】[0006]

【課題を解決するための手段】結晶質シリコンを陽極と
し、先端が鋭く尖った導電性探針を陰極として前記シリ
コン表面に接近させ、フッ化水素酸を含む溶液中で電気
分解することにより、所望の微小な領域に微細孔を形成
する。あるいは結晶質シリコンを陽極とし、先端が鋭く
尖った導電性探針を陰極として、フッ化水素酸を含む溶
液中で前記シリコン表面と探針との距離を約1nmに保
持した状態で電圧を印加し、トンネル電流により電気分
解を開始する。
Means for Solving the Problems A crystalline silicon is used as an anode, and a sharply pointed conductive probe is used as a cathode to approach the silicon surface and is electrolyzed in a solution containing hydrofluoric acid. A fine hole is formed in a desired minute area. Alternatively, a voltage is applied while maintaining the distance between the silicon surface and the probe at about 1 nm in a solution containing hydrofluoric acid, using crystalline silicon as the anode and a sharply pointed conductive probe as the cathode. Then, electrolysis is started by the tunnel current.

【0007】[0007]

【作用】上記の製造方法においては、陰極となる探針先
端がシャープで、かつ陰極−シリコン基板表面間距離が
小さいため、シリコン基板表面の微小な領域にのみ電界
を集中させることが可能となり、エッチング用レジスト
なしで微小領域のみを多孔質化することができる。また
陰極−シリコン基板表面間距離を約1nm程度とし、数
V以下の電圧を印加しトンネル電流を生じさせると、ト
ンネル電流の大きさは陰極−シリコン基板表面間距離に
大きく依存するため、nmスケールの極めて微小な領域
にのみ電流を集中させることが可能となり、極めて微小
な領域のみを多孔質化することができる。
In the above manufacturing method, since the tip of the probe serving as the cathode is sharp and the distance between the cathode and the silicon substrate surface is small, it is possible to concentrate the electric field only in a minute area on the silicon substrate surface. Only a minute region can be made porous without using an etching resist. When the distance between the cathode and the silicon substrate surface is about 1 nm and a voltage of several volts or less is applied to generate a tunnel current, the magnitude of the tunnel current greatly depends on the distance between the cathode and the silicon substrate surface. It is possible to concentrate the current only in the extremely small area, and it is possible to make only the extremely small area porous.

【0008】[0008]

【実施例】(実施例1)図1は本実施例で用いた多孔質
シリコンの製造装置を示す。テフロン容器1の中央部
に、陰極となる白金探針2、陽極となるPタイプシリコ
ン基板3を、直流定電流電源4および電流計5を介して
電気的に接続された状態で配置した。電解液6として4
5%フッ化水素酸とエチルアルコールの1:1溶液を用
いた。機械式位置調整装置12に取り付けられた白金探
針2は、電解研磨により先端曲率半径が100nm以下
になるように加工され、図2に示すように側面を耐酸性
絶縁樹脂6で被覆されている。白金探針2の先端とSi
基板3との距離は、10μmとなるように顕微鏡を見な
がら機械式位置調整装置12を用いて調整した。この状
態で、白金探針2を陰極として直流定電流電源4によ
り、0.2μAの電流を5分間流すことにより直径約2
0μmの領域に厚さ40μmの多孔質シリコンを作成す
ることができた。
(Embodiment 1) FIG. 1 shows an apparatus for producing porous silicon used in this embodiment. A platinum probe 2 serving as a cathode and a P-type silicon substrate 3 serving as an anode were arranged in the center of the Teflon container 1 while being electrically connected via a DC constant current power supply 4 and an ammeter 5. 4 as electrolyte 6
A 1: 1 solution of 5% hydrofluoric acid and ethyl alcohol was used. The platinum probe 2 attached to the mechanical position adjusting device 12 is processed by electrolytic polishing so that the tip radius of curvature becomes 100 nm or less, and the side surface is coated with the acid-resistant insulating resin 6 as shown in FIG. . The tip of platinum probe 2 and Si
The distance from the substrate 3 was adjusted using the mechanical position adjustment device 12 while viewing the microscope so that the distance was 10 μm. In this state, a current of 0.2 μA is passed for 5 minutes by the DC constant current power supply 4 using the platinum probe 2 as a cathode, and the diameter is about 2 μm.
Porous silicon having a thickness of 40 μm could be formed in a region of 0 μm.

【0009】Nタイプシリコン基板を用いる場合は、5
00Wのタングステンランプの光を、約15cmの距離
から照射しながら電流を流すことにより多孔質化するこ
とができた。陰極として白金を用いたが、TiC、Si
C、半導体ダイヤモンドなど、フッ化水素酸に侵されな
い材料であればすべて用いることができた。電解液とし
て45%フッ化水素酸とエチルアルコールの1:1溶液
を用いたが、フッ化水素濃度が5%以上であれば多孔質
シリコンを再現性よく作成できた。5%以下では作成に
時間がかかり、多孔質化した領域とされなかった領域と
の境界が明確でないという課題があった。探針の先端曲
率半径は探針とシリコン表面との距離より小さいことが
望ましく、探針とシリコン表面との距離より大きい場合
は多孔質化する領域の制御性が悪くなった。探針2の先
端とSi基板3との距離が100μmより大きい場合
は、多孔質化した領域とされなかった領域との境界が明
確でないという課題があった。
When an N type silicon substrate is used, 5
By applying a current while irradiating the light of a tungsten lamp of 00 W from a distance of about 15 cm, it was possible to make the film porous. Although platinum was used as the cathode, TiC, Si
Any material that was not affected by hydrofluoric acid, such as C and semiconductor diamond, could be used. Although a 1: 1 solution of 45% hydrofluoric acid and ethyl alcohol was used as the electrolyte, porous silicon could be produced with good reproducibility if the hydrogen fluoride concentration was 5% or more. If it is less than 5%, it takes a long time to prepare, and there is a problem that the boundary between the porous region and the non-porous region is not clear. It is desirable that the radius of curvature of the tip of the probe be smaller than the distance between the probe and the silicon surface. If the radius of curvature is larger than the distance between the probe and the silicon surface, the controllability of the region to be porous becomes poor. When the distance between the tip of the probe 2 and the Si substrate 3 is larger than 100 μm, there is a problem that the boundary between the porous region and the non-porous region is not clear.

【0010】(実施例2)図3は本実施例で用いた多孔
質シリコンの製造装置を示す。テフロン容器1の中央部
に、陰極となる白金探針2、陽極となるPタイプシリコ
ン基板3を、直流電源7および電流計8を介して電気的
に接続された状態で配置した。白金探針2は、電解研磨
により先端曲率半径が50nm以下になるように加工
し、図2に示すように側面を耐酸性絶縁樹脂6で被覆し
た。電流計8からの出力信号は、フィードバック制御回
路10を通して3次元微動装置9に伝えられ、電流が一
定になるように白金探針2とシリコン基板3との距離を
制御することができる。3次元微動装置9は圧電体を直
行する3方向に組み合わせたものであり、これを用いて
白金探針2は、コンピュータ11の指示によりシリコン
基板表面内の任意の場所へ移動させることもできる。電
解液6として20%フッ化水素酸とエチルアルコールの
1:1溶液を用いた。
(Embodiment 2) FIG. 3 shows an apparatus for producing porous silicon used in this embodiment. A platinum probe 2 serving as a cathode and a P-type silicon substrate 3 serving as an anode were arranged at the center of the Teflon container 1 in a state where they were electrically connected via a DC power supply 7 and an ammeter 8. The platinum probe 2 was processed by electrolytic polishing so that the tip radius of curvature became 50 nm or less, and the side surface was covered with an acid-resistant insulating resin 6 as shown in FIG. The output signal from the ammeter 8 is transmitted to the three-dimensional fine movement device 9 through the feedback control circuit 10, and the distance between the platinum probe 2 and the silicon substrate 3 can be controlled so that the current becomes constant. The three-dimensional fine movement device 9 is a combination of a piezoelectric body in three orthogonal directions. Using this, the platinum probe 2 can be moved to an arbitrary position on the surface of the silicon substrate by an instruction from the computer 11. As the electrolytic solution 6, a 1: 1 solution of 20% hydrofluoric acid and ethyl alcohol was used.

【0011】以下にこの装置を用いた多孔質シリコンの
製造方法を説明する。まず白金探針2の先端とSi基板
3との距離が約10μmとなるように、顕微鏡を見なが
ら機械式位置調整装置12を用いて探針2の位置を調整
した。直流電源7により白金探針2が陰極、シリコン基
板3が陽極となるように1Vの電圧を印加した。このと
きの電流値は約50pAであった。3次元微動装置9と
機械式位置調整装置12を用いて、電流値を監視しなが
ら探針2をシリコン基板3に徐々に接近させ、電流値が
1nAになったときに接近を停止した。この時、電流は
距離が小さくなるとともに指数関数的に急激に増大する
ことから、電流のほとんどはトンネル電流であり、探針
2とシリコン基板3との距離は約1nmと考えられる。
この状態で探針2を固定し、電圧を5分間保持すること
により探針2の直下部に直径50nm、深さ5μmの領
域を多孔質化することができた。
Hereinafter, a method for producing porous silicon using this apparatus will be described. First, the position of the probe 2 was adjusted using the mechanical position adjuster 12 while looking at the microscope so that the distance between the tip of the platinum probe 2 and the Si substrate 3 was about 10 μm. A voltage of 1 V was applied by a DC power supply 7 so that the platinum probe 2 became a cathode and the silicon substrate 3 became an anode. The current value at this time was about 50 pA. Using the three-dimensional fine movement device 9 and the mechanical position adjustment device 12, the probe 2 was gradually approached to the silicon substrate 3 while monitoring the current value, and the approach was stopped when the current value reached 1 nA. At this time, since the current decreases exponentially as the distance decreases, most of the current is a tunnel current, and the distance between the probe 2 and the silicon substrate 3 is considered to be about 1 nm.
In this state, the probe 2 was fixed and the voltage was maintained for 5 minutes, whereby a region having a diameter of 50 nm and a depth of 5 μm could be made porous immediately below the probe 2.

【0012】トンネル電流を用いて電気分解を行う場合
は探針の先端曲率半径は0.1μm以下が望ましく、よ
り大きい場合はトンネル電流が不安定になったり、多孔
質化された領域が大きくなることもあり、制御性よく多
孔質シリコンを作成できなかった。また3次元微動装置
9を用いて探針2をシリコン基板3から離した後、他の
場所へ移動させ同様の操作を繰り返すことにより、シリ
コン基板面内の任意の場所に多孔質シリコンを作成する
ことができた。さらに探針2とシリコン基板3との距離
を約1nmに接近させた後、探針2を基板面内方向に移
動させながら電気分解を行うことにより、シリコン基板
3上に多孔質シリコンのパターンを作成することができ
た。
When the electrolysis is carried out by using a tunnel current, the radius of curvature of the tip of the probe is desirably 0.1 μm or less, and when it is larger, the tunnel current becomes unstable or the porous region becomes large. In some cases, porous silicon could not be produced with good controllability. Further, after the probe 2 is separated from the silicon substrate 3 by using the three-dimensional fine movement device 9, it is moved to another place and the same operation is repeated to form porous silicon at an arbitrary place in the silicon substrate surface. I was able to. Further, after the distance between the probe 2 and the silicon substrate 3 is approached to about 1 nm, electrolysis is performed while moving the probe 2 in the in-plane direction of the probe, thereby forming a pattern of porous silicon on the silicon substrate 3. Could be created.

【0013】[0013]

【発明の効果】本発明によれば、フォトリソプロセスな
どによりエッチング用レジストパターンをシリコン基板
上に形成することなく、シリコン基板上の任意の場所
を、任意の形状に多孔質化することができ、シリコン基
板上に形成されたICと多孔質シリコンを結合させたデ
バイスなどを容易に製造することが可能となる。
According to the present invention, an arbitrary location on a silicon substrate can be made porous in an arbitrary shape without forming an etching resist pattern on the silicon substrate by a photolithography process or the like. It is possible to easily manufacture a device or the like in which an IC formed on a silicon substrate is bonded to porous silicon.

【0014】また従来の製造方法では作成できなかった
極めて微小な領域に、制御性よく多孔質シリコンを作成
することができ、多孔質シリコンの光学的、電気的特性
を高精度に制御することができる。
In addition, porous silicon can be produced with good controllability in an extremely small area which cannot be produced by the conventional production method, and the optical and electrical characteristics of the porous silicon can be controlled with high precision. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における多孔質シリコンの製
造プロセスで用いた電気分解装置を示す断面図
FIG. 1 is a cross-sectional view showing an electrolyzer used in a process for producing porous silicon according to one embodiment of the present invention.

【図2】本発明の一実施例における多孔質シリコンの製
造プロセスで用いた白金探針を示す断面図
FIG. 2 is a cross-sectional view showing a platinum probe used in a porous silicon manufacturing process according to one embodiment of the present invention.

【図3】本発明の他の実施例における多孔質シリコンの
製造プロセスで用いた電気分解装置を示す断面図
FIG. 3 is a cross-sectional view showing an electrolyzer used in a process for producing porous silicon according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 テフロン容器 2 白金探針 3 シリコン基板 4、7 直流電源 5、8 電流計 6 絶縁樹脂 9 3次元微動装置 10 フィードバック制御回路 11 コンピュータ 12 機械式位置調整装置 REFERENCE SIGNS LIST 1 Teflon container 2 Platinum probe 3 Silicon substrate 4, 7 DC power supply 5, 8 Ammeter 6 Insulating resin 9 3D fine movement device 10 Feedback control circuit 11 Computer 12 Mechanical position adjustment device

フロントページの続き (56)参考文献 特開 昭63−310122(JP,A) 特開 平2−213500(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3063 C25F 3/12,3/30 Continuation of the front page (56) References JP-A-63-310122 (JP, A) JP-A-2-213500 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21 / 3063 C25F 3 / 12,3 / 30

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶質シリコンを陽極とし、先端が鋭く尖
った導電性探針を陰極として前記シリコン表面に、その
距離が100μm以下となるように接近させ、フッ化水
素酸を含む溶液中で電気分解することにより、所望の微
小な領域に細孔を形成することを特徴とする多孔質シリ
コンの製造方法。
1. A crystalline silicon as an anode, on the silicon surface a conductive probe tip sharply pointed as a cathode, the
A method for producing porous silicon, wherein pores are formed in a desired minute region by bringing the electrodes close to each other so as to have a distance of 100 μm or less and performing electrolysis in a solution containing hydrofluoric acid.
【請求項2】導電性探針の先端曲率半径が、導電性探針
とシリコン表面との距離より小さいことを特徴とする請
求項1に記載の多孔質シリコンの製造方法。
2. The method for producing porous silicon according to claim 1, wherein the radius of curvature of the tip of the conductive probe is smaller than the distance between the conductive probe and the silicon surface.
【請求項3】結晶質シリコンを陽極とし、先端が鋭く尖
った導電性探針を陰極として、フッ化水素酸を含む溶液
中で前記シリコン表面と探針との距離を約1nmに保持し
た状態で電圧を印加し、トンネル電流により電気分解を
開始することを特徴とする多孔質シリコンの製造方法。
3. A state in which the distance between the silicon surface and the probe is maintained at about 1 nm in a solution containing hydrofluoric acid using crystalline silicon as an anode and a sharply pointed conductive probe as a cathode. A method for producing porous silicon, characterized in that a voltage is applied in (1) and electrolysis is started by a tunnel current.
【請求項4】導電性探針の先端曲率半径が0.1μm以
下であることを特徴とする請求項に記載の多孔質シリ
コンの製造方法。
4. The method for producing porous silicon according to claim 3 , wherein the radius of curvature of the tip of the conductive probe is 0.1 μm or less.
【請求項5】導電性探針の側面が絶縁性材料で被覆され
ていることを特徴とする請求項1またはに記載の多孔
質シリコンの製造方法。
5. The process for producing a porous silicon according to claim 1 or 3 sides of the conductive probe is characterized in that it is coated with an insulating material.
【請求項6】可視あるいは紫外光をシリコン表面に照射
しながら電気分解することを特徴とする請求項1または
に記載の多孔質シリコンの製造方法。
6. The electrolysis while irradiating visible or ultraviolet light to the silicon surface.
4. The method for producing porous silicon according to item 3 .
【請求項7】導電性探針が白金を主成分とする金属から
なることを特徴とする請求項1またはに記載の多孔質
シリコンの製造方法。
7. A method for producing a porous silicon according to claim 1 or 3 conductive probe is characterized in that it consists of metal mainly composed of platinum.
JP04033095A 1992-02-20 1992-02-20 Porous silicon and method for producing the same Expired - Fee Related JP3132120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04033095A JP3132120B2 (en) 1992-02-20 1992-02-20 Porous silicon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04033095A JP3132120B2 (en) 1992-02-20 1992-02-20 Porous silicon and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05234983A JPH05234983A (en) 1993-09-10
JP3132120B2 true JP3132120B2 (en) 2001-02-05

Family

ID=12377109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04033095A Expired - Fee Related JP3132120B2 (en) 1992-02-20 1992-02-20 Porous silicon and method for producing the same

Country Status (1)

Country Link
JP (1) JP3132120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19837126B4 (en) * 1998-08-17 2004-02-05 Forschungszentrum Jülich GmbH Method and device for electrical or electrochemical manipulation of samples
WO2008140058A1 (en) * 2007-05-09 2008-11-20 Quantum 14 Kk Method for processing silicon base material, article processed by the method, and processing apparatus

Also Published As

Publication number Publication date
JPH05234983A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US7267859B1 (en) Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
US5202290A (en) Process for manufacture of quantum dot and quantum wire semiconductors
KR960000315B1 (en) Method of producing metallic microscale cold cathodes
JP2006515706A (en) Fabrication method and activation treatment of nanostructured composite field emission cathode
US20060163199A1 (en) Dispersion of nanowires of semiconductor material
JP3132120B2 (en) Porous silicon and method for producing the same
Vorobyova et al. SEM investigation of pillared microstructures formed by electrochemical anodization
WO2000042641A1 (en) Method of producing silicon device
US5785838A (en) Method for producing an oxide film
US20160035829A1 (en) Ultra-long silicon nanostructures, and methods of forming and transferring the same
JP4641331B2 (en) Nanostructure and manufacturing method thereof
JPH0383339A (en) Formation of crystal silicon surface texture
Edwards et al. A comparison of AC and DC electrochemical etching techniques for the fabrication of tungsten whiskers
JPH1010154A (en) Manufacture for probe unit
JPH05507580A (en) Method of manufacturing field emission cathode structure
WO2005015596B1 (en) Method for the localized growth of nanothreads or nanotubes
JP2004034270A (en) Method for manufacturing semiconductor member formed with recessed structure and semiconductor member formed with recessed structure
JP3098022B2 (en) Local deposition film formation method
KR20050079339A (en) Manufacturing method of field emitter
JP4110341B2 (en) How to create a structure
JPH0817330A (en) Field emission type electron source and its manufacture
WO2003077298A1 (en) Method of manufacturing nanowires and an electronic device
JPH05129200A (en) Manufacture of semiconductor film
RU2666784C1 (en) Matrix auto emission cathode and method for manufacture thereof
JPH05299014A (en) Manufacture of probe for probe scanning type microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees