JPH05299014A - Manufacture of probe for probe scanning type microscope - Google Patents
Manufacture of probe for probe scanning type microscopeInfo
- Publication number
- JPH05299014A JPH05299014A JP9821592A JP9821592A JPH05299014A JP H05299014 A JPH05299014 A JP H05299014A JP 9821592 A JP9821592 A JP 9821592A JP 9821592 A JP9821592 A JP 9821592A JP H05299014 A JPH05299014 A JP H05299014A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- silicon
- manufacturing
- cathode
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、探針走査型顕微鏡用探
針の製造方法に関し、とりわけ0.1nm以下の極めて
小さな凹凸や、急峻な凹凸形状等を安定に精度良く測定
するための探針走査型顕微鏡用探針の製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a probe for a scanning probe microscope, and more particularly to a probe for stably and accurately measuring extremely small irregularities of 0.1 nm or less, and steep irregularities. The present invention relates to a method for manufacturing a probe for a needle scanning microscope.
【0002】[0002]
【従来の技術】近年、固体表面を原子スケールで観察で
きる装置として原子間力顕微鏡(以後AFMと呼ぶ)や
走査トンネル顕微鏡(以後STMと呼ぶ)が開発されて
いる。これらの顕微鏡は探針走査型顕微鏡(以後SPM
と呼ぶ)と呼ばれ、先端の鋭く尖った探針で試料表面を
走査することにより、局所的な各種の物理量、たとえば
原子間力や電気伝導度を検出し画像化するものである。
したがって、SPMの分解能は探針の先端曲率半径や先
端角に依存し、これらをより小さくするための研究が活
発に行われている。AFMでは微小な力を検出するた
め、一端に探針を有する長さ100μmから200μm
程度のカンチレバーが必要である(図2(b)参照)。
従来この探針としては、シリコン結晶表面の1部を異方
性エッチングすることにより作成したエッチピットを鋳
型として用いることにより製造されている。STMでは
白金やタングステン線を電解研磨することにより、先端
の尖った探針が作成されている。2. Description of the Related Art In recent years, an atomic force microscope (hereinafter referred to as AFM) and a scanning tunneling microscope (hereinafter referred to as STM) have been developed as an apparatus for observing a solid surface on an atomic scale. These microscopes are probe scanning microscopes (hereinafter SPM
It is called, and the various kinds of local physical quantities such as atomic force and electric conductivity are detected and imaged by scanning the sample surface with a probe having a sharp tip.
Therefore, the resolution of SPM depends on the radius of curvature of the tip and the tip angle of the probe, and researches for making them smaller are being actively conducted. The AFM has a probe at one end to detect minute force, and the length is 100 μm to 200 μm.
A certain degree of cantilever is required (see FIG. 2 (b)).
Conventionally, this probe is manufactured by using an etch pit created by anisotropically etching a part of the silicon crystal surface as a template. In STM, a probe with a sharp tip is created by electrolytically polishing platinum or tungsten wire.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
探針を用いたAFMやSTMでは極めて平滑な表面に配
列した個々の原子を観察することはできるが、数nmか
ら数十nmスケールの鋭い起伏がある表面形状の測定で
は、用いられる探針の先端角が大きいため、先端が微細
な凹部の底面まで到達できず、高精度に測定することが
できないという課題がある。特に絶縁物も測定でき応用
範囲が広いAFMにおいては、従来探針の先端角は30
〜70度と大きいため、先端曲率半径や先端角の小さな
探針付きカンチレバーの実現が強く要望されている。However, although it is possible to observe individual atoms arranged on an extremely smooth surface with conventional AFMs and STMs using a probe, sharp undulations on the scale of several nm to several tens of nm are possible. In the measurement of a certain surface shape, since the tip angle of the probe used is large, the tip cannot reach the bottom surface of the minute concave portion, and there is a problem that the measurement cannot be performed with high accuracy. Especially in the AFM, which can measure insulators and has a wide range of applications, the tip angle of the conventional probe is 30.
Since it is as large as ~ 70 degrees, there is a strong demand for the realization of a cantilever with a probe having a small tip radius of curvature and a small tip angle.
【0004】本発明は、従来のこのような課題を考慮
し、先端曲率半径や先端角の小さな探針走査型顕微鏡用
探針の製造方法を提供することを目的とするものであ
る。The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a probe for a scanning probe microscope having a small tip curvature radius and tip angle.
【0005】[0005]
【課題を解決するための手段】請求項1の本発明は、シ
リコンを陽極とし、導電性電極を陰極として、電気分解
することによりシリコンに微細孔を形成した後、シリコ
ンを鋳型として用いて、少なくとも微細孔を含むシリコ
ン上にシリコン以外の物質を形成し、その後、微細孔が
形成されたシリコンをエッチング除去することにより、
形成された物質の突起物を作成する探針走査型顕微鏡用
探針の製造方法である。According to the present invention of claim 1, silicon is used as an anode and a conductive electrode is used as a cathode to form fine pores in silicon by electrolysis, and then silicon is used as a template. By forming a substance other than silicon on silicon containing at least fine pores, and then etching away the silicon in which the fine pores are formed,
A method for manufacturing a probe for a scanning microscope, which produces a protrusion of a formed substance.
【0006】請求項3の本発明は、陰極は、先端が鋭く
尖った形状に形成され、その陰極をシリコン表面に接近
させて、電気分解を行う請求項1記載の探針走査型顕微
鏡用探針の製造方法である。According to the present invention of claim 3, the cathode is formed in a shape with a sharp tip, and the cathode is brought close to the silicon surface to perform electrolysis. It is a method of manufacturing a needle.
【0007】[0007]
【作用】本発明は、シリコンを陽極とする電気分解によ
り、シリコン表面に直径約数〜数十nm、深さ数μm以
上の微細孔を形成し、この微細孔を鋳型として用いるこ
とにより、先端曲率半径や先端角の極めて小さな探針又
は探針付きカンチレバーを作成する。According to the present invention, fine holes having a diameter of several to several tens nm and a depth of several μm or more are formed on the surface of silicon by electrolysis using silicon as an anode. Create a probe or a cantilever with a very small radius of curvature and tip angle.
【0008】[0008]
【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.
【0009】第1実施例 図1は、本発明にかかる第1実施例の探針走査型顕微鏡
用探針の製造方法を説明するための鋳型製造装置の概略
図である。すなわち、鋳型製造装置には電気分解を行う
ためにテフロン容器1が設けられ、そのテフロン容器1
の中央上部に、例えば白金電極でできた陰極2、中央下
部に陽極となるPタイプのシリコン基板3が配置され、
テフロン容器1内部に電解液6が補給されている。シリ
コン基板3には直流電源4のプラス極が接続され、陰極
2には直流電源4のマイナス極が電流計5を介して電気
的に接続されている。First Embodiment FIG. 1 is a schematic view of a mold manufacturing apparatus for explaining a method for manufacturing a probe for a probe scanning microscope according to a first embodiment of the present invention. That is, the mold manufacturing apparatus is provided with the Teflon container 1 for performing electrolysis.
A cathode 2 made of, for example, a platinum electrode is arranged in the upper center of the center of the
The electrolyte 6 is replenished inside the Teflon container 1. The positive electrode of the DC power supply 4 is connected to the silicon substrate 3, and the negative electrode of the DC power supply 4 is electrically connected to the cathode 2 via the ammeter 5.
【0010】以上のように構成された鋳型製造装置によ
りシリコン基板3表面に微細孔を形成する。すなわち、
電解液6として45%フッ化水素酸とエチルアルコール
の1:1溶液を用いた。シリコン基板3の表面は、微細
孔を作成する5μm角の領域を除いて耐酸性絶縁樹脂1
7で被覆されている。この状態で、直流電源4により電
流を25nAに保持したまま3分間電流を流す。その結
果5μm角の領域に数個〜数十個の微細孔を作成するこ
とができた。Micropores are formed on the surface of the silicon substrate 3 by the mold manufacturing apparatus configured as described above. That is,
As the electrolytic solution 6, a 1: 1 solution of 45% hydrofluoric acid and ethyl alcohol was used. The surface of the silicon substrate 3 is made of acid-resistant insulating resin 1 except for the area of 5 μm square where fine holes are created.
It is covered with 7. In this state, the DC power supply 4 supplies a current for 3 minutes while keeping the current at 25 nA. As a result, several to several tens of micropores could be formed in the area of 5 μm square.
【0011】次に、このようにして微細孔が生成された
シリコン基板3を鋳型に用いて、探針を作成する。ま
ず、シリコン基板3の耐酸性絶縁樹脂17を除去し水洗
した後、通常の減圧CVD法により400℃以下の温度
で、厚さ1μmのSi3N4薄膜を堆積させた。その後、
図2(a)に示すように、フォトリソプロセスを用いて
Si3N4薄膜7を加工し、カンチレバー9部を作成し
た。さらにカンチレバー保持部としてガラス基板8をS
i3N4薄膜7上に接着した(図2(b)参照)後、シリ
コン基板3をエッチングにより除去した。カンチレバー
9の先端に形成された複数本の探針の内、1本を残すよ
うに他の探針を機械的に除去することにより、図2
(b)に示すような探針10付きカンチレバー9を完成
した。Next, a probe is formed by using the silicon substrate 3 in which the fine holes are formed as described above as a mold. First, the acid resistant insulating resin 17 of the silicon substrate 3 was removed and washed with water, and then a Si 3 N 4 thin film with a thickness of 1 μm was deposited at a temperature of 400 ° C. or lower by a normal low pressure CVD method. afterwards,
As shown in FIG. 2A, the Si 3 N 4 thin film 7 was processed by using a photolithography process, and 9 parts of a cantilever was prepared. Further, the glass substrate 8 is used as a cantilever holding portion for S.
After adhering on the i 3 N 4 thin film 7 (see FIG. 2B), the silicon substrate 3 was removed by etching. By mechanically removing the other probe so as to leave one of the plurality of probes formed at the tip of the cantilever 9 as shown in FIG.
A cantilever 9 with a probe 10 as shown in (b) was completed.
【0012】第2実施例 図3は、第2実施例の結晶質シリコンに微細孔を作成す
るための鋳型製造装置を示す。テフロン容器1の中央部
に陰極となる針状の白金電極11、中央下部に陽極とな
るPタイプのシリコン基板3を配置し、白金電極11及
びシリコン基板3に、直流電源4を電流計5を介して電
気的に接続した。又、電解液6として45%フッ化水素
酸とエチルアルコールの1:1溶液を用いた。白金電極
11は、位置を調整できるように機械式位置調整装置1
2に取り付けられている。又白金電極11は電解研磨に
より先端曲率半径が100nm以下になるように加工さ
れ、図4に示すように先端部を除いた側面を耐酸性絶縁
樹脂13により被覆されている。白金電極11の先端と
シリコン基板3との距離は、10μmとなるように顕微
鏡を見ながら機械式位置調整装置12を用いて調整し
た。この状態で、白金電極11を陰極として直流電源4
により、0.1μAの電流を2分間流すことにより直径
約20μmの領域に数十個の、深さ10μmの微細孔を
作成することができた。この微細孔を鋳型として用い
て、実施例1と同様にAFM用探針付きカンチレバー9
を作成することができた(図2(b)参照)。ここで白
金電極11の先端曲率半径は、白金電極11とシリコン
表面との距離より小さいことが望ましい。Second Embodiment FIG. 3 shows a mold manufacturing apparatus for forming fine holes in the crystalline silicon of the second embodiment. A needle-shaped platinum electrode 11 serving as a cathode is arranged in the center of the Teflon container 1, and a P-type silicon substrate 3 serving as an anode is arranged in the lower center of the Teflon container 1. A DC power source 4 and an ammeter 5 are connected to the platinum electrode 11 and the silicon substrate 3. Electrically connected through. Further, as the electrolytic solution 6, a 1: 1 solution of 45% hydrofluoric acid and ethyl alcohol was used. The platinum electrode 11 is a mechanical position adjusting device 1 so that the position can be adjusted.
It is attached to 2. The platinum electrode 11 is processed by electrolytic polishing so that the radius of curvature of the tip becomes 100 nm or less, and as shown in FIG. 4, the side surface excluding the tip is covered with an acid resistant insulating resin 13. The distance between the tip of the platinum electrode 11 and the silicon substrate 3 was adjusted to 10 μm using the mechanical position adjusting device 12 while observing the microscope. In this state, the platinum electrode 11 is used as a cathode and the DC power source 4 is used.
As a result, by applying a current of 0.1 μA for 2 minutes, several tens of micropores with a depth of 10 μm could be formed in a region of about 20 μm in diameter. Using these fine holes as a mold, the cantilever 9 with a probe for AFM is used as in the first embodiment.
Could be created (see FIG. 2 (b)). Here, the radius of curvature of the tip of the platinum electrode 11 is preferably smaller than the distance between the platinum electrode 11 and the silicon surface.
【0013】以上の方法において、更に、Nタイプシリ
コン基板や高抵抗シリコン基板を用いる場合は、500
Wのタングステンランプの光を、約15cmの距離から
照射しながら電流を流すことにより多孔質化することが
できた。In the above method, when an N type silicon substrate or a high resistance silicon substrate is used, 500
It was possible to make the material porous by applying an electric current while irradiating it with light from a tungsten lamp of W from a distance of about 15 cm.
【0014】なお、上記実施例では、導電性電極の陰極
として白金を用いたが、これに限らず、TiC、Si
C、半導体ダイヤモンドなど、フッ化水素酸に侵されな
い材料であれば他の導電性電極であってもよい。Although platinum is used as the cathode of the conductive electrode in the above embodiment, the present invention is not limited to this.
Other conductive electrodes may be used as long as they are materials that are not affected by hydrofluoric acid, such as C and semiconductor diamond.
【0015】また、上記実施例では、電解液6として4
5%フッ化水素酸とエチルアルコールの1:1溶液を用
いたが、フッ化水素濃度が5%以上であればよい。多孔
質シリコンを再現性よく作成できれば、他の電解液を用
いてもよい。In the above embodiment, the electrolytic solution 4 is 4
A 1: 1 solution of 5% hydrofluoric acid and ethyl alcohol was used, but the hydrogen fluoride concentration may be 5% or more. Other electrolytic solutions may be used as long as porous silicon can be produced with good reproducibility.
【0016】第3実施例 図5は、第3実施例の結晶質シリコンに微細孔を作成す
るための鋳型製造装置を示す。テフロン容器1の中央部
に陰極となる白金電極11、その白金電極11の下側に
陽極となるPタイプのシリコン基板3を配置し、白金電
極11及びシリコン基板3に、直流定電流電源4を電流
計5を介して電気的に接続した。更に、電流計5の出力
にフィードバック制御回路18を接続し、そのフィード
バック制御回路18に機械式位置調整装置12に設けら
れた3次元微動装置14及びコンピュータ15を接続し
た。上記のシリコン基板3には、白金電極11側の表面
に直径200μm、深さ3mmの円柱状穴16が機械的
および化学的に加工されたものを用いた。又白金電極1
1は電解研磨により先端曲率半径が50nm以下になる
ように加工され、図4に示すように先端部を除いた側面
を耐酸性絶縁樹脂13により被覆されている。ここで電
流計5からの出力信号は、フィードバック制御回路18
を通して3次元微動装置14に伝えられ、電流が一定に
なるように白金電極11とシリコン基板3との距離を制
御することができる。3次元微動装置14は圧電体を直
交する3方向に組み合わせたものであり、これを用いて
白金電極11は、コンピュータ15の指示によりシリコ
ン基板表面3内の任意の場所へ移動させることができ
る。電解液6として20%フッ化水素酸とエチルアルコ
ールの1:1溶液を用いた。Third Embodiment FIG. 5 shows a mold manufacturing apparatus for forming fine holes in the crystalline silicon of the third embodiment. A platinum electrode 11 serving as a cathode is arranged in the center of the Teflon container 1, and a P-type silicon substrate 3 serving as an anode is arranged below the platinum electrode 11, and a DC constant current power source 4 is provided on the platinum electrode 11 and the silicon substrate 3. It was electrically connected via an ammeter 5. Further, a feedback control circuit 18 was connected to the output of the ammeter 5, and the feedback control circuit 18 was connected to the three-dimensional fine movement device 14 and the computer 15 provided in the mechanical position adjusting device 12. The silicon substrate 3 used was one in which a cylindrical hole 16 having a diameter of 200 μm and a depth of 3 mm was mechanically and chemically processed on the surface of the platinum electrode 11 side. Also platinum electrode 1
No. 1 is processed by electrolytic polishing so that the radius of curvature of the tip becomes 50 nm or less, and as shown in FIG. 4, the side surface excluding the tip is covered with an acid resistant insulating resin 13. Here, the output signal from the ammeter 5 is the feedback control circuit 18
It is transmitted to the three-dimensional fine movement device 14 through the through-hole, and the distance between the platinum electrode 11 and the silicon substrate 3 can be controlled so that the current becomes constant. The three-dimensional fine movement device 14 is a combination of piezoelectric bodies in three orthogonal directions, and by using this, the platinum electrode 11 can be moved to an arbitrary place within the silicon substrate surface 3 according to an instruction from the computer 15. As the electrolytic solution 6, a 1: 1 solution of 20% hydrofluoric acid and ethyl alcohol was used.
【0017】以下にこの装置を用いた微細孔の製造方法
を説明する。A method of manufacturing fine holes using this apparatus will be described below.
【0018】まず、白金電極11の先端が穴16の真上
に来るように、顕微鏡を見ながら機械式位置調整装置1
2を用いて白金電極11の位置を調整した。First, the mechanical position adjusting device 1 is observed while observing the microscope so that the tip of the platinum electrode 11 is directly above the hole 16.
2 was used to adjust the position of the platinum electrode 11.
【0019】次に、直流電源4により白金電極11を陰
極、シリコン基板3を陽極として1Vの電圧を印加し
た。このときの電流値は約50pAであった。3次元微
動装置14と機械式位置調整装置12を用いて、電流値
を監視しながら白金電極11をシリコン基板3に徐々に
接近させ、電流値が1nAになったときに接近を停止し
た。この時、電流は距離が小さくなるとともに指数関数
的に急激に増大することから、電流のほとんどはトンネ
ル電流であり、白金電極11とシリコン基板3との距離
は約1nmと考えられる。この状態で白金電極11を固
定し、印加電圧を2分間保持することにより白金電極1
1の直下部に直径30nm、深さ1μmの微細孔19を
作成することができた(図6(a)参照)。Next, a voltage of 1 V was applied by the DC power source 4 with the platinum electrode 11 as the cathode and the silicon substrate 3 as the anode. The current value at this time was about 50 pA. Using the three-dimensional fine movement device 14 and the mechanical position adjusting device 12, the platinum electrode 11 was gradually brought close to the silicon substrate 3 while monitoring the current value, and the approach was stopped when the current value became 1 nA. At this time, the current rapidly increases exponentially as the distance decreases, so most of the current is a tunnel current, and it is considered that the distance between the platinum electrode 11 and the silicon substrate 3 is about 1 nm. In this state, the platinum electrode 11 is fixed, and the applied voltage is maintained for 2 minutes, so that the platinum electrode 1
It was possible to form fine holes 19 having a diameter of 30 nm and a depth of 1 μm just below 1 (see FIG. 6A).
【0020】上述のトンネル電流を用いて電気分解を行
う場合は、白金電極11の先端曲率半径は0.1μm以
下が望ましい(それより大きい場合はトンネル電流が不
安定になることもあり、制御性よく微細孔を作成できな
い)。When performing electrolysis using the above-mentioned tunnel current, the radius of curvature of the tip of the platinum electrode 11 is preferably 0.1 μm or less (if it is larger than that, the tunnel current may become unstable and controllability may be increased. Can't make fine holes well).
【0021】このようにして微細孔19が作成されたシ
リコン基板3を水洗した後、タングステンの有機金属ガ
ス、W(CO)6を用いて減圧CVD法により400℃
以下の温度で、図6(a)に示すように、厚さ50μm
のタングステン薄膜20を堆積させた(この時の温度が
400℃より高い場合は微細孔が消失することがあり、
再現性よく探針を作成できない)。その後、図6
(b)、(c)に示すようにシリコン基板3をエッチン
グにより除去し、バリを除去することによりタングステ
ンのSTM用探針を完成した。After the silicon substrate 3 having the fine holes 19 thus formed is washed with water, the organometallic gas of tungsten, W (CO) 6, is used to form a low pressure CVD method at 400 ° C.
At the temperature below, as shown in FIG. 6 (a), the thickness is 50 μm.
Of the tungsten thin film 20 was deposited (if the temperature at this time is higher than 400 ° C., the fine pores may disappear,
Cannot create a probe with good reproducibility). After that, FIG.
As shown in (b) and (c), the silicon substrate 3 was removed by etching, and burrs were removed to complete a tungsten STM probe.
【0022】なお、上記実施例では、微細孔19が作成
されたシリコン基板3上に堆積させる材料として、Si
3N4あるいはタングステンを用いたが、これに限らず、
SiO2、TiO2などの誘電体やAu、Ptなどの金属
も有効に用いることができることはもちろんである。In the above embodiment, Si is used as a material to be deposited on the silicon substrate 3 having the fine holes 19 formed therein.
3 N 4 or tungsten was used, but not limited to this,
Of course, dielectrics such as SiO 2 and TiO 2 and metals such as Au and Pt can also be effectively used.
【0023】また、上記実施例では、薄膜の堆積法とし
て減圧CVDを用いた場合について説明したが、これに
限らず、プラズマCVD、メッキ法やスパッタリング法
なども用いることができる。特にCVD法が、原料ガス
の回り込みが最も大きく優れた形状の探針を作成するこ
とができる。In the above embodiment, the case where the low pressure CVD is used as the thin film deposition method has been described, but the present invention is not limited to this, and plasma CVD, a plating method, a sputtering method or the like can be used. In particular, the CVD method makes it possible to produce a probe having an excellent shape in which the raw material gas wraps around most.
【0024】また、上記実施例では、微細孔を形成させ
るシリコンに結晶質のシリコンを用いたが、これに限ら
ず、微細孔が形成できれば例えばアモルファス等の他の
シリコンであってもよい。Further, in the above embodiment, crystalline silicon is used as the silicon for forming the fine holes, but the silicon is not limited to this, and other silicon such as amorphous may be used as long as the fine holes can be formed.
【0025】[0025]
【発明の効果】以上述べたところから明らかなように本
発明は、先端曲率半径や先端角の小さな探針走査型顕微
鏡用探針を製造することができるという長所を有する。As is clear from the above description, the present invention has an advantage that a probe for a scanning probe microscope having a small tip curvature radius and tip angle can be manufactured.
【0026】また、製造された探針を用いることによっ
て、探針走査型顕微鏡の分解能や精度を向上させること
ができるという利点がある。Further, by using the manufactured probe, there is an advantage that the resolution and accuracy of the probe scanning microscope can be improved.
【図1】本発明にかかる第1実施例の探針走査型顕微鏡
用探針の製造方法を説明するための鋳型製造装置の概略
図である。FIG. 1 is a schematic view of a mold manufacturing apparatus for explaining a method of manufacturing a probe for a scanning probe microscope according to a first embodiment of the present invention.
【図2】同図(a)、及び同図(b)は、第1実施例の
探針走査型顕微鏡用探針の製造方法を示すプロセス図で
ある。FIG. 2A and FIG. 2B are process diagrams showing a method for manufacturing a probe for a scanning probe microscope according to the first embodiment.
【図3】本発明にかかる第2実施例の探針走査型顕微鏡
用探針の製造方法を説明するための鋳型製造装置の概略
図である。FIG. 3 is a schematic view of a mold manufacturing apparatus for explaining a method for manufacturing a probe for a scanning probe microscope according to a second embodiment of the present invention.
【図4】第2実施例の探針走査型顕微鏡用探針の鋳型製
造装置における陰極の一部拡大図である。FIG. 4 is a partial enlarged view of a cathode in a mold manufacturing apparatus for a probe for a scanning probe microscope according to a second embodiment.
【図5】本発明にかかる第3実施例の探針走査型顕微鏡
用探針の製造方法を説明するための鋳型製造装置の概略
図である。FIG. 5 is a schematic view of a mold manufacturing apparatus for explaining a method of manufacturing a probe for a scanning probe microscope according to a third embodiment of the present invention.
【図6】同図(a)、同図(b)及び同図(c)は、第
3実施例の探針走査型顕微鏡用探針の製造方法を示すプ
ロセス図である。6A, FIG. 6B and FIG. 6C are process diagrams showing a method of manufacturing a probe for a probe scanning microscope according to a third embodiment.
1 テフロン容器 2 陰極 3 シリコン基板 4 直流電源 5 電流計 6 電解液 7 Si3N4薄膜 8 ガラス基板 9 カンチレバー 10 探針 11 白金電極 12 機械式位置調整装置 13、17 絶縁樹脂 14 3次元微動装置 15 コンピュータ 16 穴 18 フィードバック制御回路 19 微細孔 20 白金薄膜1 Teflon Container 2 Cathode 3 Silicon Substrate 4 DC Power Supply 5 Ammeter 6 Electrolyte 7 Si 3 N 4 Thin Film 8 Glass Substrate 9 Cantilever 10 Probe 11 Platinum Electrode 12 Mechanical Positioning Device 13, 17 Insulating Resin 14 3 Dimensional Fine Motion Device 15 computer 16 hole 18 feedback control circuit 19 fine hole 20 platinum thin film
Claims (9)
として、電気分解することにより前記シリコンに微細孔
を形成した後、前記シリコンを鋳型として用いて、少な
くとも前記微細孔を含む前記シリコン上にシリコン以外
の物質を形成し、その後、前記微細孔が形成された前記
シリコンをエッチング除去することにより、前記形成さ
れた物質の突起物を作成することを特徴とする探針走査
型顕微鏡用探針の製造方法。1. Silicon is used as an anode, and a conductive electrode is used as a cathode to form micropores in the silicon by electrolysis, and then the silicon is used as a template on the silicon containing at least the micropores. A probe for a scanning microscope, wherein a substance other than silicon is formed, and then the silicon in which the fine holes are formed is removed by etching to form a protrusion of the formed substance. Manufacturing method.
絶縁性材料により覆われていることを特徴とする請求項
1記載の探針走査型顕微鏡用探針の製造方法。2. The method for manufacturing a probe for a probe scanning microscope according to claim 1, wherein silicon is covered with an insulating material except for a part of the cathode side.
れ、その陰極を前記シリコン表面に接近させて、前記電
気分解を行うことを特徴とする請求項1記載の探針走査
型顕微鏡用探針の製造方法。3. The probe scanning microscope according to claim 1, wherein the cathode is formed to have a sharp tip, and the electrolysis is performed by bringing the cathode close to the silicon surface. Method of manufacturing probe.
を実質上1nmに保持し、前記電気分解は、トンネル電
流を含む電流により行うことを特徴とする請求項3記載
の探針走査型顕微鏡用探針の製造方法。4. The probe scanning microscope according to claim 3, wherein the distance between the silicon surface and the tip of the cathode is maintained at substantially 1 nm, and the electrolysis is performed by a current including a tunnel current. Manufacturing method for medical probe.
被覆されていることを特徴とする請求項3記載の探針走
査型顕微鏡用探針の製造方法。5. The method for manufacturing a probe for a scanning probe microscope according to claim 3, wherein the surface of the cathode other than the tip is covered with an insulating material.
ギャップより大きなエネルギーの光を前記シリコン表面
に照射しながら行うことを特徴とする請求項1又は3記
載の探針走査型顕微鏡用探針の製造方法。6. The manufacturing of a probe for a scanning probe microscope according to claim 1, wherein the electrolysis is performed while irradiating the silicon surface with light having an energy larger than an energy gap of silicon. Method.
ることを特徴とする請求項1又は3記載の探針走査型顕
微鏡用探針の製造方法。7. The method for manufacturing a probe for a scanning probe microscope according to claim 1, wherein the cathode is made of a metal containing platinum as a main component.
する請求項1又は3記載の探針走査型顕微鏡用探針の製
造方法。8. The method for manufacturing a probe for a probe scanning microscope according to claim 1, wherein silicon is crystalline.
で行うことを特徴とする請求項1又は3記載の探針走査
型顕微鏡用探針の製造方法。9. The method for manufacturing a probe for a probe scanning microscope according to claim 1, wherein the electrolysis is performed in a solution containing hydrofluoric acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9821592A JPH05299014A (en) | 1992-04-17 | 1992-04-17 | Manufacture of probe for probe scanning type microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9821592A JPH05299014A (en) | 1992-04-17 | 1992-04-17 | Manufacture of probe for probe scanning type microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05299014A true JPH05299014A (en) | 1993-11-12 |
Family
ID=14213757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9821592A Pending JPH05299014A (en) | 1992-04-17 | 1992-04-17 | Manufacture of probe for probe scanning type microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05299014A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014036155A (en) * | 2012-08-09 | 2014-02-24 | Shibaura Mechatronics Corp | Cleaning solution generator, cleaning solution generating method, substrate cleaning device and substrate cleaning method |
-
1992
- 1992-04-17 JP JP9821592A patent/JPH05299014A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014036155A (en) * | 2012-08-09 | 2014-02-24 | Shibaura Mechatronics Corp | Cleaning solution generator, cleaning solution generating method, substrate cleaning device and substrate cleaning method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7144287B2 (en) | Individually electrically addressable carbon nanofibers on insulating substrates | |
US6838297B2 (en) | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same | |
EP0318289B1 (en) | Apparatus and method for detecting tunnel current and electro-chemical reaction | |
JP2003536059A (en) | Device for simultaneous electrochemical and topographic near-field microscopy measurements | |
US7161148B1 (en) | Tip structures, devices on their basis, and methods for their preparation | |
US5986261A (en) | Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities | |
US8168251B2 (en) | Method for producing tapered metallic nanowire tips on atomic force microscope cantilevers | |
JP4148517B2 (en) | Fine structure | |
JP3729449B2 (en) | Structure and device having pores | |
Kazinczi et al. | Novel methods for preparing EC STM tips. | |
US5085746A (en) | Method of fabricating scanning tunneling microscope tips | |
Fusil et al. | Nanolithography based contacting method for electrical measurements on single template synthesized nanowires | |
KR101358989B1 (en) | TRANSITION METAL NANO ElECTRODE AND A METHOD OF FABRICATING THEREOF | |
Kar et al. | A reverse electrochemical floating-layer technique of SPM tip preparation | |
US5164595A (en) | Scanning tunneling microscope tips | |
JP2003090788A (en) | Spm cantilever and method of manufacturing the same | |
JPH05299014A (en) | Manufacture of probe for probe scanning type microscope | |
JP4110341B2 (en) | How to create a structure | |
JPH08248064A (en) | Fine pattern forming apparatus and characteristics measuring apparatus | |
Kim et al. | Tip Preparation and Instrumentation for Nanoscale Scanning Electrochemical Microscopy | |
JP2003292315A (en) | Production of carbon nanotube | |
JP2004034270A (en) | Method for manufacturing semiconductor member formed with recessed structure and semiconductor member formed with recessed structure | |
EP0839383B1 (en) | Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities | |
JP3132120B2 (en) | Porous silicon and method for producing the same | |
Arscott et al. | [25] Scanning tunneling microscopy of nucleic acids |