JP3130462B2 - Passage obstruction inspection method - Google Patents
Passage obstruction inspection methodInfo
- Publication number
- JP3130462B2 JP3130462B2 JP07331837A JP33183795A JP3130462B2 JP 3130462 B2 JP3130462 B2 JP 3130462B2 JP 07331837 A JP07331837 A JP 07331837A JP 33183795 A JP33183795 A JP 33183795A JP 3130462 B2 JP3130462 B2 JP 3130462B2
- Authority
- JP
- Japan
- Prior art keywords
- passage
- image
- area
- binarized
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内面が光を反射す
る屈曲した通路の内部の閉塞有無を検査する通路の閉塞
検査方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passage obstruction inspection method for inspecting whether or not an inside of a curved passage whose inner surface reflects light is inspected.
【0002】[0002]
【従来の技術】例えば、物品の良否等を検査する際、物
品の二次元平面撮像画像から2値化画像を取り出し、そ
の2値化画像を識別して良否判定する。例えば公知では
ないが、図3に示す検査手段が提案されている。上記検
査手段において、内面が光を反射する屈曲した逆T字状
通路(2)を有するエンジンヘッドシリンダ(1)にお
いて通路内部(2b)の閉塞有無を検査する際、まず発光
源に接続した光ファイバ(3)を通路入口(2a)に挿入
し、通路内部(2b)に拡散光(La)を投光する。そうす
ると、通路内部(2b)が閉塞していなければ、拡散光
(La)は内面を乱反射して通路出口(2c)からそのまま
射出する。そして、射出した光(Lb)をカメラ(4)に
より二次元平面で受光及び撮像して所定のしきい値で2
値化すると、図4(a)に示す2値化画像(Wa)が取り
出される。一方、ヘッドシリンダ成形時の鋳型の中子
(m)等が通路内部(2b)に残存して閉塞していると、
通路出口(2c)から射出する光(Lb)の量が減少する。
そして、図4(b)に示すように、通路出口(2c)で撮
像した平面画像を同じしきい値で2値化した場合、2値
化画像(Wb)が縮小する。2. Description of the Related Art For example, when inspecting the quality of an article, a binarized image is extracted from a two-dimensional planar image of the article, and the binarized image is identified to judge the quality. For example, although not known, an inspection means shown in FIG. 3 has been proposed. In the above-mentioned inspection means, when inspecting whether or not the inside of the passage (2b) is blocked in the engine head cylinder (1) having the bent inverted T-shaped passage (2) whose inner surface reflects light, first, the light connected to the light source The fiber (3) is inserted into the passage entrance (2a), and the diffused light (La) is projected inside the passage (2b). Then, if the inside of the passage (2b) is not closed, the diffused light (La) is diffusely reflected on the inner surface and exits from the passage exit (2c) as it is. Then, the emitted light (Lb) is received and imaged on a two-dimensional plane by the camera (4), and is captured at a predetermined threshold value.
After the binarization, a binarized image (Wa) shown in FIG. 4A is extracted. On the other hand, if the core (m) or the like during the molding of the head cylinder is left inside the passage (2b) and closed,
The amount of light (Lb) emitted from the passage outlet (2c) decreases.
Then, as shown in FIG. 4B, when the plane image taken at the passage exit (2c) is binarized with the same threshold value, the binarized image (Wb) is reduced.
【0003】そこで、その2値化画像の面積や周囲長等
の画像特徴量を計測し、その計測データを正常データ
(例えば基準面積)と比較して画像特徴量を識別し、併
せて通路内部(2b)の閉塞有無を判別する。[0003] Therefore, image features such as the area and perimeter of the binarized image are measured, and the measured data is compared with normal data (for example, a reference area) to identify the image features, and at the same time, the inside of the passage is identified. The presence or absence of the blockage in (2b) is determined.
【0004】[0004]
【発明が解決しようとする課題】解決しようとする課題
は、通路(2)の平面撮像画像から所定のしきい値によ
り2値化して2値化画像(Wa)(Wb)を取り出す際、し
きい値は固定であるため、通路(2)のデータを正確に
取り出せずに虚報が発生し、良品を不良品と誤判定して
しまうことがある点である。例えば、通路内部(2b)の
内面(2d)がつるつるの場合、その面が光っているた
め、図4(a)に示す通路出口(2c)の2値化画像(W
a)を得る。ところが、内面(2d)がざらついている場
合、反射率が低下してその面が光らないため、通路内部
(2b)が閉塞していなくても通路出口(2c)から射出す
る光量が減少する。そこで、その撮像画像を同じしきい
値で2値化すると、図4(b)に示す閉塞時と同様の縮
小した2値化画像(Wb)が取り出され、非閉塞であって
も、閉塞しているという虚報を発生する不具合が生じ
る。The problem to be solved is to extract the binarized images (Wa) and (Wb) from the planar image of the passage (2) by binarization using a predetermined threshold value. Since the threshold value is fixed, false information is generated without accurately extracting data of the passage (2), and a good product may be erroneously determined as a defective product. For example, when the inner surface (2d) inside the passage (2b) is smooth, the surface is shining, so that the binarized image (W) of the passage exit (2c) shown in FIG.
Get a). However, when the inner surface (2d) is rough, the reflectance decreases and the surface does not shine, so that the amount of light emitted from the passage outlet (2c) decreases even if the inside of the passage (2b) is not closed. Therefore, when the captured image is binarized with the same threshold value, a reduced binarized image (Wb) similar to that at the time of occlusion shown in FIG. The problem that a false information is generated occurs.
【0005】[0005]
【課題を解決するための手段】本発明は、内面が光を反
射する屈曲した通路の内部の閉塞有無を検査するにあた
り、上記通路入口から拡散光を投光し、通路出口から出
た光を二次元平面にて受光して撮像する工程と、上記撮
像画像の画像特徴量を計測し、その計測データの正常デ
ータに対する適合度をファジィ推論により判別して通路
内部の閉塞有無を検査する工程とを含むことを特徴とす
る。According to the present invention, in inspecting the inside of a curved passage whose inner surface reflects light, the diffused light is emitted from the passage entrance and the light emitted from the passage exit is inspected. A step of receiving and capturing an image on a two-dimensional plane, measuring an image feature amount of the captured image, determining the conformity of the measured data to normal data by fuzzy inference, and inspecting whether there is a blockage inside the passage. It is characterized by including.
【0006】[0006]
【発明の実施の形態】本発明に係る通路の閉塞検査方法
の実施の形態を図1〜図2を参照して以下に説明する。
まず上記検査にあたり、図3に示すように、従来同様、
通路入口(2a)に光ファイバ(3)の投光端部を挿入
し、通路内部(2b)に拡散光(La)を投光する。そうす
ると、その光が通路内部(2b)を乱反射して再び通路出
口(2c)から射出し、射出した光(Lb)をカメラ(4)
で二次元平面で受光して撮像する。そこで、2値化しき
い値(H)を通路(2)に合わせて自動的に設定してお
き、上記平面撮像画像をしきい値(H)により2値化し
て所定レベル以上の光度を持つ2値化画像を取り出す。
そして、その2値化画像の明るさ面積値や周囲長等の特
徴量を計測し、その計測データの正常データに対する適
合度をファジイ推論により判別して通路内部(2b)の閉
塞有無を検査する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a passage obstruction inspection method according to the present invention will be described below with reference to FIGS.
First, in the above inspection, as shown in FIG.
The light projecting end of the optical fiber (3) is inserted into the passage entrance (2a), and diffused light (La) is projected into the passage inside (2b). Then, the light diffusely reflects inside the passage (2b) and exits again from the exit (2c), and the emitted light (Lb) is reflected by the camera (4).
The image is received and imaged on a two-dimensional plane. Therefore, the binarization threshold (H) is automatically set in accordance with the path (2), and the planar captured image is binarized by the threshold (H) to have a luminous intensity equal to or higher than a predetermined level. Take out the digitized image.
Then, feature values such as the brightness area value and the perimeter of the binarized image are measured, and the degree of conformity of the measured data to the normal data is determined by fuzzy inference to check whether the inside of the passage (2b) is blocked. .
【0007】上記しきい値設定において、まず予め被検
査体としての通路の複数の基準となる画像の面積や周囲
長等の特徴量の分布を計測してファジィ推論のメンバー
シップ関数を作成しておく。又、図1(a)(b)に示
すように、カメラ(4)による撮像画像の輝度分布図
(Ba)(Bb)に対し高い方から順に複数個の2値化しき
い値(Ha)(Hb)(Hc)を設定する。そうすると、良品
の場合、しきい値(H)のレベルが下がる程、各レベル
の2値化画像面積は次第に大きくなり、逆に不良品の場
合、2値化画像面積は一定、又は図1(d)に示すよう
に、0となる。In the setting of the threshold value, first, a membership function of fuzzy inference is created by measuring distributions of feature amounts such as the area and perimeter of an image serving as a plurality of references of a passage as an object to be inspected in advance. deep. Further, as shown in FIGS. 1A and 1B, a plurality of binarization thresholds (Ha) (Ha) (Ha) ( Set Hb) and (Hc). Then, in the case of a non-defective product, as the level of the threshold (H) decreases, the binarized image area of each level gradually increases. Conversely, in the case of a defective product, the binarized image area is constant or FIG. It becomes 0 as shown in d).
【0008】そこで、カメラ(4)による平面撮像画像
を最初に最大しきい値(Ha)で2値化し、図1(c)に
示す2値化画像(Da)を取り出す。その時の2値化画像
面積(Su)をファジィ推論等により対応する基準面積に
対する適合度を判定し、基準面積に略一致していれば、
しきい値(Ha)を最適しきい値(Ho)として設定して次
の閉塞有無検査に移行する。又、2値化画像面積(Su)
が基準面積よりも大きくなり過ぎる場合、最大しきい値
(Ha)のレベルを更に大きく設定して再調整する。Therefore, the plane image picked up by the camera (4) is first binarized with the maximum threshold (Ha), and a binarized image (Da) shown in FIG. The binarized image area (Su) at that time is determined by a fuzzy inference or the like with respect to the corresponding reference area, and if it substantially matches the reference area,
The threshold value (Ha) is set as the optimum threshold value (Ho), and the process proceeds to the next blockage inspection. Also, binarized image area (Su)
Is larger than the reference area, the level of the maximum threshold (Ha) is set to a still higher level and readjusted.
【0009】次に、2値化画像面積(Su)が基準面積よ
りも小さくなる場合は、被検査体が不良品であるか、又
は図1(a)の点線に示す輝度分布のように、良品であ
っても通路内面(2d)がざらついていたり、或いは梨地
状のため、射出光量が減少する場合である。この場合、
1段レベルを下げて次に大きいしきい値(Hb)で2値化
画像面積を再計測する。その時の2値化画像面積(Sv)
が前回しきい値(Ha)による2値化画像面積(Su)より
も大きくなった時、又は対応する基準面積に略一致した
時、良品と判定し、その時のしきい値(Hb)を最適しき
い値(Ho)として設定する。又、大きくなり過ぎると、
しきい値(Hb)からやや上げたしきい値を最適値とす
る。そして、しきい値を下げても2値化画像面積(Sv)
が一定のままか、又は0であれば、不良品と判定する。
以上の操作を複数回、例えば5回程度順次、繰り返し、
2値化画像面積が一定又は、0であれば、不良品と判定
する。このようにして2値化画像面積を判定し、それに
応じてしきい値レベルを適宜、自動調整して最適の2値
化しきい値(Ho)を設定する。Next, when the binarized image area (Su) is smaller than the reference area, the inspected object is defective or the luminance distribution as shown by the dotted line in FIG. This is the case where even though the passage is good, the inner surface of the passage (2d) is rough or satin-like, so that the amount of emitted light decreases. in this case,
The level of the binarized image is re-measured at the next higher threshold value (Hb) by lowering the level by one step. Binary image area at that time (Sv)
Is larger than the previous threshold value (Ha), or approximately equal to the corresponding reference area, it is judged as good and the threshold value (Hb) at that time is optimized. Set as the threshold (Ho). Also, if it gets too big,
The threshold slightly raised from the threshold (Hb) is set as the optimum value. And even if the threshold is lowered, the binarized image area (Sv)
Is constant or 0, it is determined to be defective.
The above operation is repeated a plurality of times, for example, about five times sequentially,
If the binarized image area is constant or 0, it is determined to be defective. In this manner, the binarized image area is determined, and the threshold level is automatically adjusted as appropriate to set an optimal binarized threshold (Ho).
【0010】又、ファジィ推論の重心演算を用いて直
接、最適しきい値(Ho)を設定する手段もある。例えば
図2(a)に示すように、入出力部として2値化画像面
積及びしきい値の各メンバーシップ関数(Ma)(Mb)を
設定する。次に、図1(a)に示す輝度分布から所定の
しきい値により2値化画像面積(Sa)を取り出して入力
部のメンバーシップ関数(Ma)から適合度(Ta)(Tb)
を判定する。そして、その適合度(Ta)(Tb)を出力部
のメンバーシップ関数(Mb)に代入し、図2(b)に示
すように、対応する合成台形面積(斜線部)の重心演算
により最適しきい値(Ho)を算出する。There is also a means for directly setting the optimum threshold value (Ho) using the center of gravity calculation of fuzzy inference. For example, as shown in FIG. 2A, the membership functions (Ma) and (Mb) of the binarized image area and the threshold are set as the input / output unit. Next, the binarized image area (Sa) is extracted from the luminance distribution shown in FIG. 1A by a predetermined threshold value, and the fitness (Ta) (Tb) is calculated from the membership function (Ma) of the input unit.
Is determined. Then, the fitness (Ta) (Tb) is substituted into the membership function (Mb) of the output section, and as shown in FIG. 2 (b), the optimum is calculated by the center of gravity calculation of the corresponding combined trapezoidal area (shaded area). Calculate the threshold (Ho).
【0011】上記最適の2値化しきい値(Ho)を設定す
ると、次に、図2(c)に示すように、しきい値(Ho)
に基づいてカメラ(4)による撮像画像から2値化画像
(Do)を取り出し、その画像(Do)の特徴量、例えば面
積や周囲長を計測する。そして、図2(d)に示すよう
に、予めファジィ推論のメンバーシップ関数(Mc)を通
路出口毎に設定しておき、例えば計測した面積データを
メンバーシップ関数(Mc)に代入する。そこで、計測デ
ータの正常データに対する適合度(α)をファジィ推論
のメンバーシップ関数(Mc)から導出する。そこで、そ
の適合度(α)を基準値(A)と比較判別し、α>Aの
時、良品と判定して通路内部(2b)の閉塞有無を検査す
る。この時、複数の通路出口を一度に撮像し、各出口毎
の複数画像の各適合度を組み合わせ、例えばその乗算値
から閉塞有無を判別しても良い。又、面積、周囲長の
他、更に、画像の重心位置等を判別要素として付け加
え、各適合度を乗算すると、良、不良の境界にあるもの
に対し検査精度を向上させることが出来る。Once the optimum binarization threshold (Ho) is set, the threshold (Ho) is then set as shown in FIG.
Then, the binarized image (Do) is extracted from the image captured by the camera (4) based on, and the feature amount of the image (Do), for example, the area and the perimeter are measured. Then, as shown in FIG. 2D, a membership function (Mc) of fuzzy inference is set in advance for each passage exit, and for example, measured area data is substituted into the membership function (Mc). Therefore, the degree of conformity (α) of the measured data to the normal data is derived from the membership function (Mc) of fuzzy inference. Therefore, the degree of conformity (α) is compared with the reference value (A), and when α> A, it is determined to be a non-defective product, and the presence or absence of the blockage inside the passage (2b) is inspected. At this time, a plurality of passage exits may be imaged at a time, and the suitability of the plurality of images for each exit may be combined, and for example, the presence or absence of occlusion may be determined from the multiplied value. Further, in addition to the area and the perimeter, the position of the center of gravity of the image and the like are added as discriminating factors, and multiplication by each degree of conformity can improve the inspection accuracy for those at the boundary between good and bad.
【0012】上記メンバーシップ関数(Mc)は複数の良
品或いは不良品の面積や周囲長等を計測し、(Na)を正
常領域、(Nb)(Nc)をそれぞれ閉塞領域として確率分
布を描いたもので、それを各通路出口毎に、且つ、面積
や周囲長等の各特徴量毎に作成する。例えば面積分布に
おいて計測面積が(Pa)の場合、正常データに対する適
合度は(Qa)となり、そこから(Qa)と(A)とを比較
し、その大小に基づいて通路内部(2b)の閉塞有無を判
別する。尚、領域(Nb)の内側は通路出口側或いは中子
により光量が減少して生じる閉塞領域を示し、領域(N
c)の内側は通路中間或いは入口の閉塞鋳バリにより光
量が増大して生じる閉塞領域を示す。The membership function (Mc) measures the area and perimeter of a plurality of non-defective products or defective products, and draws a probability distribution with (Na) as a normal region and (Nb) and (Nc) as closed regions. It is created for each passage exit and for each feature quantity such as area and perimeter. For example, if the measured area is (Pa) in the area distribution, the degree of conformity to the normal data is (Qa), and (Qa) is compared with (A). Based on the magnitude, the blockage of the inside of the passage (2b) is determined. Determine the presence or absence. Note that the inside of the area (Nb) indicates a closed area generated when the amount of light decreases due to the exit side of the passage or the core, and the area (Nb)
The inside of c) shows a closed area generated by an increase in the amount of light due to a closed flash at the middle of the passage or at the entrance.
【0013】[0013]
【発明の効果】本発明によれば、内面が光を反射する屈
曲した通路を有するヘッドシリンダ等の通路内部の閉塞
有無を検査する際、上記通路入口から拡散光を投光して
内部を乱反射して通過した光を通路出口で二次元平面に
て受光して撮像し、上記撮像画像の画像特徴量の計測デ
ータの正常データに対する適合度をファジィ推論により
判別して通路内部の閉塞有無を検査したから、検査誤差
が低減して虚報の発生を防止出来、誤判定が除去されて
検査精度が向上する。又、再検査が不要になって工数が
低減する。According to the present invention, when inspecting the inside of a passage such as a head cylinder having a curved passage whose inner surface reflects light, diffused light is emitted from the passage entrance to irregularly reflect the inside. The light passing through the passage is received at the exit of the passage on a two-dimensional plane and imaged, and the degree of conformity of the measured data of the image feature amount of the captured image to the normal data is determined by fuzzy inference to check for the presence of obstruction inside the passage. As a result, the inspection error can be reduced to prevent the occurrence of false alarm, and the erroneous determination is eliminated, thereby improving the inspection accuracy. Further, re-inspection becomes unnecessary, and the number of steps is reduced.
【図1】(a)は本発明に係る通路の閉塞検査方法の実
施の形態を示す撮像画像の輝度分布の一例と各2値化し
きい値のグラフである。(b)は本発明に係る通路の閉
塞検査方法の実施の形態を示す撮像画像の輝度分布の他
の一例と各2値化しきい値のグラフである。(c)は図
1(a)(b)のしきい値で2値化した画像の一例を示
す図である。(d)は図1(a)(b)のしきい値で画
像を取り出せなかった場合を示す図である。FIG. 1A is a graph showing an example of a brightness distribution of a captured image and respective binarization thresholds showing an embodiment of a passage obstruction inspection method according to the present invention. (B) is another example of the brightness distribution of the captured image and a graph of each binarization threshold, showing the embodiment of the passage obstruction inspection method according to the present invention. (C) is a diagram showing an example of an image binarized by the threshold values of FIGS. 1 (a) and (b). (D) is a diagram showing a case where an image cannot be taken out with the threshold values of FIGS. 1 (a) and (b).
【図2】(a)はファジィ推論によるしきい値設定の入
出力部の各メンバーシップ関数である。(b)はファジ
ィ推論の重心演算例を示すメンバーシップ関数である。
(c)は2値化画像の一例を示す図である。(d)はフ
ァジィ判定用メンバーシップ関数の一例を示す波形図で
ある。FIG. 2A shows each membership function of an input / output unit for setting a threshold value by fuzzy inference. (B) is a membership function showing an example of calculating the center of gravity of fuzzy inference.
(C) is a diagram showing an example of a binarized image. (D) is a waveform diagram showing an example of a fuzzy judgment membership function.
【図3】通路の一例を示す側面図である。FIG. 3 is a side view showing an example of a passage.
【図4】(a)は図3の通路出口の従来のしきい値によ
って2値化した画像を示す図である。(b)は図3の通
路出口の従来のしきい値によって2値化した他の画像を
示す図である。FIG. 4A is a diagram showing an image binarized by a conventional threshold at the passage exit of FIG. 3; FIG. 4B is a diagram showing another image binarized by a conventional threshold value at the passage exit in FIG. 3.
Ba、Bb 輝度分布 Ba, Bb luminance distribution
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G06T 1/00 G06T 7/00 - 7/60 F02F 1/24 - 1/42 G01B 11/24 - 11/255 G01N 21/49 - 21/53 G01N 21/88 - 21/958 G01J 1/44 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G06T 1/00 G06T 7 /00-7/60 F02F 1/24-1/42 G01B 11/24-11 / 255 G01N 21/49-21/53 G01N 21/88-21/958 G01J 1/44
Claims (1)
の閉塞有無を検査するにあたり、 上記通路入口から拡散光を投光し、通路出口から出た光
を二次元平面にて受光して撮像する工程と、上記撮像画
像の画像特徴量を計測し、その計測データの正常データ
に対する適合度をファジィ推論により判別して通路内部
の閉塞有無を検査する工程とを含むことを特徴とする通
路の閉塞検査方法。When inspecting the inside of a curved passage whose inner surface reflects light, the diffused light is projected from the passage entrance and the light emitted from the passage exit is received on a two-dimensional plane. A passage that includes an imaging step and a step of measuring an image feature amount of the captured image, determining a degree of conformity of the measured data to normal data by fuzzy inference, and examining whether or not the passage is closed; Obstruction inspection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07331837A JP3130462B2 (en) | 1995-12-20 | 1995-12-20 | Passage obstruction inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07331837A JP3130462B2 (en) | 1995-12-20 | 1995-12-20 | Passage obstruction inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09170985A JPH09170985A (en) | 1997-06-30 |
JP3130462B2 true JP3130462B2 (en) | 2001-01-31 |
Family
ID=18248212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07331837A Expired - Fee Related JP3130462B2 (en) | 1995-12-20 | 1995-12-20 | Passage obstruction inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130462B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113436146B (en) * | 2021-06-01 | 2024-06-21 | 北京京东乾石科技有限公司 | Information generation method, apparatus, electronic device and computer readable medium |
-
1995
- 1995-12-20 JP JP07331837A patent/JP3130462B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09170985A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6614924B1 (en) | Adaptive mask technique for defect inspection | |
US6687396B1 (en) | Optical member inspection apparatus, image-processing apparatus, image-processing method, and computer readable medium | |
JPH09512342A (en) | Method and apparatus for detecting surface features of a semi-transparent object | |
JP2004070874A (en) | Coin discriminating method and device | |
JP3728965B2 (en) | Surface inspection device | |
JP5174917B2 (en) | Coin damage determination apparatus and damage determination method | |
JPH09210785A (en) | Method for detecting defective part of wood | |
JP3130462B2 (en) | Passage obstruction inspection method | |
JPH1114557A (en) | Coin recognition system | |
JP2001296252A (en) | Defect detection method of object surface, and device thereof | |
JPH07333197A (en) | Automatic surface flaw detector | |
JPH07111735B2 (en) | Crack measurement system | |
JP3641394B2 (en) | Optical member inspection apparatus, image processing apparatus, image processing method, and computer-readable medium | |
JP3112061B2 (en) | Hollow path internal inspection device | |
JP3130460B2 (en) | Internal inspection method for hollow paths | |
JPH09161050A (en) | Method for setting threshold of binarized image | |
JP3404715B2 (en) | Internal inspection method for wide section hollow path | |
JP3167540B2 (en) | Coin recognition device | |
JP3308888B2 (en) | Surface defect inspection method and surface defect inspection device | |
JP2005031844A (en) | Coin identifying device and method | |
JPH06125886A (en) | Determining method for stomach image reading condition and/or image processing condition | |
JP3108277B2 (en) | Coin recognition device and its preprocessing method | |
JPH09161042A (en) | Method for inspecting inside of hollow route | |
JP3394984B2 (en) | Coin recognition device | |
JP2003162724A (en) | Image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |