JP3130460B2 - Internal inspection method for hollow paths - Google Patents

Internal inspection method for hollow paths

Info

Publication number
JP3130460B2
JP3130460B2 JP07314025A JP31402595A JP3130460B2 JP 3130460 B2 JP3130460 B2 JP 3130460B2 JP 07314025 A JP07314025 A JP 07314025A JP 31402595 A JP31402595 A JP 31402595A JP 3130460 B2 JP3130460 B2 JP 3130460B2
Authority
JP
Japan
Prior art keywords
path
image
hollow
hollow path
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07314025A
Other languages
Japanese (ja)
Other versions
JPH09152407A (en
Inventor
文昭 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP07314025A priority Critical patent/JP3130460B2/en
Publication of JPH09152407A publication Critical patent/JPH09152407A/en
Application granted granted Critical
Publication of JP3130460B2 publication Critical patent/JP3130460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外から内部を観察
出来ない屈曲した中空経路を有する被検査体における内
部の異常有無を検査する中空経路の内部検査方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting the inside of a hollow path for inspecting the inside of a test object having a bent hollow path from which the inside cannot be observed from the outside.

【0002】[0002]

【従来の技術】水冷式エンジンは、シリンダブロック及
びヘッドシリンダに燃焼室部の冷却水路(ウォータジャ
ケット)を有し、この部分に冷却水を循環供給してエン
ジンの焼き付きを防止しており、図4(a)(b)にヘ
ッドシリンダ(1)の一例の下面図、部分垂直断面図を
それぞれ示す。上記ヘッドシリンダ(1)は、図4
(a)(b)に示すように、シリンダ筒(2)…の周囲
に沿ってヘッド下面側(シリンダブロック側)に水穴
(3)…が形成されている。上記水穴(3)…はヘッド
シリンダ(1)がシリンダブロックと結合することによ
り循環冷却水路を形成し、又、隣接する水穴間に外から
観察出来ない冷却水路用中空経路(4)…を形成する。
又、ヘッド上面側の点火栓及び吸排気バルブ周辺に砂抜
き穴が形成され、砂抜き穴間に冷却水路用中空経路が形
成されている。
2. Description of the Related Art A water-cooled engine has a cooling water passage (water jacket) for a combustion chamber in a cylinder block and a head cylinder, and circulates and supplies cooling water to this portion to prevent seizure of the engine. 4 (a) and 4 (b) show a bottom view and a partial vertical sectional view of an example of the head cylinder (1), respectively. The head cylinder (1) is shown in FIG.
As shown in (a) and (b), water holes (3) are formed on the lower surface side (cylinder block side) of the head along the circumference of the cylinder tube (2). The above water holes (3) form a circulating cooling water passage by coupling the head cylinder (1) to the cylinder block, and a cooling water passage hollow passage (4) between adjacent water holes which cannot be observed from the outside. To form
A sand hole is formed around the ignition plug and the intake / exhaust valve on the upper surface side of the head, and a hollow passage for a cooling water passage is formed between the sand holes.

【0003】上記中空経路(4)は、図4(c)に示す
ように、屈曲した経路を形成し、特に図4(e)に示す
ように、ヘッド上面側の中空経路(4a)は網目状の複雑
な屈曲迷路状経路を形成しており、ヘッドシリンダ
(1)は、屈曲した中空経路(4)(4a)を有する被検
査体の一例である。
The hollow path (4) forms a bent path as shown in FIG. 4 (c). In particular, as shown in FIG. 4 (e), the hollow path (4a) on the upper surface side of the head is meshed. The head cylinder (1) is an example of a test object having a curved hollow path (4) (4a).

【0004】上記冷却水路用水穴(3)及び中空経路
(4)(4a)を形成する場合、鋳型に中子をセットして
溶融金属(例えば溶融アルミ合金)を注湯し、凝固させ
た後、鋳型及び中子を除去して製品とするが、ヘッドシ
リンダ(1)の冷却水路は、シリンダブロックの冷却水
路に比べて形状が複雑となり、中子砂が除去されずに残
存し易い。特に、中空経路(3a)(4a)の内部は外から
観察出来ないため、中子砂が残存したまま最終工程まで
移行することが多々あり、その結果、最悪の場合、エン
ジンを不良品として処分せざるを得ないことがある。
When forming the cooling water channel water hole (3) and the hollow channels (4) and (4a), a core is set in a mold, molten metal (for example, a molten aluminum alloy) is poured and solidified. Although the mold and the core are removed to produce a product, the cooling water passage of the head cylinder (1) has a more complicated shape than the cooling water passage of the cylinder block, and core sand is likely to remain without being removed. In particular, since the interior of the hollow passages (3a) and (4a) cannot be observed from the outside, there are many cases where the core sand remains and the process moves to the final process. As a result, in the worst case, the engine is disposed of as a defective product. Sometimes I have to.

【0005】又、中子の造形時や鋳型へのセット時、中
子が一部欠損していたり、亀裂個所がある場合、これを
そのまま鋳型にセットすると、注湯した溶融金属がこれ
らの欠損個所や亀裂個所にも流れ込んで鋳バリとして残
存する結果、冷却水路を閉塞させ、エンジンの冷却作用
が悪化する。
[0005] When the core is formed or set in a mold, if the core is partially missing or has a crack, if the core is set in the mold as it is, the poured molten metal loses these defects. As a result of flowing into the places and cracks and remaining as casting burrs, the cooling water passage is blocked, and the cooling function of the engine is deteriorated.

【0006】そこで、特に屈曲した中空経路(4)(4
a)の内部を検査して、その形状異常や中子残存等の異
常の有無を検査する必要があり、その検査手段の一例を
図4(b)を参照して以下に示す。上記検査手段は、ヘ
ッドシリンダ(1)の下面側の水穴(3)…及び上面側
の砂抜き穴にそれぞれ挿入する一対の投受光用第1、第
2各光電センサ(5)(6)を具備する。そして、例え
ば各光電センサ(5)(6)をそれぞれ水穴(3)…に
挿入し、第1光電センサ(5)から投射した光(La)を
第2光電センサ(6)で受光した時、中空経路(4)の
内部は正常であると判別する。
In view of the above, the bent hollow path (4) (4
It is necessary to inspect the inside of a) to check for abnormalities such as abnormal shape and remaining core, and an example of the inspection means is shown below with reference to FIG. The inspection means comprises a pair of first and second photoelectric sensors (5) and (6) for inserting and receiving water holes (3) on the lower surface side of the head cylinder (1) and sand holes on the upper surface side, respectively. Is provided. When the photoelectric sensors (5) and (6) are inserted into the water holes (3) and the light (La) projected from the first photoelectric sensor (5) is received by the second photoelectric sensor (6), for example. , The interior of the hollow path (4) is determined to be normal.

【0007】[0007]

【発明が解決しようとする課題】解決しようとする課題
は、中空経路(4)の内面は梨地状の細かい凹凸面を持
ち、しかも図4(c)に示すように、経路が屈曲してい
るため、光が乱反射して受光側の第2センサ(6)まで
正確に届かず、良品でも不良判定になって検査困難にな
ること、又、投光用第1光電センサ(5)の光は約1mm
径のスポット光のため、完全閉塞しか検出できず、図4
(d)に示すように、中子(m)が半詰まりの場合、ス
ポット光が半詰まり部をかすめて通ることにより検出不
能になる時があること、更に、図4(e)に示すよう
に、ヘッド上面側の点火栓周辺の中空経路(4a)は網目
状の複雑な屈曲迷路のため、網目(4b)内に中子(m)
が詰まると、その検査は、目視は勿論のこと、光電セン
サ方式でも実施不能である点である。
The problem to be solved is that the inner surface of the hollow path (4) has a matte-like fine uneven surface, and the path is bent as shown in FIG. 4 (c). As a result, the light is diffusely reflected and does not accurately reach the second sensor (6) on the light receiving side. About 1mm
Because of the diameter of the spot light, only complete occlusion can be detected.
As shown in FIG. 4D, when the core (m) is half-clogged, the spot light sometimes becomes undetectable due to grazing through the half-clogged portion. Further, as shown in FIG. In addition, the hollow path (4a) around the spark plug on the top side of the head is a core (m)
Is that the inspection cannot be carried out not only by visual inspection but also by the photoelectric sensor method.

【0008】[0008]

【課題を解決するための手段】本発明は、屈曲した中空
経路を有する被検査体における内部の異常有無を検査す
るにあたり、上記経路入口から拡散光を投光し、経路内
を乱反射して通過した光を所定の撮像手段により経路出
口で二次元平面にて受光して撮像する工程と、上記撮像
画像を2値化して検査に係る2値化画像を抽出する工程
と、上記2値化画像を画像処理して画像特徴量を計測
し、その計測データの正常データに対する適合度をファ
ジィ推論により判別して中空経路の内部異常有無を検査
する工程とを含むことを特徴とする。
According to the present invention, when inspecting the inside of a test object having a bent hollow path for the presence or absence of an internal abnormality, diffused light is emitted from the entrance of the path and diffused and reflected inside the path. Receiving the captured light at a path exit at a path exit by a predetermined imaging means and capturing an image, binarizing the captured image to extract a binary image related to inspection, To measure the image feature amount, determine the degree of conformity of the measured data to the normal data by fuzzy inference, and inspect the inside of the hollow path for abnormalities.

【0009】[0009]

【発明の実施の形態】本発明に係る中空経路の内部検査
方法の実施の形態を図1〜図3を参照して以下に説明す
る。まず図1(a)は図4(a)(b)と同一のヘッド
シリンダ(1)及び本発明方法を実施するための検査手
段(7)の部分垂直断面図、図1(b)(c)は屈曲し
た中空経路(4)(4a)の部分水平断面図、図1(d)
は検査手段(7)の動作例の側面図をそれぞれ示す。上
記検査手段(7)は投光部(8)と撮像部(9)とを具
備する。上記投光部(8)は、拡散光の発光源に接続し
た光ファイバからなり、例えば水穴(3)から中空経路
(4)内に拡散光(Lb)を投光する。撮像部(9)はカ
メラからなり、水穴(3)から入射して中空経路(4)
内を乱反射し、他の水穴(3)から射出した光を二次元
平面で受光して撮像する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for inspecting the inside of a hollow path according to the present invention will be described below with reference to FIGS. First, FIG. 1 (a) is a partial vertical sectional view of the same head cylinder (1) as FIGS. 4 (a) and 4 (b) and an inspection means (7) for implementing the method of the present invention. ) Is a partial horizontal sectional view of the bent hollow path (4) (4a), FIG.
Shows side views of an operation example of the inspection means (7). The inspection means (7) includes a light emitting unit (8) and an imaging unit (9). The light projecting section (8) is composed of an optical fiber connected to a light source of diffused light, and projects diffused light (Lb) from, for example, a water hole (3) into a hollow path (4). The imaging unit (9) is composed of a camera, which enters through a water hole (3) and has a hollow path (4).
Light reflected irregularly in the inside and emitted from another water hole (3) is received and imaged on a two-dimensional plane.

【0010】上記構成に基づき本発明の動作を次に説明
する。まずヘッドシリンダ(1)を被検査体としてその
中空経路内部の異常有無を検査する場合、図1(a)に
示すように、例えばヘッド下面側の水穴(3)に光ファ
イバ(8)の投光端部を挿入する。そこから中空経路
(4)内に拡散光(Lb)を投光すると、その光が経路
(4)内を乱反射して再び他の水穴(3)から射出す
る。そこで、複数の水穴(3)…を一度にカメラ(9)
で二次元平面的に撮像し、水穴(3)…から射出した光
(Lb)を二次元平面的に受光して撮像する。そうする
と、図1(b)に示すように、経路(4)内が屈曲して
いても、拡散光(Lb)が経路(4)内を乱反射して通過
するため、射出した光(Lb)をカメラ(9)で正確に受
光出来る。そして、中子(m)の反射率が小さいため、
図1(d)に示すように、中空経路(4)内に中子
(m)が残存している場合、中空経路(4)内を乱反射
して射出した光(Lb)の明るさ面積値や周囲長が縮小し
ている。そこで、経路出口毎の明るさ面積値や周囲長を
ファジイ推論により判別して中空経路(4)内の異常有
無を検査する。
The operation of the present invention based on the above configuration will now be described. First, when the head cylinder (1) is to be inspected and the inside of the hollow path is inspected for abnormality, as shown in FIG. 1A, for example, an optical fiber (8) is inserted into a water hole (3) on the lower surface side of the head. Insert the light emitting end. When the diffused light (Lb) is projected into the hollow path (4), the light diffusely reflects in the path (4) and exits from another water hole (3) again. Therefore, a plurality of water holes (3) ...
The light (Lb) emitted from the water holes (3)... Is received and imaged in a two-dimensional plane. Then, as shown in FIG. 1B, even if the inside of the path (4) is bent, the diffused light (Lb) passes through the path (4) after being irregularly reflected. Light can be accurately received by the camera (9). And since the reflectance of the core (m) is small,
As shown in FIG. 1D, when the core (m) remains in the hollow path (4), the brightness area value of the light (Lb) emitted from the hollow path (4) after being irregularly reflected. And the perimeter is shrinking. Therefore, the brightness area value and the perimeter of each route exit are determined by fuzzy inference to check for an abnormality in the hollow route (4).

【0011】上記ファジィ推論に際しては、判別に先立
って2値化しきい値(H)を被検査体に合わせて自動的
に設定し、カメラ(9)による撮像画像から所定レベル
以上の光度を持つ2値化画像を取り出し、その画像の面
積、周囲長等の特徴量に基づき検査する。そこで、上記
しきい値設定において、まず予め被検査体の複数の基準
となる画像の面積や周囲長等の特徴量の分布を計測して
ファジィ推論のメンバーシップ関数を経路出口毎に作成
しておく。又、図2(a)(b)に示すように、カメラ
(9)による撮像画像の輝度分布図(Ba)(Bb)に対し
高い方から順に複数個の2値化しきい値(Ha)(Hb)
(Hc)を設定する。そうすると、良品の場合、しきい値
(H)のレベルが下がる程、各レベルの2値化画像面積
は次第に大きくなり、逆に、不良品の場合、2値化画像
面積は一定、又は図2(b)に示すように、0となる。
At the time of the fuzzy inference, a binarization threshold (H) is automatically set in accordance with an object to be inspected prior to discrimination, and a binarized light having a luminous intensity equal to or higher than a predetermined level from an image captured by the camera (9). A valued image is taken out and inspected based on features such as the area and perimeter of the image. Therefore, in the above threshold setting, first, a distribution of feature amounts such as an area and a perimeter of a plurality of reference images of a test object is measured in advance, and a membership function of fuzzy inference is created for each path exit. deep. Further, as shown in FIGS. 2A and 2B, a plurality of binarization thresholds (Ha) (Ha) ( Hb)
Set (Hc). Then, in the case of a non-defective product, as the level of the threshold value (H) decreases, the area of the binarized image of each level gradually increases. As shown in FIG.

【0012】そこで、カメラ(9)による平面撮像画像
を最初に最大しきい値(Ha)で2値化し、図2(c)に
示す2値化画像(Da)を取り出す。その時の2値化画像
面積(Sa)をファジィ推論等により対応する基準面積に
対する適合度を判定し、基準面積に略一致していれば、
しきい値(Ha)を最適しきい値(Ho)として設定して次
の内部異常有無の検査に移行する。又、2値化画像面積
(Sa)が基準面積よりも大きくなり過ぎる場合、最大し
きい値(Ha)のレベルを更に大きく設定して再調整す
る。
Therefore, the plane image picked up by the camera (9) is first binarized by the maximum threshold (Ha), and a binarized image (Da) shown in FIG. 2 (c) is extracted. The binarized image area (Sa) at that time is determined for the degree of conformity to the corresponding reference area by fuzzy inference or the like.
The threshold value (Ha) is set as the optimum threshold value (Ho), and the process proceeds to the next inspection for the presence or absence of an internal abnormality. When the binarized image area (Sa) is too large than the reference area, the level of the maximum threshold value (Ha) is set to be larger and readjusted.

【0013】次に、2値化画像面積(Sa)が基準面積よ
りも小さくなる場合は、被検査体が不良品であるか、又
は図2(a)の点線に示す輝度分布のように、良品であ
っても中空経路内面がざらついていたり、或いは梨地状
のため、射出光量が減少する場合である。この場合、1
段レベルを下げて次に大きいしきい値(Hb)で2値化画
像面積を再計測する。その時の2値化画像面積(Sb)が
前回しきい値(Ha)による2値化画像面積(Sa)よりも
大きくなった時、又は対応する基準面積に略一致した
時、良品と判定し、その時のしきい値(Hb)を最適しき
い値(Ho)として設定する。又、大きくなり過ぎると、
しきい値(Hb)からやや上げたしきい値を最適値とす
る。そして、2値化画像面積(Sb)が一定、又は0にな
れば、不良品と判定し、更に、一段レベルを下げてしき
い値(Hc)で再計測する。以上の操作を複数回、例えば
5回程度順次、繰り返し、2値化画像面積が一定又は、
0になれば、不良品と判定し、しきい値設定をやり直
す。このようにして2値化画像面積を判定し、それに応
じてしきい値レベルを適宜、自動調整して最適の2値化
しきい値(Ho)を設定する。
Next, when the binarized image area (Sa) is smaller than the reference area, the inspected object is defective or the luminance distribution as shown by the dotted line in FIG. This is a case where even if the product is a good product, the inner surface of the hollow path is rough or satin-like, so that the amount of emitted light is reduced. In this case, 1
The step level is lowered, and the area of the binarized image is measured again at the next largest threshold (Hb). When the binarized image area (Sb) at that time is larger than the previous binarized image area (Sa) based on the threshold value (Ha), or when the binarized image area substantially coincides with the corresponding reference area, it is determined to be non-defective. The threshold (Hb) at that time is set as the optimal threshold (Ho). Also, if it gets too big,
The threshold slightly raised from the threshold (Hb) is set as the optimum value. If the binarized image area (Sb) is constant or becomes 0, it is determined to be defective, and the level is lowered by one step and re-measured at the threshold (Hc). The above operation is repeated plural times, for example, about five times, and the binarized image area is constant or
If it becomes 0, it is determined to be defective, and the threshold value is set again. In this manner, the binarized image area is determined, and the threshold level is automatically adjusted as appropriate to set an optimal binarized threshold (Ho).

【0014】又、図示しないが、ファジィ推論の重心演
算を用いて直接、最適しきい値(Ho)を設定する手段も
ある。例えば、入出力部として2値化画像面積及びしき
い値の各メンバーシップ関数を設定する。次に、図2
(a)に示す輝度分布から所定のしきい値により2値化
画像面積を取り出して入力部のメンバーシップ関数から
適合度を判定する。そして、その適合度を出力部のメン
バーシップ関数に代入して対応する合成台形面積の重心
演算により最適しきい値(Ho)を算出する。
Although not shown, there is also a means for directly setting the optimum threshold value (Ho) using the center of gravity calculation of fuzzy inference. For example, the membership functions of the binarized image area and the threshold are set as the input / output unit. Next, FIG.
The binarized image area is extracted from the luminance distribution shown in FIG. 7A by a predetermined threshold value, and the degree of conformity is determined from the membership function of the input unit. Then, the optimum degree (Ho) is calculated by substituting the degree of conformity into the membership function of the output unit and calculating the center of gravity of the corresponding combined trapezoid area.

【0015】上記最適の2値化しきい値(Ho)を設定す
ると、次に、図3(a)に示すように、しきい値(Ho)
に基づいてカメラ(9)による撮像画像から2値化画像
(Do)を取り出し、その画像(Do)の特徴量、例えば面
積や周囲長を計測する。そして、図3(b)に示すよう
に、予めファジィ推論のメンバーシップ関数(Ma)を異
なる中空経路出口毎に設定しておき、例えば計測した面
積データをメンバーシップ関数(Ma)に代入する。そこ
で、計測データの正常データに対する適合度(α)をフ
ァジィ推論のメンバーシップ関数(Ma)から導出する。
そこで、その適合度(α)を基準値(A)と比較判別
し、α>Aの時、良品と判定して中空経路内の異常有無
を検査する。この時、複数の中空経路出口を一度に撮像
し、各出口毎の複数画像の各適合度を組み合わせ、例え
ばその乗算値から異常有無を判別しても良い。又、面
積、周囲長の他、更に、画像の重心位置等を判別要素と
して付け加えると、検査精度を向上させることが出来
る。
After setting the above-mentioned optimal binarization threshold (Ho), next, as shown in FIG.
Then, the binarized image (Do) is extracted from the image captured by the camera (9) based on, and the feature amount of the image (Do), for example, the area and the perimeter are measured. Then, as shown in FIG. 3B, a membership function (Ma) of fuzzy inference is set in advance for each different hollow path exit, and for example, measured area data is substituted into the membership function (Ma). Therefore, the degree of conformity (α) of the measured data to the normal data is derived from the membership function (Ma) of fuzzy inference.
Therefore, the degree of conformity (α) is compared with the reference value (A), and when α> A, it is determined as a non-defective product and the presence or absence of an abnormality in the hollow path is inspected. At this time, a plurality of hollow path exits may be imaged at once, and the suitability of the plurality of images for each exit may be combined, and for example, the presence or absence of an abnormality may be determined from the multiplied value. In addition, by adding the center of gravity of the image and the like as discriminating factors in addition to the area and the perimeter, the inspection accuracy can be improved.

【0016】上記メンバーシップ関数(Ma)は複数の良
品或いは不良品ワークの面積や周囲長等を計測し、(N
a)を正常領域、(Nb)(Nc)をそれぞれ異常領域とし
て確率分布を描いたもので、それを各経路出口毎に、且
つ、面積や周囲長等の各特徴量毎に作成する。例えば面
積分布において計測面積が(Pa)の場合、正常データに
対する適合度は(Qa)となり、そこから中空経路内の異
常有無を判別する。尚、領域(Na)は中子残存により光
量が減少して生じる異常領域を示し、領域(Nb)は鋳バ
リ残存により光量が増大して生じる異常領域を示す。
The membership function (Ma) measures the area, perimeter, etc. of a plurality of non-defective or defective workpieces, and calculates (N
The probability distribution is drawn with a) as a normal region and (Nb) and (Nc) as abnormal regions. The probability distribution is created for each route exit and for each feature amount such as area and perimeter. For example, when the measured area in the area distribution is (Pa), the degree of conformity to the normal data is (Qa), and the presence or absence of an abnormality in the hollow path is determined based on that. The region (Na) indicates an abnormal region caused by a decrease in the amount of light due to the remaining core, and the region (Nb) indicates an abnormal region caused by an increase in the amount of light due to the remaining cast flash.

【0017】或いは、複数の中空経路出口がある場合、
その複数出口を一度に撮像し、一画像中に複数の各出口
画像を含んだ2値化画像を取り出す。そして、その画像
データに基づいて例えば複数画像の合計面積や各像の合
計面積に対する割合等をデータとしてファジィ推論によ
り中空経路(4)内の異常有無を検査しても良い。
Alternatively, when there are a plurality of hollow path outlets,
The plurality of outlets are imaged at a time, and a binarized image including a plurality of outlet images in one image is taken out. Then, based on the image data, for example, the presence or absence of an abnormality in the hollow path (4) may be inspected by fuzzy inference using, for example, the total area of a plurality of images or the ratio of each image to the total area.

【0018】又、図1(c)及び図4(e)に示すよう
に、中空経路(4a)内が屈曲迷路状に複雑に入り組んで
いる場合、一方向からの投光のみでは、網目(4b)内の
異常が撮像画像に全く反映されない場合があるため、十
分に経路(4a)内の異常有無を判別出来ない。そのた
め、例えば投光部(8)の投光方向を変え、複数の異な
る角度から投光する。そこで、まず一方向から中空経路
(4a)内の一方の側面(4c)に向けて投光し、経路(4
a)内及びその網目(4b)内を通過した光を撮像する。
同様に、他方向から中空経路(4a)内の他方の側面(4
d)に向けて投光し、経路(4a)内及びその網目(4b)
内を通過した光を撮像する。そうすると、中空経路(4
a)の異なる2側面(4c)(4d)に投光することにより
相異なる2個の撮像画像が得られ、且つ、各画像に応じ
て明るさ面積値等に差異が生じる。そこで、その各撮像
画像の2値化画像を組合せ、明るさ面積値等の特徴を比
較判定してファジィ推論により経路(4a)内の異常有無
を判別する。
As shown in FIGS. 1 (c) and 4 (e), when the inside of the hollow path (4a) is complicated and complicated in a bent maze, light projection from only one direction requires a mesh ( Since the abnormality in 4b) may not be reflected at all in the captured image, it is not possible to sufficiently determine the presence or absence of the abnormality in the route (4a). Therefore, for example, the light emitting direction of the light emitting unit (8) is changed, and light is emitted from a plurality of different angles. Therefore, first, light is projected from one direction toward one side surface (4c) in the hollow path (4a), and the path (4
The light passing through a) and the mesh (4b) is imaged.
Similarly, from the other direction, the other side (4
Light is emitted toward d), within the path (4a) and its mesh (4b).
The light passing through the inside is imaged. Then, the hollow path (4
By projecting light on the two different side surfaces (4c) and (4d) of a), two different captured images are obtained, and the brightness area value and the like differ depending on each image. Then, the binarized images of the captured images are combined, and the characteristics such as the brightness area value are compared and determined, and the presence or absence of an abnormality in the path (4a) is determined by fuzzy inference.

【0019】又、投光部(8)と撮像部(9)の各位置
をずらせ、2つの相異なる撮像画像を得て、上記同様、
その各撮像画像の2値化画像を組合せて経路(4a)内の
異常有無を判別しても良く、更に、投光方向や位置を変
えても良い。
Further, the respective positions of the light projecting section (8) and the image pickup section (9) are shifted to obtain two different picked-up images.
The presence or absence of an abnormality in the path (4a) may be determined by combining the binarized images of the captured images, and the light projection direction and position may be changed.

【0020】[0020]

【発明の効果】本発明によれば、エンジンヘッドシリン
ダのような中空経路を持つ被検査体における中空経路の
内部異常有無を検査する際、中空経路入口に拡散光を投
光し、経路内を乱反射して通過した光を経路出口で二次
元平面にて受光して撮像し、撮像画像の2値化画像から
画像特徴量を計測し、その計測データの正常データに対
する適合度をファジィ推論により判別して中空経路の内
部異常有無を検査したから、二次元平面で受光するた
め、屈曲した中空経路内でも乱反射する光を正確に受光
出来る。又、2値化画像から面積や周囲長等の特徴量を
計測し、その計測データからファジィ推論により内部異
常有無を判別したから、誤判別を防止出来、正確な判別
が可能である。
According to the present invention, when inspecting for an internal abnormality of a hollow path in a test object having a hollow path such as an engine head cylinder, a diffused light is emitted to the entrance of the hollow path and the inside of the path is inspected. At the exit of the path, the light that has passed through the diffuse reflection is received and imaged on a two-dimensional plane, the image features are measured from the binarized image of the captured image, and the fitness of the measured data to the normal data is determined by fuzzy inference. Since the inside of the hollow path is inspected for abnormalities, the light is received on a two-dimensional plane, so that the light diffusely reflected can be accurately received even in the bent hollow path. In addition, since feature amounts such as area and perimeter are measured from the binarized image and the presence or absence of an internal abnormality is determined from the measured data by fuzzy inference, erroneous determination can be prevented and accurate determination can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る中空経路の内部検査方法
の実施の形態を示す検査手段及び被検査体の一例である
ヘッドシリンダの要部垂直断面図である。(b)はヘッ
ドシリンダの部分水平断面図である。(c)はヘッドシ
リンダの他の部分水平断面図である。(d)は本発明に
係る中空経路の内部検査方法の動作実施例を示す要部垂
直断面図である。
FIG. 1A is a vertical sectional view of a main part of a head cylinder as an example of an inspection unit and an object to be inspected, showing an embodiment of a method for inspecting the inside of a hollow path according to the present invention. (B) is a partial horizontal sectional view of the head cylinder. (C) is another partial horizontal sectional view of the head cylinder. (D) is a vertical sectional view of an essential part showing an operation example of the method for inspecting the inside of a hollow path according to the present invention.

【図2】(a)は被検査体の撮像画像の輝度分布の一例
と数種類の2値化しきい値を示すグラフである。(b)
は被検査体の撮像画像の輝度分布の他の一例と数種類の
2値化しきい値を示すグラフである。(c)は図1
(a)(b)のしきい値で2値化した画像の一例を示す
図である。(d)は図1(a)(b)のしきい値で画像
を取り出せなかった場合を示す図である。
FIG. 2A is a graph showing an example of a luminance distribution of a captured image of a test object and several types of binarization thresholds. (B)
Is a graph showing another example of the luminance distribution of the captured image of the test object and several types of binarization thresholds. (C) is FIG.
It is a figure which shows an example of the image binarized by the threshold value of (a) and (b). (D) is a diagram showing a case where an image cannot be taken out with the threshold values of FIGS. 1 (a) and (b).

【図3】(a)は2値化画像の一例を示す図である。
(b)はファジィ判定用メンバーシップ関数の一例を示
す波形図である。
FIG. 3A is a diagram illustrating an example of a binarized image.
(B) is a waveform diagram showing an example of a fuzzy judgment membership function.

【図4】(a)は被検査体の一例であるヘッドシリンダ
の下面図である。(b)は図4(a)のヘッドシリンダ
の部分垂直断面図である。(c)は図4(a)のヘッド
シリンダの部分水平断面図である。(d)は本発明の課
題を説明するためのヘッドシリンダの部分垂直断面図で
ある。(e)は図4(a)のヘッドシリンダの他の部分
水平断面図である。
FIG. 4A is a bottom view of a head cylinder which is an example of an inspection object. FIG. 4B is a partial vertical sectional view of the head cylinder shown in FIG. FIG. 4C is a partial horizontal sectional view of the head cylinder shown in FIG. (D) is a partial vertical sectional view of the head cylinder for explaining the problem of the present invention. FIG. 5E is another partial horizontal sectional view of the head cylinder shown in FIG.

【符号の説明】[Explanation of symbols]

1 被検査体(ヘッドシリンダ) 4、4a 中空経路 7 検査手段 8 投光部 9 撮像部 Lb 拡散光 DESCRIPTION OF SYMBOLS 1 Inspection object (head cylinder) 4, 4a Hollow path 7 Inspection means 8 Light emitting part 9 Imaging part Lb Diffusion light

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G06T 1/00 G06T 7/00 - 7/60 F02F 1/24 - 1/42 G01B 11/24 - 11/255 G01N 21/49 - 21/53 G01N 21/88 - 21/958 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G06T 1/00 G06T 7 /00-7/60 F02F 1/24-1/42 G01B 11/24-11 / 255 G01N 21/49-21/53 G01N 21/88-21/958

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 屈曲した中空経路を有する被検査体にお
ける内部の異常有無を検査するにあたり、上記経路入口
から拡散光を投光し、経路内を乱反射して通過した光を
所定の撮像手段により経路出口で二次元平面にて受光し
て撮像する工程と、上記撮像画像を2値化して検査に係
る2値化画像を抽出する工程と、上記2値化画像を画像
処理して画像特徴量を計測し、その計測データの正常デ
ータに対する適合度をファジィ推論により判別して中空
経路の内部異常有無を検査する工程とを含むことを特徴
とする中空経路の内部検査方法。
When inspecting for an internal abnormality in a test object having a bent hollow path, diffused light is projected from an entrance of the path, and light that has been diffusely reflected in the path and passed through by a predetermined imaging means. A step of receiving and capturing an image on a two-dimensional plane at a path exit; a step of binarizing the captured image to extract a binarized image for inspection; and performing image processing on the binarized image to obtain an image feature amount And inspecting the inside of the hollow path for abnormalities by determining the degree of conformity of the measured data to the normal data by fuzzy inference.
【請求項2】 中空経路入口に拡散光を投光する際、相
異なる複数方向又は位置から時間をずらして投光し、各
拡散光毎に2値化画像を抽出して撮像及び検査すること
を特徴とする請求項1記載の中空経路の内部検査方法。
2. When projecting diffused light at the entrance of a hollow path, the diffused light is projected from a plurality of different directions or positions at different times, and a binarized image is extracted for each diffused light for imaging and inspection. The method for inspecting the inside of a hollow path according to claim 1, wherein:
【請求項3】 複数の中空経路出口がある場合、その複
数出口を一度に撮像して一画像中に複数の各出口画像を
含んだ2値化画像を取り出し、その2値化画像データに
基づいて中空経路の内部異常有無を検査することを特徴
とする請求項1又は2記載の中空経路の内部検査方法。
3. When there are a plurality of exits in a hollow path, the exits are imaged at a time to extract a binarized image including a plurality of exit images in one image, and based on the binarized image data. The method for inspecting the inside of a hollow path according to claim 1 or 2, wherein the inside of the hollow path is inspected for abnormalities.
【請求項4】 複数の中空経路の各出口を個別に撮像し
て各出口毎の2値化画像を取り出し、各出口毎に中空経
路の内部異常有無を検査することを特徴とする請求項1
又は2記載の中空経路の内部検査方法。
4. The method according to claim 1, wherein each exit of the plurality of hollow paths is individually imaged, a binarized image for each exit is taken out, and the presence or absence of an internal abnormality in the hollow path is inspected for each exit.
Or the method for inspecting the inside of a hollow path according to 2.
JP07314025A 1995-12-01 1995-12-01 Internal inspection method for hollow paths Expired - Fee Related JP3130460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07314025A JP3130460B2 (en) 1995-12-01 1995-12-01 Internal inspection method for hollow paths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07314025A JP3130460B2 (en) 1995-12-01 1995-12-01 Internal inspection method for hollow paths

Publications (2)

Publication Number Publication Date
JPH09152407A JPH09152407A (en) 1997-06-10
JP3130460B2 true JP3130460B2 (en) 2001-01-31

Family

ID=18048310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07314025A Expired - Fee Related JP3130460B2 (en) 1995-12-01 1995-12-01 Internal inspection method for hollow paths

Country Status (1)

Country Link
JP (1) JP3130460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237545B1 (en) * 2018-08-17 2021-04-07 박영근 A cosmetic pack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013095A (en) * 2002-06-11 2004-01-15 Fujitsu Ltd Method and apparatus for comparing pattern image, and program
JP2008026050A (en) * 2006-07-19 2008-02-07 Ryoei Engineering Kk Core hole inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237545B1 (en) * 2018-08-17 2021-04-07 박영근 A cosmetic pack

Also Published As

Publication number Publication date
JPH09152407A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US8948491B2 (en) Method and apparatus for detecting surface unevenness of object under inspection
US20090123032A1 (en) Measurement of gaps between valve seats and attachment parts
US20020196432A1 (en) Defect detector and method of detecting defect
JP3130460B2 (en) Internal inspection method for hollow paths
JP3124219B2 (en) Internal inspection method for hollow paths
JP3112061B2 (en) Hollow path internal inspection device
JP3124218B2 (en) Hollow path internal inspection device
TWI391659B (en) Method for determination of non - metallic inclusions
JP3404715B2 (en) Internal inspection method for wide section hollow path
JP3124221B2 (en) Head cylinder blockage inspection device
JP2002250700A (en) Method and device for inspecting pattern
JPH05203584A (en) Device for detecting characteristic amount on work surface
JPH0520695B2 (en)
JP3372850B2 (en) Inspection method of borehole of cylinder block
JP3130462B2 (en) Passage obstruction inspection method
JP3374005B2 (en) Defect detection device for band edge
JP3232249B2 (en) Inspection method for missing pins of PGA substrate
JP3077547B2 (en) Root gap width detection method for narrow gap
JP3984367B2 (en) Surface defect inspection method and inspection apparatus
JPH09196860A (en) Method for checking soldering state
JP2508662Y2 (en) Flaw detection device
JPH06281594A (en) Apparatus for detecting circular flaw on surface of object
JPH09161050A (en) Method for setting threshold of binarized image
JPH079402B2 (en) Defect inspection method for pellet end face for nuclear fuel
JPH08235543A (en) Method and device for detecting defect, such as stain

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees