JPH09161042A - Method for inspecting inside of hollow route - Google Patents

Method for inspecting inside of hollow route

Info

Publication number
JPH09161042A
JPH09161042A JP32058595A JP32058595A JPH09161042A JP H09161042 A JPH09161042 A JP H09161042A JP 32058595 A JP32058595 A JP 32058595A JP 32058595 A JP32058595 A JP 32058595A JP H09161042 A JPH09161042 A JP H09161042A
Authority
JP
Japan
Prior art keywords
light
image
hollow
path
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32058595A
Other languages
Japanese (ja)
Other versions
JP3124219B2 (en
Inventor
Fumiaki Fukunaga
文昭 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP07320585A priority Critical patent/JP3124219B2/en
Publication of JPH09161042A publication Critical patent/JPH09161042A/en
Application granted granted Critical
Publication of JP3124219B2 publication Critical patent/JP3124219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the existence of internal abnormality in a hollow route by projecting diffused light front the inlet of the route, receiving light passed through the inside of the route with irregular reflection by a prescribed image pickup means and discriminating the feature of the picked-up image. SOLUTION: A projection unit 8 and an image pickup unit 9 are inserted into a pair of sand removing holes formed on the upper face side of a head cylinder, a plane mirror 11 and a convex mirror 12 are oppositely arranged so as to interpose a hollow route 4a formed between the holes between both the mirrors 11, 12 and diffused light is projected from a light emitting source to the mirror 11 through an optical fiber 10. Thereby, light Lb reflected from the mirror 11 is irregularly reflected and passed in the hollow route 4a of which inside is a rugged state and the passed light is received by the mirror 12 in two-dimensional plane. Reflected light from the mirror 12 is picked up by a camera 14 like two-dimensional plane through a lens 13 to obtain the two-dimensional plane image of the irregularly reflected light passed through the route 4a. Since features such as the light quantity and contour of the picked-up image are changed in accordance with the normality/abnormality of the inside state of the hollow route 4a, the features of the picked-up image and discriminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外から内部を観察
出来ない屈曲した中空経路を有する被検査体における内
部の異常有無を検査する中空経路の内部検査方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting an inside of a hollow path for inspecting an inside of an object to be inspected having a bent hollow path whose inside cannot be observed from the outside.

【0002】[0002]

【従来の技術】水冷式エンジンは、シリンダブロック及
びヘッドシリンダに燃焼室部の冷却水路(ウォータジャ
ケット)を有し、この部分に冷却水を循環供給してエン
ジンの焼き付きを防止しており、図5(a)(b)
(c)にヘッドシリンダ(1)の一例の下面図、部分垂
直断面図、及びヘッド上面側の部分水平断面図をそれぞ
れ示す。上記ヘッドシリンダ(1)は、図5(a)
(b)に示すように、シリンダ筒(2)…の周囲に沿っ
てヘッド下面側(シリンダブロック側)に複数の水穴
(3)…が形成され、又、ヘッド上面側の点火栓及び吸
排気バルブ周辺に砂抜き穴(4)…が形成されている。
上記水穴(3)…はヘッドシリンダ(1)がシリンダブ
ロックと結合することにより循環冷却水路を形成し、
又、隣接する水穴間に外から観察出来ない屈曲した冷却
水路用中空経路(3a)を形成する。更に、ヘッド上面側
においても砂抜き穴間に冷却水路用中空経路(4a)が形
成されている。上記ヘッドシリンダ(1)は、屈曲した
中空経路(3a)(4a)を有する被検査体の一例であり、
特に図5(c)に示すように、ヘッド上面側の中空経路
(4a)は網目状の複雑な屈曲迷路を形成している。
2. Description of the Related Art A water-cooled engine has a cooling water passage (water jacket) in a combustion chamber in a cylinder block and a head cylinder, and cooling water is circulated to this portion to prevent engine seizure. 5 (a) (b)
FIG. 3C shows a bottom view, a partial vertical cross-sectional view, and a partial horizontal cross-sectional view of the head upper surface side of an example of the head cylinder (1). The head cylinder (1) is shown in FIG.
As shown in (b), a plurality of water holes (3) are formed on the lower surface side of the head (cylinder block side) along the circumference of the cylinder tube (2), and the spark plug and the suction plug on the upper surface side of the head are formed. Sand removal holes (4) are formed around the exhaust valve.
The water holes (3) form a circulating cooling water passage by the head cylinder (1) being connected to the cylinder block,
In addition, a bent cooling water channel hollow path (3a) that cannot be observed from the outside is formed between adjacent water holes. Further, a hollow passage (4a) for a cooling water passage is formed between the sand removing holes on the upper surface side of the head. The head cylinder (1) is an example of an object to be inspected having curved hollow paths (3a) (4a),
In particular, as shown in FIG. 5C, the hollow path (4a) on the upper surface side of the head forms a mesh-like complicated bending labyrinth.

【0003】上記冷却水路用水穴(3)及び中空経路
(3a)(4a)を形成する場合、鋳型に中子をセットして
溶融金属(例えば溶融アルミ合金)を注湯し、凝固させ
た後、鋳型及び中子を除去して製品とするが、ヘッドシ
リンダ(1)の冷却水路は、シリンダブロックの冷却水
路に比べて形状が複雑となり、中子砂が除去されずに残
存し易い。特に、中空経路(3a)(4a)の内部は外から
観察出来ないため、中子砂が残存したまま最終工程まで
移行することが多々あり、その結果、最悪の場合、エン
ジンを不良品として処分せざるを得ないことがある。
When forming the water hole (3) for the cooling water passage and the hollow passages (3a) (4a), after setting the core in the mold and pouring molten metal (for example, molten aluminum alloy) and solidifying it Although the mold and the core are removed to obtain a product, the cooling water channel of the head cylinder (1) has a more complicated shape than the cooling water channel of the cylinder block, and the core sand is likely to remain without being removed. In particular, since the inside of the hollow paths (3a) and (4a) cannot be observed from the outside, the core sand often moves to the final process with the core sand remaining. As a result, in the worst case, the engine is disposed of as a defective product. There is something we cannot help but do.

【0004】又、中子の造形時や鋳型へのセット時、中
子が一部欠損していたり、亀裂個所がある場合、これを
そのまま鋳型にセットすると、注湯した溶融金属がこれ
らの欠損個所や亀裂個所にも流れ込んで鋳バリとして残
存する結果、冷却水路を閉塞させ、エンジンの冷却作用
が悪化する。
When the core is partially missing or has cracks at the time of molding the core or setting it in the mold, if the core is set as it is, the molten metal poured into the core will be damaged. As a result of casting burrs flowing into spots and cracks and remaining as casting burrs, the cooling water passages are blocked and the cooling effect of the engine deteriorates.

【0005】そこで、特に屈曲した中空経路(3a)(4
a)の内部を検査して、その形状異常や中子残存等の異
常の有無を検査する必要があり、その検査手段の一例を
図5(b)を参照して以下に示す。上記検査手段は、ヘ
ッドシリンダ(1)の下面側の水穴(3)…及び上面側
の砂抜き穴(4)…にそれぞれ挿入する一対の投受光用
第1、第2各光電センサ(5)(6)を具備する。そし
て、例えば各光電センサ(5)(6)をそれぞれ水穴
(3)…に挿入し、第1光電センサ(5)から投射した
光(La)を第2光電センサ(6)で受光した時、中空経
路(3a)の内部は正常であると判別する。
Therefore, the hollow path (3a) (4)
It is necessary to inspect the inside of a) to inspect for any abnormalities such as shape abnormality and core remaining. An example of the inspection means will be described below with reference to FIG. The inspection means includes a pair of first and second photoelectric sensors (5) for projecting and receiving light which are respectively inserted into the water holes (3) on the lower surface side of the head cylinder (1) and the sand removing holes (4) on the upper surface side. ) (6) is provided. Then, for example, when the photoelectric sensors (5) and (6) are inserted into the water holes (3), respectively, and the light (La) projected from the first photoelectric sensor (5) is received by the second photoelectric sensor (6). , The inside of the hollow path (3a) is determined to be normal.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする課題
は、中空経路(3a)の内面は梨地状の細かい凹凸面を持
つため、光が乱反射して受光側の第2センサ(6)まで
正確に届かず、良品でも不良判定になって検査困難にな
ること、又、投光用第1光電センサ(5)の光は約1mm
径のスポット光のため、完全閉塞しか検出できず、図5
(b)に示すように、中子(m)が半詰まりの場合、ス
ポット光が半詰まり部をかすめて通ることにより検出不
能になる時があること、更に、図5(c)に示すよう
に、ヘッド上面側の点火栓周辺の中空経路(4a)は網目
状の複雑な屈曲迷路のため、網目(4c)内に中子(m)
が詰まっても、その検査は、目視検査は勿論のこと、光
電センサ方式でも実施不能である点である。
The problem to be solved is that the inner surface of the hollow path (3a) has a fine textured surface with a satin finish, so that the light is diffusely reflected and the second sensor (6) on the light receiving side is accurate. The quality of the light from the first photoelectric sensor (5) for light projection is about 1 mm.
Due to the spot light of the diameter, only complete occlusion can be detected.
As shown in (b), when the core (m) is half clogged, the spot light sometimes passes through the half clogged part and becomes undetectable. Furthermore, as shown in FIG. 5 (c). In addition, since the hollow path (4a) around the spark plug on the upper surface side of the head is a complicated mesh-shaped bending maze, the core (m) is inside the mesh (4c).
Even if it is clogged, the inspection cannot be performed not only by visual inspection but also by a photoelectric sensor method.

【0007】[0007]

【課題を解決するための手段】本発明は、屈曲した中空
経路を有する被検査体における内部の異常有無を検査す
るにあたり、上記経路入口から拡散光を投光し、経路内
を乱反射して通過した光を所定の撮像手段により経路出
口で二次元平面にて受光し、その撮像画像の特徴を識別
して中空経路の内部異常有無を判別することを特徴とす
る。
According to the present invention, when inspecting the inside of an object to be inspected having a bent hollow path for abnormality, diffused light is projected from the path entrance and diffusely reflected in the path to pass. It is characterized in that the predetermined light is received by a predetermined imaging means at the exit of the path on a two-dimensional plane, and the feature of the picked-up image is identified to determine the presence or absence of an internal abnormality of the hollow path.

【0008】[0008]

【発明の実施の形態】本発明に係る中空経路の内部検査
方法の実施の形態を図1〜図4を参照して以下に説明す
る。本発明は、屈曲した中空経路を有する被検査体にお
いて経路入口から拡散光を投光し、経路内を乱反射して
通過した光を経路出口で二次元平面的に撮像し、その明
るさ等の撮像画像の特徴を識別して経路内部の異常有無
を判別することを特徴とする。そこで、まず図1(a)
は図5(b)(c)と同一のヘッドシリンダ(1)及び
本発明方法を実施するための検査手段の部分垂直断面
図、図1(b)はヘッド上面側及び検査手段(7)の部
分水平断面図、図2は検査手段(7)の側面図をそれぞ
れ示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method for inspecting the inside of a hollow path according to the present invention will be described below with reference to FIGS. The present invention projects diffused light from an entrance of a path in an inspection object having a bent hollow path, and two-dimensionally images the light diffusely reflected in the path and passed through the exit of the path to determine the brightness and the like. The feature is that the feature of the captured image is identified to determine whether or not there is an abnormality inside the route. Therefore, first, FIG. 1 (a)
Is a partial vertical sectional view of the same head cylinder (1) as in FIGS. 5 (b) and 5 (c) and an inspection means for carrying out the method of the present invention. FIG. 1 (b) shows the head upper surface side and the inspection means (7). FIG. 2 shows a partial horizontal sectional view, and FIG. 2 shows a side view of the inspection means (7).

【0009】上記検査手段(7)は投光ユニット(8)
と撮像ユニット(9)とを具備し、図2に示すように、
上記投光ユニット(8)は、上端を発光ダイオード等の
発光素子に接続した光ファイバ(10)と、光ファイバ先
端の投光端に取り付けた平面鏡(11)とを内蔵する。
又、撮像ユニット(9)は、平面鏡(11)に対向配置し
た凸面鏡(12)と、凸面鏡(12)の反射光をレンズ(1
3)を介して二次元平面で受光して撮像するCCDカメ
ラ等の超小型カメラ(14)とを内蔵する。
The inspection means (7) is a light projecting unit (8).
And an imaging unit (9), as shown in FIG.
The light projecting unit (8) includes an optical fiber (10) whose upper end is connected to a light emitting element such as a light emitting diode, and a plane mirror (11) attached to the light projecting end at the tip of the optical fiber.
The image pickup unit (9) also includes a convex mirror (12) arranged to face the plane mirror (11) and a lens (1) for reflecting light reflected by the convex mirror (12).
It has a built-in ultra-compact camera (14) such as a CCD camera which receives a light on a two-dimensional plane via 3) and takes an image.

【0010】上記構成に基づき本発明の動作(方法)を
次に説明する。まずヘッドシリンダ(1)の上面側の一
対の砂抜き穴(4)…に投光ユニット(8)と撮像ユニ
ット(9)とを挿入して穴間の中空経路(4a)を挟むよ
うに平面鏡(11)と凸面鏡(12)とを対向配置し、発光
源から光ファイバ(10)を経て平面鏡(11)に拡散光を
投光する。そうすると、平面鏡(11)から反射した光
(Lb)が内面梨地状の中空経路(4a)内を乱反射して通
過し、その通過光を凸面鏡(12)で二次元平面にて受光
する。そして、凸面鏡(12)の反射光をレンズ(13)を
介してカメラ(14)により二次元平面的に撮像して、中
空経路(4a)内を通過した乱反射光の二次元平面による
撮像画像を得る。そして、中空経路(4a)内の正常又は
異常に応じて撮像画像の光量、輪郭等の特徴が変動する
ため、その撮像画像の特徴を識別し、例えば所定の明る
さ以上の光が所定の面積以上検出された時、中空経路
(4a)内が正常と判定する。又、水穴(3)の中空経路
(3a)に対しても同様に中空経路(3a)内の平面的な撮
像画像の特徴を識別して経路内部の異常有無を判別する
ことが出来る。
The operation (method) of the present invention based on the above configuration will be described below. First, the light projection unit (8) and the image pickup unit (9) are inserted into the pair of sand removing holes (4) on the upper surface side of the head cylinder (1) to sandwich the hollow path (4a) between the holes. (11) and the convex mirror (12) are arranged so as to face each other, and diffused light is projected from the light emitting source to the plane mirror (11) via the optical fiber (10). Then, the light (Lb) reflected from the plane mirror (11) is irregularly reflected and passes through the hollow path (4a) having a satin inner surface, and the passing light is received by the convex mirror (12) on the two-dimensional plane. Then, the reflected light of the convex mirror (12) is two-dimensionally imaged by the camera (14) through the lens (13), and an image of the irregularly reflected light passing through the hollow path (4a) by the two-dimensional plane is obtained. obtain. Then, since the features such as the light quantity and the outline of the captured image vary depending on whether the inside of the hollow path (4a) is normal or abnormal, the features of the captured image are identified and, for example, light having a predetermined brightness or more has a predetermined area. When detected above, it is determined that the inside of the hollow path (4a) is normal. Further, with respect to the hollow path (3a) of the water hole (3), it is possible to identify the feature of the planar imaged image in the hollow path (3a) in the same manner to determine whether there is an abnormality inside the path.

【0011】ここで、上記判別検査を例えばファジィ推
論により行なう際、ファジィ推論に先立って撮像用の2
値化しきい値(H)を被検査物である中空経路に合わせ
て自動的に設定する。そして、カメラ(14)による撮像
画像から所定レベル以上の光度を持つ2値化画像を取り
出し、その画像の面積、周囲長等の特徴量に基づき検査
する。そこで、上記しきい値設定において、まず予め被
検査物の複数の基準となる画像の面積や周囲長等の特徴
量の分布を計測してファジィ推論のメンバーシップ関数
を中空経路毎に作成しておく。又、図3(a)(b)に
示すように、カメラ(14)による撮像画像の輝度分布図
(Ba)(Bb)に対し高い方から順に複数個の2値化しき
い値(Ha)(Hb)(Hc)を設定する。そうすると、良品
の場合、しきい値(H)のレベルが下がる程、各レベル
の2値化画像面積は次第に大きくなり、逆に、不良品の
場合、2値化画像面積は一定のままか、又は図3(d)
に示すように、しきい値(Ha)〜(Hc)で0のままとな
る。
Here, when the discrimination test is performed by, for example, fuzzy inference, 2 for imaging is performed prior to fuzzy inference.
The threshold value (H) is automatically set according to the hollow path which is the inspection object. Then, a binarized image having a luminous intensity equal to or higher than a predetermined level is taken out from the image picked up by the camera (14), and the image is inspected based on the feature amount such as the area and the perimeter of the image. Therefore, in the above threshold setting, first, the distributions of the feature quantities such as the area and perimeter of the images that serve as a plurality of reference images of the object to be inspected are measured in advance, and the membership function of fuzzy reasoning is created for each hollow path. deep. In addition, as shown in FIGS. 3A and 3B, a plurality of binarization thresholds (Ha) (Ha) (in order from the highest in the luminance distribution map (Ba) (Bb) of the image captured by the camera (14). Hb) (Hc) is set. Then, in the case of a non-defective product, the binarized image area of each level gradually increases as the level of the threshold (H) decreases, and conversely, in the case of a defective product, the binarized image area remains constant. Or FIG. 3 (d)
As shown in, the threshold value (Ha) to (Hc) remains 0.

【0012】そこで、カメラ(14)による平面撮像画像
を最初に最大しきい値(Ha)で2値化し、図3(c)に
示す2値化画像(Da)を取り出す。その時の2値化画像
面積(Sa)をファジィ推論等により対応する基準面積に
対する適合度を判定し、基準面積に略一致していれば、
しきい値(Ha)を最適しきい値(Ho)として設定して次
の内部異常有無の検査に移行する。又、2値化画像面積
(Sa)が基準面積よりも大きくなり過ぎる場合、最大し
きい値(Ha)のレベルを更に大きく設定して再調整す
る。
Therefore, the plane image picked up by the camera (14) is first binarized with the maximum threshold value (Ha), and the binarized image (Da) shown in FIG. 3C is taken out. The degree of conformity of the binarized image area (Sa) at that time to the corresponding reference area is determined by fuzzy inference or the like.
Set the threshold value (Ha) as the optimum threshold value (Ho) and proceed to the next inspection for the presence or absence of an internal abnormality. When the binarized image area (Sa) becomes too large than the reference area, the level of the maximum threshold value (Ha) is set to a larger value and readjustment is performed.

【0013】次に、2値化画像面積(Sa)が基準面積よ
りも小さくなる場合は、被検査体が不良品であるか、又
は図3(a)の点線に示す輝度分布のように、良品であ
っても中空経路内面がざらついていたり、或いは梨地状
のため、射出光量が減少する場合である。この場合、1
段レベルを下げて次に大きいしきい値(Hb)で2値化画
像面積を再計測する。その時の2値化画像面積(Sb)が
前回しきい値(Ha)による2値化画像面積(Sa)よりも
大きくなった時、又は対応する基準面積に略一致した
時、良品と判定し、その時のしきい値(Hb)を最適しき
い値(Ho)として設定する。又、大きくなり過ぎると、
しきい値(Hb)からやや上げたしきい値を最適値とす
る。そして、しきい値を下げても2値化画像面積(Sb)
が一定のままか、又は最初から0のままであれば、不良
品と判定する。以上の操作を複数回、例えば5回程度順
次、繰り返し、2値化画像面積が一定又は、0であれ
ば、不良品と判定する。このようにして2値化画像面積
を判定し、それに応じてしきい値レベルを適宜、自動調
整して最適の2値化しきい値(Ho)を設定する。
Next, when the binarized image area (Sa) is smaller than the reference area, the object to be inspected is a defective product, or the luminance distribution shown by the dotted line in FIG. Even if the product is a non-defective product, the inner surface of the hollow path is rough or has a satin finish, so that the amount of emitted light is reduced. In this case, 1
The step level is lowered and the binarized image area is remeasured at the next highest threshold value (Hb). When the binarized image area (Sb) at that time is larger than the binarized image area (Sa) by the previous threshold value (Ha), or when the binarized image area substantially matches the corresponding reference area, it is determined as a good product, The threshold value (Hb) at that time is set as the optimum threshold value (Ho). If it gets too big,
The optimum value is a threshold value slightly raised from the threshold value (Hb). And, even if the threshold is lowered, the binarized image area (Sb)
Is constant or 0 from the beginning, it is determined as a defective product. The above operation is repeated a plurality of times, for example, about 5 times in sequence, and if the binarized image area is constant or 0, it is determined as a defective product. In this way, the binarized image area is determined, and the threshold level is appropriately automatically adjusted accordingly to set the optimum binarized threshold value (Ho).

【0014】又、ファジィ推論の重心演算を用いて直
接、最適しきい値(Ho)を設定する手段もある。例えば
図4(a)に示すように、入出力部として2値化画像面
積及びしきい値の各メンバーシップ関数(Ma)(Mb)を
設定する。次に、図3(a)に示す輝度分布から所定の
しきい値により2値化画像面積(So)を取り出して入力
部のメンバーシップ関数(Ma)から適合度(Ta)(Tb)
を判定する。そして、その適合度(Ta)(Tb)を出力部
のメンバーシップ関数(Mb)に代入し、図4(b)に示
すように、対応する合成台形面積(斜線部)の重心演算
により最適しきい値(Ho)を算出する。
There is also a means for directly setting the optimum threshold value (Ho) by using the centroid calculation of fuzzy inference. For example, as shown in FIG. 4A, the membership functions (Ma) (Mb) of the binarized image area and the threshold are set as the input / output unit. Next, the binarized image area (So) is extracted from the luminance distribution shown in FIG. 3 (a) by a predetermined threshold value, and the fitness (Ta) (Tb) is calculated from the membership function (Ma) of the input section.
Is determined. Then, the conformity (Ta) (Tb) is substituted into the membership function (Mb) of the output part, and as shown in FIG. 4 (b), it is optimized by calculating the center of gravity of the corresponding combined trapezoidal area (hatched part). Calculate the threshold value (Ho).

【0015】上記最適の2値化しきい値(Ho)を設定す
ると、次に、図4(c)に示すように、しきい値(Ho)
に基づいてカメラ(14)による撮像画像から2値化画像
(Do)を取り出し、その画像(Do)の特徴量、例えば面
積や周囲長を計測する。そして、図4(d)に示すよう
に、予めファジィ推論のメンバーシップ関数(Mc)を異
なる中空経路毎に設定しておき、例えば計測した面積デ
ータをメンバーシップ関数(Mc)に代入する。そこで、
計測データの正常データに対する適合度(α)をファジ
ィ推論のメンバーシップ関数(Mc)から導出する。そこ
で、その適合度(α)を基準値(A)と比較判別し、α
>Aの時、良品と判定して中空経路内の異常有無を検査
する。
When the optimum binarization threshold value (Ho) is set, next, as shown in FIG. 4 (c), the threshold value (Ho) is set.
A binarized image (Do) is taken out from the image picked up by the camera (14) based on, and the feature amount of the image (Do), for example, the area or the perimeter is measured. Then, as shown in FIG. 4D, a fuzzy reasoning membership function (Mc) is set in advance for each different hollow path, and, for example, the measured area data is substituted into the membership function (Mc). Therefore,
The goodness of fit (α) of measured data to normal data is derived from the membership function (Mc) of fuzzy reasoning. Therefore, the matching degree (α) is compared and discriminated with the reference value (A), and α
When> A, the product is judged to be non-defective and inspected for any abnormality in the hollow path.

【0016】上記メンバーシップ関数(Mc)は複数の良
品或いは不良品ワークの面積や周囲長等を計測し、(N
a)を正常領域、(Nb)(Nc)をそれぞれ異常領域とし
て確率分布を描いたもので、それを各中空経路毎に、且
つ、面積や周囲長等の各特徴量毎に作成する。例えば面
積分布において計測面積が(Pa)の場合、正常データに
対する適合度は(Qa)となり、そこから(Qa)と(A)
とを比較し、その大小に基づいて中空経路内の異常有無
を判別する。尚、領域(Nb)の内側は経路出口側或いは
中子により光量が減少して生じる異常領域を示し、領域
(Nc)の内側は経路中間或いは入口の閉塞鋳バリにより
光量が増大して生じる異常領域を示す。
The membership function (Mc) measures the area and perimeter of a plurality of non-defective or defective workpieces, and (N
Probability distribution is drawn with a) as the normal region and (Nb) and (Nc) as the abnormal regions, and it is created for each hollow path and for each feature quantity such as area and perimeter. For example, in the area distribution, if the measured area is (Pa), the goodness of fit for normal data is (Qa), and from that, (Qa) and (A)
And the presence / absence of abnormality in the hollow path is determined based on the magnitude. The inside of the area (Nb) indicates an abnormal area caused by a decrease in the light amount due to the exit side of the path or the core, and the inside of the area (Nc) indicates an abnormality caused by an increase in the light quantity due to a closed casting burr at the middle of the path or the entrance. Indicates the area.

【0017】或いは、複数の経路出口の場合、その複数
出口を一度に撮像し、一画像中に複数の各出口画像を含
んだ2値化画像を取り出す。そして、その画像データに
基づいて例えば複数画像の合計面積や各像の合計面積に
対する割合等をデータとしてファジィ推論により中空経
路内の異常有無を検査しても良い。又、複数の出口を一
度に撮像すると、各出口毎の複数画像の各適合度を組み
合わせ、例えばその乗算値から異常有無を判別しても良
い。又、面積、周囲長の他、更に、画像の重心位置等を
判別要素として付け加え、各適合度を乗算すると、良、
不良の境界のものに対し検査精度を向上させることが出
来る。
Alternatively, in the case of a plurality of route exits, the plurality of exits are imaged at once and a binarized image including a plurality of each exit image in one image is taken out. Then, based on the image data, the presence / absence of an abnormality in the hollow path may be inspected by fuzzy reasoning using, for example, the total area of a plurality of images or the ratio of each image to the total area. Further, when a plurality of exits are imaged at once, the suitability of each of the plurality of images for each exit may be combined and, for example, the presence or absence of abnormality may be determined from the multiplication value. Further, in addition to the area and the perimeter, the position of the center of gravity of the image is added as a discriminant, and each fitness is multiplied.
It is possible to improve the inspection accuracy for a defective boundary.

【0018】尚、図1(b)及び図5(c)に示すよう
に、中空経路(4a)内が屈曲迷路状の場合、一方向から
の投光のみでは、網目(4c)内の異常が撮像画像に全く
反映されない場合があるため、十分に経路(4a)内の異
常有無を判別出来ない。そのため、例えば平面鏡(11)
を変位させたり、或いは投光角度がそれぞれ相異なる複
数の平面鏡を接合一体化した多面鏡を平面鏡(11)に代
替使用し、複数の異なる角度から投光する。そこで、ま
ず一方向から中空経路(4a)内の一方の側面(4b)に向
けて投光し、経路(4a)内及びその網目(4c)内を通過
した光を撮像する。同様に、他方向から中空経路(4a)
内の他方の側面(4d)に向けて投光し、経路(4a)内及
びその網目(4c)内を通過した光を撮像する。そうする
と、中空経路(4a)の異なる2側面(4b)(4d)に投光
することにより相異なる2個の撮像画像が得られ、且
つ、各画像に応じて明るさ面積値等に差異が生じる。そ
こで、その各撮像画像を組合せて、明るさ面積値等の特
徴を比較判定して経路(4a)内の異常有無を判別する。
As shown in FIG. 1 (b) and FIG. 5 (c), when the hollow path (4a) has a bent labyrinth shape, an abnormality in the mesh (4c) is caused only by projecting light from one direction. May not be reflected in the captured image at all, so it is not possible to sufficiently determine whether or not there is an abnormality in the route (4a). Therefore, for example, a plane mirror (11)
Or a polygonal mirror in which a plurality of plane mirrors having different projection angles are joined and integrated is used instead of the plane mirror (11) to project light from a plurality of different angles. Therefore, first, light is projected from one direction toward one side surface (4b) of the hollow path (4a), and the light passing through the path (4a) and the mesh (4c) thereof is imaged. Similarly, the hollow path (4a) from the other direction
The light is projected toward the other side surface (4d) of the inside, and the light passing through the path (4a) and the mesh (4c) thereof is imaged. Then, two different picked-up images are obtained by projecting light on two different side surfaces (4b) and (4d) of the hollow path (4a), and a difference in brightness area value or the like occurs depending on each image. . Therefore, the respective captured images are combined and the characteristics such as the brightness area value are compared and determined to determine whether or not there is an abnormality in the path (4a).

【0019】又、投受光各ユニット(8)(9)の位置
を反転させて各位置をずらせ、2つの相異なる撮像画像
を得て、上記同様、その各撮像画像を組合せて経路(4
a)内の異常有無を判別しても良い。
Further, the positions of the light emitting and receiving units (8) and (9) are reversed to shift the respective positions, and two different picked-up images are obtained.
The presence / absence of abnormality in a) may be determined.

【0020】尚、被検査体としてヘッドシリンダの他、
シリンダブロックについても本発明装置により内部異常
を検査出来、他の中空経路を有する被検査体についても
同様に適用出来る。
In addition to the head cylinder as the object to be inspected,
The cylinder block can also be inspected for internal abnormality by the device of the present invention, and the invention can be similarly applied to other inspected objects having other hollow paths.

【0021】[0021]

【発明の効果】本発明によれば、エンジン燃焼室部の冷
却水路を有するヘッドシリンダ等の屈曲した中空経路を
有する被検査体の内部異常を検査する際、中空経路入口
から投光し、経路内を乱反射して通過した光を経路出口
で撮像手段により二次元平面にて受光し、その撮像画像
の特徴を識別して中空経路内部の異常有無を判別したか
ら、屈曲した中空経路内でも乱反射した光を正確に受光
でき、又、明るさ等の乱反射光の特徴を識別して判別す
るため、完全閉塞だけでなく、半詰まりの場合も検出が
可能となり、検査精度が大幅に向上する。又、投光方向
又は投光位置をずらした少なくとも2つの拡散光を時間
をずらして投光して経路出口で各拡散光毎に通過光を二
次元平面的に受光して撮像したから、中空経路内が迷路
状に屈曲して複雑に入り組んでいても、その内部の異常
有無が検査可能である。
According to the present invention, when inspecting an internal abnormality of an object to be inspected having a bent hollow path such as a head cylinder having a cooling water path of an engine combustion chamber, light is projected from the hollow path inlet to make a path. Light that diffuses and passes through the interior is received at the exit of the path on the two-dimensional plane by the imaging means, and the characteristics of the captured image are identified to determine whether there is an abnormality inside the hollow path. Since the received light can be accurately received, and the characteristics of diffusely reflected light such as brightness are identified and discriminated, not only complete occlusion but also half-clogging can be detected, and the inspection accuracy is greatly improved. In addition, at least two diffused lights whose light projecting directions or light projecting positions are shifted are projected at different times, and passing light is two-dimensionally received at each exit of the path at the exit of the path, and the image is captured. Even if the inside of the route bends in a labyrinth and is complicated and complicated, it is possible to inspect for an abnormality inside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はヘッドシリンダ及び本発明に係る中空
経路の内部検査方法を実施するための検査手段を示す部
分垂直断面図である。(b)は図1(a)のヘッドシリ
ンダ上面側及び本発明に係る被検査体の内部検査方法を
実施するための検査手段を示す部分水平断面図である。
FIG. 1A is a partial vertical cross-sectional view showing a head cylinder and an inspection means for carrying out an internal inspection method for a hollow path according to the present invention. FIG. 1B is a partial horizontal cross-sectional view showing the upper surface of the head cylinder of FIG. 1A and an inspection means for carrying out the internal inspection method of the inspection object according to the present invention.

【図2】本発明に係る検査手段の側面図である。FIG. 2 is a side view of the inspection means according to the present invention.

【図3】(a)は本発明に係る中空経路の内部検査方法
における撮像画像の輝度分布の一例と数種類の各2値化
しきい値のグラフである。(b)は本発明に係る中空経
路の内部検査方法における撮像画像の輝度分布の他の一
例と数種類の各2値化しきい値のグラフである。(c)
は図3(a)(b)のしきい値で2値化した画像の一例
を示す図である。(d)は図3(a)(b)のしきい値
で画像を取り出せなかった場合を示す図である。
FIG. 3A is a graph showing an example of a luminance distribution of a captured image in the method for inspecting the inside of a hollow path according to the present invention, and several kinds of binarized threshold values. (B) is another example of the brightness distribution of the captured image in the method for inspecting the inside of the hollow path according to the present invention and a graph of several kinds of binarized threshold values. (C)
FIG. 4 is a diagram showing an example of an image binarized with the threshold values shown in FIGS. FIG. 3D is a diagram showing a case where an image could not be extracted with the threshold values of FIGS. 3A and 3B.

【図4】(a)はファジィ推論によるしきい値設定の入
出力部の各メンバーシップ関数である。(b)はファジ
ィ推論の重心演算例を示すメンバーシップ関数である。
(c)は2値化画像の一例を示す図である。(d)はフ
ァジィ判定用メンバーシップ関数の一例を示す波形図で
ある。
FIG. 4A is a membership function of an input / output unit for threshold setting by fuzzy inference. (B) is a membership function showing an example of a centroid calculation of fuzzy inference.
(C) is a figure which shows an example of a binarized image. (D) is a waveform diagram showing an example of a fuzzy determination membership function.

【図5】(a)はヘッドシリンダの一例を示す下面図で
ある。(b)はヘッドシリンダ及び従来の被検査体の内
部検査方法の一例を示す部分垂直断面図である。(c)
はヘッドシリンダ上面側の部分水平断面図である。
FIG. 5A is a bottom view showing an example of a head cylinder. (B) is a partial vertical sectional view showing an example of a conventional internal inspection method for a head cylinder and a conventional device under test. (C)
FIG. 6 is a partial horizontal sectional view of the upper surface side of the head cylinder.

【符号の説明】[Explanation of symbols]

1 被検査体(ヘッドシリンダ) 3 中空経路出入口(水穴) 3a 中空経路 4 中空経路出入口(砂抜き穴) 4a 中空経路 7 検査手段 8 投光ユニット 9 撮像ユニット 1 Object to be inspected (head cylinder) 3 Hollow path entrance / exit (water hole) 3a Hollow path 4 Hollow path entrance / exit (sand removal hole) 4a Hollow path 7 Inspection means 8 Projection unit 9 Imaging unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 屈曲した中空経路を有する被検査体にお
ける内部の異常有無を検査するにあたり、上記経路入口
から拡散光を投光し、経路内を乱反射して通過した光を
所定の撮像手段により経路出口で二次元平面にて受光
し、その撮像画像の特徴を識別して中空経路の内部異常
有無を判別することを特徴とする中空経路の内部検査方
法。
1. When inspecting the inside of an object to be inspected having a bent hollow path for abnormalities, diffused light is projected from the entrance of the path, and light passing diffusedly reflected in the path is passed by a predetermined imaging means. A method for inspecting the inside of a hollow path, which comprises: receiving light on a two-dimensional plane at the exit of the path and identifying the characteristics of the captured image to determine whether there is an internal abnormality in the hollow path.
【請求項2】 屈曲迷路状中空経路の入口に投光方向又
は投光位置をずらした少なくとも2つの拡散光を時間を
ずらして投光して中空経路の出口で各拡散光毎に通過光
を撮像手段で二次元平面にて受光して撮像し、その各撮
像画像の特徴の差異から屈曲迷路状中空経路内の異常有
無を判別することを特徴とする請求項1記載の中空経路
の内部検査方法。
2. At least two diffused lights whose light projecting directions or light projecting positions are shifted are projected at the entrance of the curved labyrinth-like hollow path at different times, and the light passing through each diffused light is output at the exit of the hollow path. 2. The internal inspection of the hollow path according to claim 1, wherein the image pickup means receives light on a two-dimensional plane to pick up an image, and whether or not there is an abnormality in the bent labyrinth-like hollow path is determined from the difference in the characteristics of the picked-up images. Method.
JP07320585A 1995-12-08 1995-12-08 Internal inspection method for hollow paths Expired - Fee Related JP3124219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07320585A JP3124219B2 (en) 1995-12-08 1995-12-08 Internal inspection method for hollow paths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07320585A JP3124219B2 (en) 1995-12-08 1995-12-08 Internal inspection method for hollow paths

Publications (2)

Publication Number Publication Date
JPH09161042A true JPH09161042A (en) 1997-06-20
JP3124219B2 JP3124219B2 (en) 2001-01-15

Family

ID=18123068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07320585A Expired - Fee Related JP3124219B2 (en) 1995-12-08 1995-12-08 Internal inspection method for hollow paths

Country Status (1)

Country Link
JP (1) JP3124219B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317918A (en) * 2000-05-01 2001-11-16 Daihatsu Motor Co Ltd Clogging state inspecting instrument for cylinder head
JP2008256683A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Coolant passage inspecting device and detection method of vehicle cylinder head coolant passage blockage
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
CN116981934A (en) * 2021-03-16 2023-10-31 本田技研工业株式会社 Communication hole inspection device and communication hole inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317918A (en) * 2000-05-01 2001-11-16 Daihatsu Motor Co Ltd Clogging state inspecting instrument for cylinder head
JP2008256683A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Coolant passage inspecting device and detection method of vehicle cylinder head coolant passage blockage
JP2012047534A (en) * 2010-08-25 2012-03-08 Ryoei Engineering Kk Flow channel hole inspection method and device thereof
CN116981934A (en) * 2021-03-16 2023-10-31 本田技研工业株式会社 Communication hole inspection device and communication hole inspection method

Also Published As

Publication number Publication date
JP3124219B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US8948491B2 (en) Method and apparatus for detecting surface unevenness of object under inspection
US6363165B1 (en) Optical member inspecting apparatus and method of inspection thereof
TW201640101A (en) Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect
JP4179558B2 (en) Laser welding quality evaluation method and apparatus
JPH09161042A (en) Method for inspecting inside of hollow route
JP5174917B2 (en) Coin damage determination apparatus and damage determination method
JP3130460B2 (en) Internal inspection method for hollow paths
JP3112061B2 (en) Hollow path internal inspection device
JP3124218B2 (en) Hollow path internal inspection device
JP3124221B2 (en) Head cylinder blockage inspection device
JP2004132773A (en) System for checking gloss of fruits and vegetables
JP3404715B2 (en) Internal inspection method for wide section hollow path
JP3523764B2 (en) Foreign object detection device in nonmetallic inclusion measurement
JP2002250700A (en) Method and device for inspecting pattern
JP2021190515A (en) Workpiece left-over determination system
JP3372850B2 (en) Inspection method of borehole of cylinder block
JP2004223553A (en) Laser beam machining method and apparatus
JPH09196860A (en) Method for checking soldering state
JPH05261557A (en) Device for deciding whether can body is welded adequately or not
KR102279074B1 (en) A quality evaluation system and its method of laser welding
JPH09170985A (en) Method for inspecting blocking of path
JP2004223561A (en) Laser beam machining method and device
JPH10166147A (en) Automatic welding equipment
JP3693194B2 (en) Smear false detection removal method in object detection device
JPH09161050A (en) Method for setting threshold of binarized image

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees